GOOsY
Id.: gm_dm

Version: 1.0
Date: September, 16 1987

Revised: June, 28 1988

G.O.0.S Y.

GOOSY Data Management

M. Richter

June, 28 1988

GSI, Gesellschaft fiir Schwerionenforschung mbH
Postfach 11 05 52, Planckstrafie 1, D-64220 Darmstadt
Tel. (0 6159) 71-0

Conventions used in this Document

Chapter 1

Preface

GOOSY Copy Right

The GOOSY software package has been developed at GSI for scientific applications. Any distribu-
tion or usage of GOOSY without permission of GSI is not allowed. To get the permission, please
contact at GSI Mathias Richter (tel. 2394 or E-Mail ”M.Richter@gsi.de”) or Hans-Georg Essel
(tel. 2491 or E-Mail ”"H.Essel@gsi.de”).

Conventions used in this Document

, , , |Do |, or |Return| key — All key in frame boxes refer to the special keypads on
VTx20 compatible terminals like VT220, V1320, V1330, VT340, V1420, V1520, PECAD,

PERICOM terminals or DECterm windows under DECwindows/Motif on top or right to
the main keyboard, to control characters, or to the delete and return keys of the main
keyboard.

<Fn>, <PFn>, <KPn>, <Do>, or <Ctrl>— This is the alternative way of writing the
keypad or control keys.

GOLD |, <GOLD>— The key is called | GOLD | in most utility programs using the keypad.

PERICOM— On the PERICOM terminal keyboard the function keys are marked opposite to
all other terminals, i.e. the 4 of the rightmost VT'x20 compatible keypad are named

and the 20 keys on the top of each VI'x20 compatible keyboard are named
on a PERICOM.

Return'— The |Return|is not shown in formats and examples. Assume that you must press
Return | after typing a command or other input to the system unless instructed otherwise.

If your terminal is connected to IBM, the key terminates all command lines.

Version 1.0 June, 28 1988 1

key — The box followed by a letter means that you must type the letter while

holding down the | Ctrl|key (like the key for capital letters). Here is an example:

° Z means hold down the key and type the letter Z.

key — The followed by a number means that you must press the key and then

type the number. Here is an example:
. 6 press the key and then type the number 6 on the main keyboard.

or keys — Any or key means that you just press this key. Here is an

example:

° means press the key.

Examples— Examples in this manual show both system output (prompts, messages, and dis-
plays) and user input, which are all written in typewriter style. The user input is normally
written in capital letters. Generally there is no case sensitive input in GOOSY, except in
cases noted explicitly. In UNIX all input and with it user and file names are case sensitive,
that means for TCP/IP services like Telnet, FTP, or SMTP mail one has to define node
names, user names, and file names in double quotes "name” to keep the case valid for Open-
VMS input. Keywords are printed with uppercase characters, parameters to be replaced by
actual values with lowercase characters. The computer output might differ depending on
the Alpha AXP or VAX system you are connected to, on the program version described,
and on other circumstances. So do not expect identical computer output in all cases.

Registered Trademarks are not explicitly noted.

2 Version 1.0 June, 28 1988

Further GOOSY Manuals

1.1 GOOSY Authors and Advisory Service

The authors of GOOSY and their main fields for advisory services are:

M. Richter GOOSY Data Management, VAX/VMS System Manager (Tel. 2394)
R. Barth GOOSY and PAW software (since 1995) (Tel. 2546)

H.G. Essel (GOOSY 1983-1993) Data Acquisition (Tel. 2491)

N. Kurz Data Acquisition (since 1992) (Tel. 2979)

W. Ott Data Acquisition (since 1994) (Tel. 2979)

People who have been involved in the development of GOOSY.

B. Dechant GOOSY software (1993-1095) (Tel. 2546)

R. S. Mayer Data Acquisition (1992-1995) (Tel. 2491)

R. Fritzsche Miscellanea (1989-1995) (Tel. 2419)

H. Grein Miscellanea (1984-1989)

T. Kroll Miscellanea, Printers (1984-1988)

R. Thomitzek Miscellanea, Printers, Terminals (1988-1989)

W. Kynast GIPSY preprocessor (1988)

W.F.J. Miiller GOONET networking, Command interface (1984-1985)
H. Sohlbach J11, VME (1986-1989)

W. Spreng Display, Graphics (1984-1989)

K. Winkelmann GOOSY Data Elements, IBM (1984-1986)

1.2 Further GOOSY Manuals
The GOOSY system is described in the following manuals:
e GOOSY Introduction and Command Summary
e GOOSY Data Acquisition and Analysis

e GOOSY Data Management

e GOOSY Data Management Commands

Version 1.0 June, 28 1988 3

GOOSY Display
e GOOSY Hardware

GOOSY DCL Procedures. GOOSY Error Recovery
e GOOSY Manual
e GOOSY Commands

Further manuals are available:

e GOOSY Buffer structures

e GOOSY PAW Server

e GOOSY LMD List Mode Data Generator
e SBS Single Branch System

o TCP-Package

e TRIGGER Bus

e VME Introduction

e OpenVMS Introduction

Version 1.0 June, 28 1988

Intended Audience

1.3 Intended Audience

This manual is written for advanced GOOSY users and system programmers. It assumes that the
reader is familiar with most VAX-VMS concepts and commands. The ’‘GOOSY Data Manage-
ment’ is a reference manual. It provides all information necessary to implement programs using
the internal Data Management structure of GOOSY. All features of GOOSY Data Management

are described in detail.

The author would be grateful for any critical comment or any suggestion about this manual.

Version 1.0 June, 28 1988

Version 1.0 June, 28 1988

Introduction

Chapter 2

Introduction

In a software system for data acquisition and data analysis a large number of differently structured
data objects has to be handled. Those data objects could be simple variables like calibration
parameters or complex structures like a spectrum. Manipulations like create, delete, modify,
copy and show are required for those data objects.

The organization of the data must fullfill the following needs:

e The addressing of Data Flements by names must be possible.

Several programs must be able to access the data simultaneously (shared memory).

e The organization must be expandable to keep larger amounts of data and to include new
data types.

e The data access must be fast, e.g. for the event analysis loop.
e The data organization must keep its integrity by self describing.
e Comfortable tools to maintain a large number of data elements.

The Data Management of GOOSY implemented on VAX is based on a structured Global Section
called Data Base. The smallest entity which can be located in a Data Base is a Data Element,
e.g. a single parameter or spectrum data. The Data Elements are stored in sections of the Data
Base called Data Area. Fach Data Area is a cluster of contignous pages which will be mapped
into a program’s address space. Data Areas with similar mapping attributes are collected in
Data Pools, which are contigunous in memory. Information about Data Elements is kept in
Data Element Directories. The full specification of a Data Element is:

node: :data-base-name: [DE-directory-nameldata-element-name(index) .member

(see appendix A on page 39).

Version 1.0 June, 28 1988 7

GOOSY Data Management - Data Management Functionality

2.0.1 Glossary

Data Base A formatted VMS global section. The Data Base name is a logical name of a VMS
global section or the global section name itself.

Global Section Part of memory which can be shared by several processes. Provided by VMS.

Global Section File Each global section is created as a file. Parts of the section can be mapped
into a process virtual address space. Global section pages are paged to the global section

file.
Data Base Area Contiguous number of pages in the Data Base (global section file).

Data Base Pool Composed of several areas. Smallest entity which can be mapped by a process.
One pool has for one process one access mode (Write or read only). If a pool runs out of
space, one more area is chained to that pool.

Data Element Piece of data in the data base. It has a name which is kept with other information
in a directory. The data part is kept in a pool (area). The structure of a data element is
described by a PL/1 structure declaration.

Data Element Member Member of a data element structure.

Data Element Array Data Elements can be indexed in up to two dimensions. Fach element
of such an array has its own slot in the directory. Therefore the data structures could be
different.

Data Element Type A data element describing a PL/1 structure. It is created from a PL/1
structure declaration. Data Elements are created with that data structure by refering to
the corresponding Type.

Data Element Directory Information about Data Elements, Areas, Pools, Data Types and
Directories is kept in directories.

Mount/Dismount Mount a Data Base means to create a global section. The global section file
(data base) must exist.

Attach Attach a data base, pool, directory, Data Element means to map the appropriate parts
of the data base into the memory of the attaching process. The resulting pointers are kept
in a local mapping context structure normally invisible to the user. Only Data Element
pointers are returned.

Locate Locate a Data Base, pool, directory or data element means to get the pointer to the
object and/or get an identification number. This number is valid and unique during the
lifetime of the object. It can be used for a fast Locate to get the pointer.

8 Version 1.0 June, 28 1988

Data Management Functionality

Chapter 3

Data Management Functionality

The Data Base Management is a collection of software components, which allow to manipulate
data objects in a multiprocess/multiprocessor environment.

The basic functionality is:

e Create and delete data objects at various complexity levels:

Data Elements, which are simple variables or PL/I like structures,

Data Areas, which are contiguous clusters of Data Elements, the smallest mapping
units of Data Bases,

Data Pools, which are collections of Data Areas with the same mapping protection,
Data Element Directories, which are collections of similar Data Elements,
Data Bases, which are collections of Data Areas with Directories,

and finaly the Data Environment, which is the collection of all active Data Bases
and all correlated processes of an user.

e Locate an already created Data Element.

either by name with a hierachically structured Directory system, which is part of
every Data Base

or by indices of the Master Directory and the corresponding Data Element Directory.

e Access a created or located Data Element.

directly via inline code in PL/I, which has been generated by a preprocessor. The
direct access mechanism must be as efficient as possible, because it is used for very
often accessed Data Elements (e.g. in an event analysis loop). For each Data Area
of a Data Base a local Mapping Context must be kept in the accessing program
containing pointers to the start of mapped Data Areas (see appendix C on page 47).

Version 1.0 June, 28 1988 9

GOOSY Data Management - Data Management Functionality

indirectly via procedure calls, which read from or write into Data Elements.

by several commands for general Data Flements and for specific Data Elements.

e Iinsure Data Base integrity.

A locking mechanism synchronizes operations in a multiprocess system (see appendix B on

page 43). This is necessary due to several reasons:

System integrity

The integrity of a Data Base structure must be ensured under all circumstances. There-
fore the access to system structures has to be done by system procedures which will
do the locking.

Data integrity

The integrity of the application data has to be ensured as far as possible.

Data copy validity

If a Data Element is copied into a local PL/I structure, than modified, and finaly
restored, it has to be ensured that no race conditions will occur.

Local pointer validity

For an efficient direct access of Data Elements it is necessary to map PL/I structures to
the Data Elements by pointers which locate them in the process’ virtual address space,
the so called Mapping Context. The validity of these pointers must be ensured for
all modifications of a Data Element (see appendix A on page 39).

e Provide Data Protection.

A write protection mechanism allows to protect data objects. There are two protection

object classes:

Structure protection

As mentioned above the structural integrity of a Data Base must be ensured under
all circumstances. Therefore the system components like the Area Directory, the Pool
Directory, and the Data Element Directories and with them the Data Element De-
scriptors and the Type Descriptors are collected in seperate system Data Areas of
the Directory Pool. This allows to use hardware protection mechanisms to prevent
unintended modifications.

Contents protection

As discussed for system Data Areas, any other Data Area may be write protected in
certain processes.

E.g. Data Areas of the spectra Data Pools would be write accessible for the analysis
process but write protected for a display process. A Data Area containing parameters
may be write protected for an analysis process but write accessible for an utility process
to change those parameters. Furthermore the protection of a Data Area may be
changed during the lifetime of a process, for example write accessible during the setup
phase but write protected afterwards.

10

Version 1.0 June, 28 1988

Data Management Implementation

e Command Interface.

The Data Management functions are all accessible by user written programs or by com-
mands. The command interface is called the Data Manager. The Data Manager can be
called from DCL level by the command:

$ MDBM
which prompts with
SUC: DBM>

or within a GOOSY environment with the component MGOODBM. With the
key of a VIT'220 compatible terminal keyboard you enter a command menu. A detailed de-

scription about the Data Base Manager can be found in chapter 7 on page 25. See also the
manual ’\GOOSY Introduction’.

Version 1.0 June, 28 1988 11

GOOSY Data Management - Data Management Implementation

12 Version 1.0 June, 28 1988

Macros

Chapter 4

Data Management Implementation

The Data Management functions are available at three different layers:

1. Commands
These provide a simple interactive access to all functions by commands.

2. Procedures
Basic operations implemented in procedures provide to extend access funtions.

3. Macros
Data Elements may be accessed in application codes directly. The name of the Data Element
is referenced in macros or marked by a prefix. The precompiler generates PL/I structures
which are mapped over the Data Element.

The implementation details are obviously system dependant:

e VAX/VMS:
The Data Bases are implemented with global sections, the protection via page protection
(see appendix A on page 39), and the locks via the VMS lock manager (see appendix B on
page 43).

o IMPORTANT NOTE:
All information which is needed to access the Data Elements of a Data Base is stored in the
same Data Base. This selfconsistency allows to implement a simple and general procedure
which converts between various data representations.

4.1 Commands

4.2 Procedures

4.3 Macros

Version 1.0 June, 28 1988 13

GOOSY Data Management - Data Management Organization

14 Version 1.0 June, 28 1988

Data Management Organization

Chapter 5

Data Management Organization

The Data Management is organized internally in a hierachical manner. Each component of the
organization can be addressed by name. The names are collected in named Directories, the Di-
rectory names in a master directory. The data regions are split in Data Areas, the Areas are
bundled in Data Pools. The names of the Data Areas and the Data Pools are collected in the
Area Directory and the Pool Directory, respectively. A Home Block keeps the entry information
about the main Directories and the storage information for the Data Areas, i.e. the Data Base
usage. Figure 5.1 on page 16 gives a simple overview about the Data Managment Organization.

In the following, the components of the Data Management are described briefly. For a detailed
description see chapter 6 on page 21. The corresponding PL/I structures are listed in appendix C
on page 47.

¢ Member Value (MV)

This is the smallest entity, which can be located and accessed via the Data Management.
A Member Value is a simple variable of a specific Data Type. The supported Data Types
are:

— BIN FIXED(7)

— BIN FIXED(15)

— BIN FIXED(31)

— BIN FLOAT(24)

— BIN FLOAT(53)

— BIT(*) ALIGNED

— CHARACTER(*)

— CHARACTER(*) VAR
— OFFSET

— UNKNOWN

Version 1.0 June, 28 1988 15

GOOSY Data Management - Data Management Organization

Data Base
Home Block
Directory entry
Directory entry
|
names and
Pool links etc.
Pool —
Area
|
Pool Area
Data Element
| |
free space Area

Figure 5.1: The simplified structure of a GOOSY Data Base.

¢ Element Member (EM)

An Element Member is a Member Value or a 1 to 8 dimensional array of Member Values.

¢ Data Element (DE)

A Data Element is the basic entity which can be manipulated by the Data Management.
The structure of a Data Element is defined by a Data Type.

The three basic Data Flement forms are:
— simple Data Element

Containing only one Member Value or Element Member and corresponding to a simple
variable or a simple array of PL/I.

16 Version 1.0 June, 28 1988

Data Management Organization

— complex Data Element
Containing several Element Members and corresponding to a structure of PL/I.

— indexed Data Element (name arrays)
This is an array of Data Elements corresponding to a pointer array of PL/I referencing
structures of the same Data Type.

The following list shows some examples of Data Elements in GOOSY.
— Coordinates and parameters:

They are implemented with simple Data Elements.

— Spectra
A spectrum consists of a header in a protected pool and a data array.

— Conditions

— Command definitions
— Display pictures

— Buffer pools

— Control structures

e Data Area (DA)
A Data Area is the smallest entity which can be made accessible (mapped) to a program.

All information which requires a specific combination of protection attributes is normaly
collected in one Data Area. A Data Area is a storage area in which Data Flements can be
created.

Every Data Area consists of an Area header and a free allocation part. The header keeps
the information about the following items:

— Length of the Data Area.

— Index number of the Data Area in the Area Directory.

— Version number of the Data Area (for integrety check).

Relative address of the start of the free allocation part.
— Informations about the allocation within the Data Area.

— The value of the byte cluster for the Data Area. A byte cluster is the smallest number
of bytes which can be allocated in the Data Area. The byte cluster value depends on
the Data Elements to be allocated in the Data Area. For single parameters it might
be 4 bytes, for spectra it might be 512 bytes.

— An allocation bit map with one bit per byte cluster.

(see appendix C section C.3 on page 58).

Version 1.0 June, 28 1988 17

GOOSY Data Management - Data Management Organization

e Data Pool (DP)

A Data Pool is the collection of Data Area which requires the same specific combination of
protection attributes. All Data Areas of a Data Pool are logical linked together. If a Data
Area is short of space, a new Data Area can be created with the same attributes than the
previous one. This new Data Area will be linked to the same Data Pool. A user normally
knows the Data Pool only, not the Data Area.

Data Base (DB)

All information associated with one application is normaly collected in one Data Base. A
Data Base is a storage area, in which Data Areas can be created.
Every Data Base has the following protected system Data Areas:

Home Block The Home Block is a specific part of the Data Base. It is not a normal Data
Area. The Home Block is always located at the begin of every Data Base and contains
all information to locate other Data Areas, especially the Directories. It also keeps
an allocation bit map of the whole Data Base and general informations like the section
file name, creation date and time etc. (see appendix C section C.2 on page 56).

Area Directory This Directory contains the relative addresses, the length in pages (512
bytes), the allocation cluster size, and the names of all Data Area for the whole Data
Base. It also keeps the Data Pool link information for each Data Area (see appendix C
section C.5 on page 64).

Pool Directory This Directory contains the names of all Data Pools for the whole Data
Base and the minimum size in bytes of any Data Area in this Data Pool. It also
keeps the link information for the first Data Area of each Data Pool (see appendix C
section C.6 on page 68).

Master Directory This Directory contains the names of all Data Element Directories and
the relative addresses of their Data Element Directories for the whole Data Base (see
appendix C section C.7 on page 72).

Data Element Directories Each of these Directories contain the names of all Data El-
ements, the relative addresses of their Data Areas, the relative addresses within the
Data Areas, and other Data Element information for all Data Elements of one Data
Element Directory. This information is called Data Element Descriptor or Direc-
tory Entry.

There are three additional extensions possible for each entry in a Data Element Direc-
tory:

— Any extension of the Data Element Descriptor. These extensions may be of any
length. They are characterized by an extension type. All extensions of a Data
Element Descriptor are linked. The character string of the name of a Data Element
is located within such an extension.

18

Version 1.0 June, 28 1988

Detailed Description

— A queue of Data Elements of the same Data Element Directory, i.e. in the same
Data Element Directory. This allows to bind unnamed Data Elements to named
Data Elements, e.g. a named spectrum header and its unnamed spectrum limit
definitions.

— A link to Data Elements of any Data Element Directory. This allows logical
correlations of Data Flements, e.g. conditions linked to a spectrum.

(see appendix C section C.8 on page 75).

Type Directory The Type Directory is a specific Data Element Directory which contains
the Data Types of all Data Elements in the Data Base. Each new Data Type must be
inserted in the Type Directory before it can be used by a Data Element (see appendix C
section C.9 on page 81).

¢ Data Environment (DEN)

The Data Environment is the collection of all Data Bases and all processes which are visible
for a user.

Version 1.0 June, 28 1988 19

GOOSY Data Management - Detailed Description

20 Version 1.0 June, 28 1988

Detailed Description

Chapter 6

Detailed Description

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Home Block

Area Directory

Pool Directory

Master Directory

Data Element Directory
Type Directory

Type Descriptor

(See appendix C section C.10 on page 85)

e Type Descriptor length

e Data Type name

e number of members

e for every member:

— member name
— Data Type of member

— dimensionality of member

for every dimension or size: bound or refer object

Version 1.0 June, 28 1988

21

GOOSY Data Management - Detailed Description

6.8 Data Element Descriptor

e version number of Data Element

e offset to the Data Element Descriptor extent

e index of the Data Area in which the Data Element is allocated
e offset within this Data Area

e size of Data Element

e Data Type of Data Element

o status flags:

— named or queued Data Element
— member of a name array

— protected against deletion
e link information
e queue forward and backward reference

e name for named Data Elements

6.9 Data Base Usage

The following list summarizes the Data Base usage in GOOSY:

¢ Environment Data Base (not yet implemented)
One Data Base per GROUP, which contains the Data Base Directory and all other
information, which must be handled on group level.

e Command Data Base (not yet implemented)
One Data Base per ENVIRONMENT, which contains all command descriptions.

e Profile Data Base (not yet implemented)
One Data Base per USER, which contains all user specific information:

— User specific command attributes like replaceable defaults (parameter specific or global)
or the process in which a command is executed.

— Logical name table.

22 Version 1.0 June, 28 1988

Data Base Manager

e User Data Base(s)
Those Data Bases may contain Data Elements, which are accessed in more than one acqui-
sition process, e.g. global parameters.

¢ Dump Data Base(s)
Those Data Bases are alike a Local Data Base, but are used to store Data Elements for a
longer time. The structure is equal, but for some Data FElements a different representation
may be used (e.g. compressed spectra).

Version 1.0 June, 28 1988 23

GOOSY Data Management - Data Base Manager

24 Version 1.0 June, 28 1988

Data Base Manager

Chapter 7

Data Base Manager

Version 1.0 June, 28 1988

25

GOOSY Data Management - Data Base Manager

7.1 Data Base Manager Introduction

There are two interfaces to the data base management:
1. Command Interface: Data Base Manager.
2. Program Interface: Data Management Routines.

The Data Base Manager is a program which can be called from DCL level as a stand alone
program or as a component of a GOOSY environment. It executes all commands provided by

GOOSY to handle data bases.

26 Version 1.0 June, 28 1988

Data Management

7.2 Data Management

A Data Base is located in a file and has a Data Base name. It is recommended to use the same
name for the file and the Data Base. The file type should be .SEC. A logical name may be created
for the Data Base name. To activate a Data Base it must be mounted. It is dismounted during
a system shutdown or by command. If a Data Base runs out of space, it can presently NOT be
expanded.

The data region of a Data Base is splitted into Pools. All Data Elements are stored in Pools.
A Pool (and all Data Elements in the Pool) can be accessed by a program with READ ONLY
protection or with READ/WRITE protection. Pools must be created. They are automatically
expanded if necessary, up to the space available in a Data Base. Similar to a VMS disk, Data
Elements of a GOOSY Data Base are organized in Directories. The user must create Directories
to use them. A diagram of the simplified Data Base structure is shown in figure 5.1 on page 16.

Data Elements can be of atomic Types (scalars or arrays), or of structure Type (PL/1 struc-
tures). Besides the data structure a Data Element can be indexed (one or two dimensional).
Such Data FElements are called name arrays. Each name array member has its own data and
Directory entry. Similar to PL/1, the variables in a structure are called members. All GOOSY
Data Elements like conditions, spectra, pictures, Dynamic Lists, etc. are kept in Data Bases.

Normally one Data Base is adequate for one analysis. The Data Base and its Data Elements
are created by commands. Presently all Data Elements must be created before starting
an analysis. A DCIL command procedure should be written to do this. An example of such a
DCL command procedure can be copied from the file GOOSEXAMPLES:DB.COM and adapted
to the needs of the experiment. Presently at least one condition and one spectrum must be
created in a Data Base used for analysis.

A new Data Base can be created and preformatted by the DCL command:

$ CREDB basename filename size[KB]

/SPECTRUM=s ! maximum number of spectra
/PICTURE=p ! maximum number of picture frames
/CONDITIONS=c ! maximum number of conditions

This command creates the Directories $SPECTRUM, $CONDITION, $SPICTURE, $DYNAMIC
and the Pools $SPEC_POOL, $SCOND_POOL, $PIC_POOL and $DYNAMIC. For additional
information for this command type HELP CREDB. An example is shown in section 77 on page 77.
Data Bases are accessible on one node by all programs started by the same VMS user on that
node. Before accessing a Data Base, it must be mounted (already done by CREDB). This is done
by issuing the DCL command:

$ MDBM MOUNT BASE basename filename

GOOSY should then tell you that the Data Base basename has been mounted as a global section
and is opened and ready. filename is the Data Base file name (a VAX/VMS global section file).
It is strongly recommended that the Data Base name is the same as the file name and that the

Version 1.0 June, 28 1988 27

GOOSY Data Management - Data Base Manager

filename has the type .SEC. The Data Base remains mounted until the node is rebooted or the
Data Base is dismounted explicitely by the DCL command:

$ MDBM DISMOUNT BASE basename

NOTE, however, that the Data Base remains mounted as long as there are programs active using
it, even if the message says that there is 'no such (global) section’. Only processes running on
the same node of a cluster are allowed to share Data Bases. If you need a Data Base already
mounted on a different node, change either to that node or dismount the Data Base on the other
node and mount it on your node.

One can define logical names for Data Base names. They should be defined with DE-
FINE/JOB to be known for all subprocesses.

28 Version 1.0 June, 28 1988

GOOSY Data Elements

7.3 GOOSY Data Elements

As mentioned above, all data is located in Data Bases. Data Bases are organized in Directories,
similar to VMS. All Data Elements have names which are inserted in a Directory. Various
commands are provided to handle any Type of Data Elements, as CREATE, DELETE, SHOW,

COPY, SET. In commands Data Flement specifications have the general form:
node: :base: [directory]lname(index) .member (index)

The node name is used in the future for remote Data Base access. It is presently not used. An
asterisk or empty string denotes the current (local) node. All Data Elements may be structured
like in PL/1. In addition - and in contrast to a file system - a Data Element may be an array
of Data Elements. We call such an array name array to distinguish it from an array inside the
data. E.g. a spectrum consists of some header information and a data array, but the spectrum
name may be indexed. Fach member of such a name array keeps the same information as a single
spectrum. The smallest referable entity of a Data Element is called a member.

There are some GOOSY Data Elements which are handled by special commands. These are
described in the next sections.

7.3.1 Conditions

By default, conditions are kept in the Directory SCONDITION. As opposed to SATAN, GOOSY
conditions are independent of spectra or coordinates (parameters). All kinds of conditions are
executed as specified in the Dynamic List (see below). They may then be used as filters for
spectrum accumulation and/or scatter plot. In an analysis routine they are executed by the
macro $COND . Each condition has TRUE and FALSE counters and freeze, result, and preset
bits. The different kinds are:

Window Conditions

A window condition keeps n window limits. Up to eight may be used in a Dynamic List. Each
limit pair may be applied to a different object. Object may be any member of a Data Element
which is a BIN FLOAT(24), BIN FIXED(31) or BIN FIXED(15) number. The condition is TRUE
if all subwindows are TRUE.

Multiwindow Conditions

The difference to normal window conditions is that there is one result bit for each subwindow.
In a Dynamic List any number of subwindows is processed. All subwindows are applied to the
same object. The result bits can be used as filters for spectrum array accumulation. The number
of the last TRUE subwindow may be used to select a spectrum array member for accumulation

(See MULTIWINDOW and INDEXEDSPECTRUM in Dynamic Lists).

Version 1.0 June, 28 1988 29

GOOSY Data Management - Data Base Manager

Pattern Conditions

Similar to the windows, the pattern conditions may keep n subpatterns. Up to eight may be
checked in a Dynamic List. Fach subpattern is compared to a different object which can be any
Data Element member of Type BIT(16) or BIT(32) ALIGNED. The condition is TRUE if all
subpatterns match. There are four matching modes:

1. IDENT
Pattern and object must be identical.

2. ANY

Pattern and object must have at least one common bit set.

3. INCL
TRUE if all bits set in the pattern are set in the object (like IDENT inclusive additional
bits set only in the object).

4. EXCL
TRUE if all bits set in the object are set in the pattern (like ANY exclusive additional bits
set only in the object).

In addition single bits in the objects can be inverted before testing.

Function Conditions

The user may write special routines for more complex conditions. These routines must be linked
in a sharable image and can then be dynamically loaded. In the Dynamic List any members of
Data Elements may be specified as arguments for these routines. The first argument, however,

must be a BIT(8) ALIGNED returning the result.
Polygon Conditions

A polygon is created and modified independent of polygon conditions. Therefore several polygon
conditions may reference the same polygon, but with different objects (coordinates). The polygon
and objects are bound to the condition either by creation or by inserting in the Dynamic List.
The execution time is similar to window conditions.

Composed Conditions

This may be any boolean expression of other conditions.

7.3.2 Polygons

Polygons may be created, displayed, modified, copied and deleted. They can be specified by
graphic input or numerically. They are used by one or more conditions.

30 Version 1.0 June, 28 1988

GOOSY Data Elements

7.3.3 Spectra

By default, spectra are kept in the Directory SSPECTRUM. A spectrum is composed of several
Data Elements. The user need not be concerned with that, but in a SHOW DIRECTORY com-
mand these Data Elements will be listed. Spectra may be BIN FIXED(31) or BIN FLOAT(24).
The dimensionality can be up to two. Spectra may be filled in a Dynamic List Entry or by macro
$ACCU .

Spectra are created as digital or analog spectra.

e Digital spectra are used to accumulate integer or bit variables. The integer binsize specifies
the number of input bins to be incremented in one spectrum bin. Bit spectra should be
dimensioned (1,16) or (1,32), respectively, with binsize 1.

e Analog spectra are used to accumulate float variables. The binsize specifies an interval.
The lower limit of the interval is inclusive, the upper limit exclusive. Therefore the upper
spectrum limit is exclusive.

7.3.4 Calibrations

By default, calibrations are kept in the Directory $CALIB. Similar to spectra calibrations are sets
of several Data Elements. They keep a calibration table which is used to calibrate the spectra
data when displaying them. Each calibration can be connected to an arbitrary number of spectra.

7.3.5 Pictures

By default, pictures are kept in the Directory SPICTURE. Similar to spectra pictures are sets
of several Data Elements. They keep information to display several frames containing spectra or
scatterplots. Up to 64 frames may be displayed on one screen.

7.3.6 User Defined Data Elements

Besides the GOOSY Data FElements the user may define and create his own Data Elements. This
may be done by GOOSY commands or by subroutine calls in a program. The following steps
must be performed:

1. Put the PL/1 source declaration of the Data Element in a text library. The name of the
structure should be used as the name for the library module. The declaration must declare
a based structure. A base pointer may be specified (should be STATIC).

2. Create a Directory in Data Base (optional)
3. Create a Pool in Data Base (optional)

4. Create the Data Element Type, using the new PL/1 structure in the text library.

Version 1.0 June, 28 1988 31

GOOSY Data Management - Data Base Manager

5. Create the Data Element of the new Type.

If the declaration contains REFER members, the Data Element can be created only in a program,
because the REFER values must be specified. To access the Data Flement in a program, include
the library module declaring its structure and call $L.OC macro to receive the pointer to the Data
Element. An example is shown in section ?? on page ?7.

32 Version 1.0 June, 28 1988

Data Base Manager

7.4 Data Base Manager

As an example for GOOSY commands and to get familiar with Data Elements, we will describe
in more detail the Data Base Manager. It is invoced stand alone by the DCL command:

$ MDBM ! start DBM
SUC:DBM> <NEXT SCREEN> ! pressing this key enters the menu.

A Data Base should have been created already, e.g. by CREDB. The first menu level looks like:

Subcommands availlable ==
$ * : * :ATTACH,CALL,DCL,DEBUG,DEFINE,DIRECTORY,EXECUTE,EXIT,..

CALCULATE * * :SPECTRUM

CALIBRATE * * :SPECTRUM

CLEAR * * :CONDITION,SPECTRUM

COPY * * :ELEMENT,MEMBER,SPECTRUM

CREATE * * :AREA,CONDITION,BASE,DIRECTORY,DYNAMIC,ELEMENT,...
DELETE * : * :CONDITION,DYNAMIC,ELEMENT,GLOBAL_SECTION,LINK,POOL,..
DECALIBRATE : * :SPECTRUM

DISMOUNT * * :BASE

DUMP * * :SPECTRUM

FREEZE * : x :CONDITION,SPECTRUM

HELP : Access VMS HELP facility

LOCATE * : * :BASE,DIRECTORY,ELEMENT,ID,POOL,QUEUEELEMENT,TYPE
MENU : Enter menu

MODIFY * : * :DIRECTORY

MOUNT * * :BASE

SET * * :CONDITION,LETTERING,MEMBER

SHOW * * :AREA,CONDITION,DIRECTORY,DYNAMIC,ELEMENT ,HOME_BLOCK, .
UNFREEZE * * :CONDITION,SPECTRUM

UPDATE * : *x :BASE,DYNAMIC

sokkckokskokkkokkokkk End of 1ist skoksokkskoksokkskoksokkdkkk End of list *x*x
Command :

PF2: Help, PF3: Enter command, PF4: Break, ENTER: Previous menu
Subcommand :

You should play around in the menu. If you execute a command, the full command line will be
displayed on top of the screen.

In the following we show some often used commands and their most important arguments.
Examples can be found in section 77 on page ??. The commands can be given to the DBM>
prompt or to the GOOSY> prompt if an environment with $DBM component is created. Note
that in the following descriptions lower case names have to be replaced by meaningfull values.
Uppercase names are keywords.

Version 1.0 June, 28 1988 33

GOOSY Data Management - Data Base Manager

7.4.1 CREATE Commands

Create Directories

Creating Directories one should know that each name array member takes one entry in the
Directory. Some GOOSY Data Elements take more than one entry, i.e. spectra four, conditions
two, composed conditions three and pictures one per picture plus one per frame.

CRE DIRECTORY directory 100 base ! 100 entries

Create Pools

All Data Elements are allocated in Pools. Normally the default Pools created by command CREDB
are adequate. One may, however, create additional private Pools. The poolsize is no limit of the
Pool, because it is extended automatically. One should at least specify the size of the largest
Data Element to be allocated in the Pool.

CRE POOL pool 8192 base ! size 8192 bytes

Create Data Element Types

To create a Data Element, one must specify the structure declaration. This is done by a PL/1
structure declaration. This declaration must be in a file or text library module. The name of the
file or library module must be the name of the structure, respectively. It must made known to
the Data Base. This is done by CREATE TYPE:

CRE TYPE @library(module) base ! Declaration from library
CRE TYPE @filename base ! Declaration from file
Create Data Elements

CRE ELEMENT [directory]name pool type ! Pool, Type, and dir. must exist

Create Conditions

Each condition takes two entries in Directory SCONDITION, except composed conditions which
take three. The default Pool is SCOND_POOL

CRE COND WINDOW c (1,1000) 1 ! 1 subwindow
CRE COND WINDOW c (1,1000) 2 ! 2 subwindows

! both (1,1000)
CRE COND WINDOW c(10) (1,100) ! 10 cond., 1 subw.
CRE COND WINDOW c (1,100,1,200) ! 2 subwindows
CRE COND MULTI c (1,1000) 100 ! 100 subwindows
CRE COND PATTERN c ’1°B ! 1 subpattern

! padded right with O

34 Version 1.0 June, 28 1988

Data Base Manager

CRE COND PATTERN c¢ ’1°B 2 ! 2 subpatterns

CRE COND PATTERN ¢ ’1°B INV=’1’B /ANY ! invert first bit
CRE COND PATTERN c ’11111°B /IDENT ! identical match
CRE COND COMP ¢ "a | (x & y)" I a, x, y must exist

Create Spectra

Each spectrum takes four entries in Directory $SPECTRUM. Default Pool is $SPEC_POOL.

CRE SPEC s L (0,1023) 10 /DIGITAL ! BIN FIXED(31), binsize=10
CRE SPEC s R (0,1023,0,255) (10,10) ! BIN FLOAT(24), 2-dim.
CRE SPEC s(10) L (-10,15) 0.1 /ANALOG ! name array, binsize 0.1

Create Dynamic Lists

Each Dynamic List takes two entries in Directory $DYNAMIC. The default Pool is SDYNAMIC.

CRE DYNAMIC LIST 1list 100 ! Dynamic List for 100 entries

Create Dynamic Entries

For Dynamic List Entries the objects for spectrum accumulation and condition checks, the spec-
trum increment and the index must be members of GOOSY Data Elements created already in
the Data Base. Assume we have created a Data Element like this:

DCL 1 SX$evt,
2 patt BIT(32) ALIGNED,
2 geli(10) BIN FIXED(31),
2 naj(10 BIN FIXED(15);

This declaration is in our library TPRIV in module SX$EVT. We refer in the following examples
to Data Element EVT of the above Type. We assume that conditions ¢,w,a(1:10) and spectra s
and s2 already exist.

CRE TYPE @tpriv(SX$evt) ! Declaration in library
CRE ELEMENT [evalevt evtdata SX$evt ! Directory EVA and
! Pool EVIDATA must exist

CRE DYNAMIC LIST 1list ENTRIES=100 ! Dynamic List for 100 Entries
CRE DYN ENTRY PATTERN list c¢ PARAMETER=evt.patt
CRE DYN ENTRY WINDOW 1list w PARAMETER=evt.geli(3)
CRE DYN ENTRY WINDOW 1list a(1:10) PARA=evt.geli(1:10)
! condition name array!
CRE DYN ENTRY SPECTRUM list s PARAMETER=[eva]evt.naj(1)
CRE DYN ENTRY SPECTRUM list s2 -

Version 1.0 June, 28 1988 35

GOOSY Data Management - Data Base Manager

PARAMETER=([evalevt.naj (1), [evalevt.geli(1)) -

CONDITION=c

Create Pictures

2-dim. spectrum

Pictures take one entry in the SPICTURE Directory. FEach frame takes one more entry. The
default Pool is $PIC_POOL. First, a picture is created. Then the frames are specified.

CRE PICTURE pict 6 /NOPROMPT
MOD FRAME SCATTER pict 1 [evalevt.geli(1l) [evalevt.naj(1)

6 frames

frame one scatter

MOD FRAME SCATTER pict 2 [evalevt.geli(2) [evalevt.naj(2)

MOD FRAME SPECTRUM pict 3 [$SPECTRUM]s

Create Calibrations

frame two scatter

frame three spectrum

Each calibration takes two entries in Directory $CALIB. One for the main Data Element and one
entry for the calibration table contents. First a calibration is created. Then it is connected to
several spectra (for detail description see page ?77?):

CREATE CALTBRATION FIXED cal_1 1024

CALTBRATE SPECTRUM s cal_1

7.4.2

SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW

SHOW Commands

CONDITION *

CONDITION c /FULL
CONDITION * /WINDOW
SPECTRUM *

SPECTRUM * /FULL

SPECTRUM s /DATA

DYNAMIC LIST list *
DYNAMIC LIST list SPECTRUM
PICTURE x*

PICTURE pict /FULL

a calibration table with
1024 entries and fixed
stepwidth between the
uncalibrated values is
created

spectrum "s" is calibrated
with "cal_1"

list of all conditions
full information
window cond. only

list of all spectra
full information
spectrum data

all entries

all spectrum entries
list of all pictures
full information

36

Version 1.0 June, 28

1988

Data Base Manager

SHOW ELEMENT [EVA]=*
SHOW ELEMENT [EVA]JEVT /DAT
SHOW TABLE

SHOW MEMBER [EVAJEVT.GELI(1)

7.4.3 CLEAR Commands

CLEAR SPECTRUM x*
CLEAR SPECTRUM s
CLEAR SPECTRUM sx*
CLEAR CONDITION COUNTER *

7.4.4 DELETE commands

DELETE SPECTRUM
DELETE CONDITION
DELETE DYNAMIC ENTRY
DELETE PICTURE
DELETE POLYGON
DELETE ELEMENT

list of elements in [EVA]
contents of [EVA]JEVT
Show all counters of
spectra and conditions
show contents

Clear
Clear
clear
Clear

all spectra

spectrum s

all spectra s

all test/true counters

Data Elements which are in use by any program cannot be deleted, i.e. the analysis program
protects all Data Elements it references. The DETACH ANALYSIS command releases this protection.

7.4.5 Miscellaneous Commands

COPY SPECTRUM

COPY ELEMENT

COPY MEMBER
CALCULATE SPECTRUM
MODIFY DIRECTORY
SET MEMBER

Version 1.0 June, 28 1988

37

GOOSY Data Management - Appendix

38 Version 1.0 June, 28 1988

Mapping Concept

Appendix A

Mapping Concept

A Data Base is implemented on a VAX under the VMS operating system as a Global Section.
A Global Section consists of a Section File containing all data which should be shared by many
processes. This file gets a group or a system wide Section attribute by an initiating process which
calls the VMS system service procedure SYSSCRMPSC. This mounting of a Data Base will be
done by the GOOSY procedure MSMODB. Each process may map parts of a Data Base (pages of
a Global Section) which it wants to share with other processes. The start block within the Data
Base and the length in blocks (512 byte page) to be mapped must be known. This information
is held in the Data Base Directories. The mapping can be done also by the VMS system service
procedure SYSSCRMPSC. This is done by the GOOSY procedure MSMPDB, which is used by
all attach modules M§ATxx. The procedures return the address of the first and the last virtual
memory location to which the part of the Global Section was mapped. This array of two pointers
is held in the local mapping context structure SMSDBMC of each process (see appendix C
section C.1 on page 48).

To map a part of a Data Base, the access mode to this part must be defined also. There are
two possible access modes:

1. read only access
This mode allows to read all data of the mapped part of the Data Base. It prohibits any
change of the data by the mapped process. This mode is useful e.g. for SHOW command
procedures.

2. read/write access
This mode allows to read and write all data of the mapped part of the Data Base. It allows
any change of the data by the mapped process. This mode is necessary e.g. for CREATE
command procedures.

To set one of these access modes, one has to map the part of the Global Section. If this part
of a Data Base was mapped already with another mode, one has to unmap it first (detach) and
then map it again (attach) with the new mode. Thereby the start and end virtual address will be
changed. All correlated local mapping contexts will be changed after these operations. Therefore,

Version 1.0 June, 28 1988 39

GOOSY Data Management - Appendix

Data Element Directories and Data Elements of this part of the Data Base must be located again
after a remap.

In general the following steps should be done to get the correct mapping context:

1.

Attach a Data Base (MSATDB):

The Home Block and the main Directories (Area-, Pool-, Master-, Type-Directory) will be
mapped with the required access mode. To create a Directory, a Data Element, a Data
Element Type, or a Pool, the main Directories and the Home Block must be mapped with
write access.

. Get the Data Element Directory indices and the Pool indices of all Data Elements you want

to deal with (M$DEID):

Each Data Element has an entry in a Data Element Directory. Each Data Element with
non-zero data has its data in Pools.

. Attach all Data Element Directories you need (M$ATDI):

A Data Element Directory must be mapped at least with read access to use any Data Ele-
ment index operation. To create Data Elements their Directories and the main Directories
must be mapped with write access.

. Attach all Pools of all Data Flements you need (M$ATPO):

Data Element data are located in Pools. A Pool is a bunch of Data Base Areas which are
mapped identically, i.e. the data of all Data Elements of a Pool are mapped with the same
access mode.

. Locate all Data Elements you need (M$LOID or MSLODE):

The locate procedures return the virtual address of a Data Element in its Pool. The Pool
must have been attached separately in advance.

If a Directory or a Pool has to be remapped with a different mapping access one needs the
following steps:

1.

Detach the Directory or Pool (MSDADI, M$DAPO):

The local mapping context of a Directory or Pool is invalid after a detach.

. Attach the Directory or Pool with the right access mode, MSATDB, MSATPO

The local mapping context of a Directory or Pool is renewed.

. Locate all involved Data FElements again (M$LOID):

If a Pool was remapped, all Data Elements having data in this Pool must be located to get
the correct virtual data pointers again.

If the Home Block and all main Directories have to be remapped with a different mapping access
one needs the following steps:

40

Version 1.0 June, 28 1988

Locking Concept

. Detach the whole Data Base (MSDADB):
All mapping information is lost after the detach of a Data Base.

. Attach the Data Base again with the new access mode (MSATDB).
. Attach all Data Element Directories and the Pools you need (M$SATDI, MSATPO).

. Locate all Data Elements you need (M$LOID).

Version 1.0 June, 28 1988 41

GOOSY Data Management - Appendix

42 Version 1.0 June, 28 1988

Locking Concept

Appendix B

Locking Concept

Since a Data Base is implemented under VAX-VMS operating system by a Global Section, many
processes have access to the data stored in the Data Base. Each process having write access
may modify the data. It can also modify the internal organization of a Data Base by adding or
deleting Data Elements and/or Data Element Directories. These possibilities require a protection
mechanism between different processes to keep the integrity of Data Bases during access. Under
VAX-VMS operating system the lock manager is used to protect processes during access of parts
of the Data Base.

The VMS lock management system services allow different processes to synchronize their
access to shared resources. To synchronize access to resources, the lock management services
provide a queuing mechanism allowing processes to wait in a queue until a particular resource is
available, i.e. another process has finished its access to the resource.

In case of a Data Base a resource is one of the following parts:

e the whole Data Base (name: LCK_’db-name’)
e the Home Block (name: $LCK_HBV1)
e the main Directories, Area-, Pool-, Master-Directory (name: $LCK_MAIN_DIR)

each Data Area (name: SLCK_AREA ’area-index’)
e cach Data Element Directory (name: SLCK_EDIR_’dir-index’)

e cach Data Element (name: $SLCK_DE_’de-index’)

The Enqueue Lock Request system service (SYS$SENQ) is used to make lock requests and the
Dequeue Lock Request system service (SYSSDEQ) is used to cancel lock requests. A resource
lock gets a name by the process requesting the lock.

Each lock is system wide identified by a unique Lock Identification number. This number
is created by the VMS operating system during the creation of a lock. The Lock Identification
numbers of all Data Base locks created by a process are stored in the local mapping context
structures SM3DBMC (see appendix C section C.1 on page 48).

Version 1.0 June, 28 1988 43

GOOSY Data Management - Appendix

A requested lock has an associated lock mode. The lock mode indicates how the process wants
to share the resource with other processes. This lock mode can be requested and converted by
the SYSSENQ system service. The lock management system services compare the lock mode of
a newly requested lock or converted lock to the lock modes of other locks from other processes
with the same resource name.

e If no other process has a lock on the resource, the new lock is granted.

e If other processes have a lock on the same resource and the mode of the new request is
compatible with the existing locks, the new lock is granted.

e If other processes already have a lock on the resource and the mode is not compatible, the
new request is placed in a queue waiting for the resource to become available. Depend-
ing on the system service the requesting process can wait until the resource is available

(SYSSENQW) or it can continue (SYSSENQ) until it is notified (Event Flag and/or AST)

that it can access the resource.

The Data Base resources are organized in a hierarchical order. This is reflected in the lock’s
parentage.

1. the whole Data Base lock is the parent of the Home Block lock and the main Directories
lock,

2. the main Directories lock is the parent of all Data Element Directory locks and all Area
locks,

3. each Data Element Directory lock is the parent of all locks of the Data Elements of this
Directory.

A lock request has one of the following associated lock modes:

1. Null Mode
This mode grants no access to the resource. The Null mode is typically used as an indicator
of interest in the resource, or as a placeholder for future lock conversion.

During the attach to a Data Base the locks for the whole Data Base, the Home Block, the
main Directories, all Data Element Directories, and all Areas are created with Null mode.
The locks for the Data Element are created with Null mode during the attach to a Data
Element Directory.

2. Concurrent read
This mode allows sharing read of the resource with other readers. Writers are allowed access
to the resource (unprotected read).

Not yet used in GOOSY.

44 Version 1.0 June, 28 1988

Locking Concept

3. Concurrent write
This mode allows sharing write to the resource with other writers. Writers are allowed
access to the resource (unprotected write).

Not yet used in GOOSY.

4. Protected Read
This mode allows sharing read of the resource with other readers. No writers are allowed
access to the resource.

If a Directory search operation or any Directory index is in use, the lock of this Directory
is set to Protected Read. After the locate of a Directory M$LODI the Directory lock is in
Protected Read on return. After a locate of a Data Element of this Directory MSLODE,
MS$LOID, MSLODA, MSLOQE, MSLOQA, the lock of the Directory is set to Null mode
and the lock of the Data Element is set to Protected Read on return. If the Data Element
is no longer in use, its lock must be explicitly converted to Null mode. Otherwise no change
can be done on this Data Element by other processes.

5. Protected Write
This mode allows sharing write to the resource with other concurrent read mode readers.
No other writers are allowed access to the resource.

Not yet used in GOOSY.

6. Exclusive
This mode allows write to the resource. No other writers or readers are allowed access to
the resource.

The Home Block lock is set to Exclusive if any new Area will be created or deleted. The
Home Block lock is always Null mode on return of all procedures setting the lock to Exclu-
sive.

The Main Directories lock is set to Exclusive if any new Area, a new Pool or a new Data
Element Directory will be created or deleted. The Main Directories lock is always Null
mode on return of all procedures setting the lock to Exclusive.

A Data Element Directory lock is set to Exclusive if any new Data Element will be created
or deleted. A Data Element Directory lock is always Null mode on return of all procedures
setting the lock to Exclusive.

An Area lock is set to Exclusive if any new Area, any Directory or any Data Element will
be created or deleted. An Area lock is always Null mode on return of all procedures setting
the lock to Exclusive.

To show current locks use the DCL commands:

$ CWHAT LOCKS

Version 1.0 June, 28 1988 45

GOOSY Data Management - Appendix

or better

$ MLOCKS
SUC: LOCKS> ! Now enter ’$ MENU’ to get a command menu

46 Version 1.0 June, 28 1988

PL/I Structures

Appendix C

PL /I Structures

A Data Base is a collection of addressable data in a data file. On the VAX, this file is defined as
a Global Section. A part of a Data Base or the whole Data Base may be mapped to a process’
data space with different access modi (read only, read/write). The main mapping unit of each
Data Base is a page, i.e. 512-bytes blocks of data. These pages are equal to DEC’s file blocking
size. A process can map only multiples of pages.

The first pages of each Data Base are reserved for general Data Base information, the Home
Block.

To allocate variable blocks of data in a Data Base, a Data Base is divided into Areas. An
Area consists of one or more pages. An Area has a header information, which defines the Area by
its length, an identification version, and an Area internal data clustering. A data cluster is the
unit of data bytes (any fixed number of bytes) which will be allocated or freed within the Area.
For each data cluster in an Area, a bit is reserved in a Bit Map. The Bit Map is located in the
Area header. If n data clusters are allocated in an Area, the n corresponding bits of the Bit Map
of this Area are set to "1I’B. If n data clusters are freed again, the n corresponding bits of the
Bit Map of this Area are set to ’0’B. By this mechanism the space of an Area can be controlled
easily, freed data clusters can be reused.

The same Bit Map mechanism is used to control the overall Data Base allocation. The data
cluster is one page (512 bytes) is this case. The Data Base Bit Map is part of the Home Block
information.

To address data within a Data Base, naming paths are included. Fach Area of a Data Base
has a name. These names are ordered in an Area Directory together with mapping and Area
cluster information.

Several Areas are combined to Area clusters, the Pools of a Data Base. A Pool is a logical
cluster of Areas with the same mapping attributes. The names of the Pools, the identification
indices of the first Area of each Pool, and the minimum allocation size of an Area within the Pool
are kept in the Pool Directory. Pools are the only mapping entities normally visible to an user.

A Data Element, the smallest by-name addressable data entity in a Data Base, is defined by a
Data Element Descriptor. This descriptor is part of a Data Element Directory. The identification

Version 1.0 June, 28 1988 47

GOOSY Data Management - Appendix

version number, a possible name, attribute flags, the mapping information (Area and offset within
this Area for a Data Element), the Type Descriptor identification index, informations about
possible links to other Data Elements, information about name arrays of Data Elements, and the
identification indeces of queued, not named Data FElements, are defined in the descriptor.

Data Elements are logically grouped into Directories. A Directory is a collection of Data
Elements. The Master Directory contains the names of all Directories in a Data Base.

The name of a Data Element is defined by:

node: :data-base-name: [directory-name]data-element-name(index) .member

a queued Data Element is defined by the name of the Data Element building the head of the
queue, the Data Type of the queued Data Element, its name and its index

queue-head->type:name(index) .member

Each Directory of a Data Base has a fixed header and n fixed blocks for each entry. The entry
is addressed by an identification index of the items listed in the Directory. This index longword
can be used as an index to the Directory to get fast access to the entries. The identification
version is a longword which will be incremented each time the item is changed. By this, the
validity of an item can be checked (e.g. the mapping context).

In the following all lengths are given in number of bytes unless otherwise defined.

C.1 Data Base Mapping Context

Up to L.SMSALL_DBMC MAX _NUMBER different Data Bases might be attached by one pro-
cess and the same number of different dynamic lists might be defined for this process. This
fixed number defines a structure array of two pointers, one array member for the base pointer of
the Data Base mapping context and one for the base pointer of the list structure. This struc-
ture array of base pointers is based on the fixed, external pointer PM$DBMC. Both structures,
the Data Base mapping context and the dynamic list, are independent of each other. Their
base pointers are just within the same pointer array to have only one external pointer for all
other pointer values. When a Data Base or a dynamic list is attached to a process, the map-
ping context structures are allocated and the corresponding pointers and REFER elements are
initialized. Using a Data Base requires a copy of the pointer of its structure array member
P_SM$ALL_DBMC_MAIN(DB-index) into the fixed pointer P_.SMSDBMC_MAIN. (For the dy-
namic list the pointer P_.SM$ALL_DYNAMIC(list-index) will be used.) This pointer is used as
the base pointer to the structure of the mapping contexts for the Home Block and the main
Directories. The copy of the pointers from mapping array must be done by each module using
the Data Base or dynamic list mapping context structures. The loading of the mapping array and
the allocation of the mapping structures is done by the Data Base attachment procedure. The
pointer PM$DBMC is an EXTERNAL variable, available in each module of a process. Therefore
PM$DBMC is also STATIC and will be set to NULL() by the VAX-Linker as an initial value.

48 Version 1.0 June, 28 1988

PL/I Structures

All processes mapping Data Element Directories must use the Data Element Directory map-
ping context structure. The number of entries in this structure is identical to the number of
entries in the Master Directory of the Data Base. If the Master Directory will be expanded (re-
built with a larger size) the local mapping context structure must be allocated again, using the
new number of entries. This value must be copied from the Master Directory structure element
LMSMDEN_MASTER_DIR_.MAX_ENTRIES to the mapping context structure REFER element
LMSDBMC_MDIR_ENTRIES. These structures contain the identification version number, and
the local virtual pointers for each Data Element Directory which was mapped, and the mapping
access mode (read/write or read only). If the identification version number is zero or is not equal
to the identification version numbers in the Main Directory the Data Element Directory must be
mapped again.

In addition to each Data Element Directory a structure of the mapping context of all Data
Elements possible in the Data Element Directory will be allocated. These structures contain the
identification version number and the mapping access mode (read/write or read only). If the
identification version number is zero or is not equal to the identification version numbers in the
directory the Data Element data Pool must be mapped again.

All processes mapping Data Element Areas must use the Area mapping context structure. The
number of entries in this structure is identical to the number of entries in the Area Directory of the
Data Base. If the Area Directory will be expanded (rebuilt with a larger size) the local mapping
context structure must be allocated again, using the new number of entries. This value must be
copied from the Area Directory structure element LMSADEN_AREA_DIR_MAX_ENTRIES to
the mapping context structure REFER element LM$DBMC_AREA _ENTRIES. These structures
contain the identification version number, and the local virtual pointers for each Area which was
mapped, and the mapping access mode (read/write or read only). If the identification version
number is zero or is not equal to the identification version numbers in the Area Directory the
Area must be mapped again.

In addition to the mapping context information for each Area in a Data Base the structure
SMSDBMC _MAIN includes separate information for the Home Block and for each main Directory
(Area-, Pool-, Master-, Type-Directory) of a Data Base. This additional information allows a
direct access to the main directories of the Data Base. The local mapping contexts of the directory
Areas will only be held by these structures and not by the general Area context part of the
SMSDBMC_MAIN structure. The structure SMSDBMC_MAIN includes also the I/O channel
number of the opened Global Section file and its full Global Section name.

All structures will be allocated and the members of the structures will be filled during the
attachment of a Data Base.

Version 1.0 June, 28 1988 49

GOOSY Data Management - Appendix

The PL/I structures of the local mapping context must be included by any procedure ad-
dressing parts of the Data Base,
GOOINC(SMSDBMC).

The PL/I structures have the following format:

/* GOOINC(SM$DBMC), Data Base Directory Mapping Context */
/* Total number of Data Base allowed for attach */
/* = total number of dynamic lists allowed */

AREPLACE L_SM$ALL_DBMC_MAX_NUMBER BY 128;
/* Total number of different specific mapping pointers */

JREPLACE L_SM$ALL_DUMMY_MAX_NUMBER BY 128;

/* default base pointer to the Data Bases and */

/* dynamic lists mapping context pointers */

/* This pointer is an EXTERNAL !!! */
DCL PM$DBMC POINTER EXTERNAL STATIC;
/* Pointers to the mapping context of: */
/* all attached Data Bases */
/* all dynamic list structures used by one session. */
/* attached Display information */
/* This array has L_SM$ALL_DBMC_MAX_NUMBER entries.
/* To get the mapping context of a Data Base, copy the */
/* corresponding pointer P_SM$ALL_DBMC_MAIN(index) to the default */
/* base pointer of the structure SM$DBMC. */
/* To get the mapping context of a dynamic list, copy the */
/* corresponding pointer P_SM$ALL_DYNAMIC(index) to the default */
/* base pointer of the dynamic list structure. */
DCL 1 SM$ALL_DBMC BASED (PM$DBMC) ,

/* base pointer to the Data Base mapping context */
2 P_SM$ALL_DBMC_MAIN(L_SM$ALL_DBMC_MAX_NUMBER) POINTER,

/* base pointer to the dynamic list structure */
2 P_SM$ALL_DYNAMIC(L_SM$ALL_DBMC_MAX_NUMBER) POINTER,

/* base pointer to the Display mapping context */
2 P_SD$DISPLAY_MAIN POINTER,

50 Version 1.0 June, 28 1988

PL/I Structures

/* base pointer to other context */
2 P_SM$DUMMY (L_SM$ALL_DUMMY_MAX_NUMBER - 1) POINTER;
/* default base pointer to a mapping context of */
/* a selected Data Base */
DCL P_SM$DBMC_MAIN POINTER;
/* Home Block and Main Directory specific information */
DCL 1 SM$DBMC_MAIN BASED (P_SM$DBMC_MAIN),

/* logical name of the Global Section (Data Base) */

2 CV_SM$GL_SEC_NAME CHARACTER (254) VAR,

/* Global Section creating and mapping flags */

/* These flags are defined with INCLUDE $SECDEF */

/* Default: SEC$M_GBL | SEC$M_PERM */
2 B_SM$GL_SEC_FLAGS BIT(32) ALIGNED,

/* I/0 channel number of Global Section File */
2 L_SM$CHAN BIN FIXED (31),

/*Index of Data Base in structure of all Data Bases*/
2 L_SM$DBMC_INDEX BIN FIXED (31),

/* Lock identification of the whole Data Base */
2 L_SM$DBMC_DB_LOCK_ID BIN FIXED (31),

/* local version number of Home Block mapped */
2 L_SM$HBV1_HB_ID_VERSION BIN FIXED (31),

/* pointer array after mapping the Home Block */
2 P_SM$HBV1(2) POINTER,

/* Flag word of Home Block mapped */
2 S_SM$HBVI_FLAGS UNION,

3 B_SM$HBV1_FLAGS BIT(32) ALIGNED,

3 S_SM$HBV1_FLAG_BITS,
/* Map Flag, ’1’B: Write Access, ’0’B: Read only */

4 B_SM$HBV1_FLAG_MAP_ACCESS BIT(1),

4 B_SM$HBVI1_FLAG_REST BIT(31),
/* Lock identification of the mapped Home Block */

2 L_SM$DBMC_HBV1_LOCK_ID BIN FIXED (31),
/* Lock identification of all Main Directories */
/* i.e. Area, Pool and Master Directory */

2 L_SM$DBMC_MAIN_DIR_LOCK_ID BIN FIXED (31),

Version 1.0 June, 28 1988 51

GOOSY Data Management - Appendix

/* local version number of Area Directory mapped */

2 L_SM$ADIR_AREA_ID_VERSION BIN FIXED (31),

/* pointer array after mapping the Area Directory */
2 P_SM$ADIR(2) POINTER,

/* pointer mapping the Area Directory entries */
2 P_SM$ADEN POINTER,

/* Flag word of Area Directory mapped */
2 S_SM$ADIR_FLAGS UNION,

3 B_SM$ADIR_FLAGS BIT(32) ALIGNED,

3 S_SM$ADIR_FLAG_BITS,
/* Map Flag, ’1’B: Write Access, ’0’B: Read only */

4 B_SM$ADIR_FLAG_MAP_ACCESS BIT(1),
4 B_SM$ADIR_FLAG_REST BIT(31),
/* local version number of Pool Directory mapped */
2 L_SM$PDIR_AREA_ID_VERSION BIN FIXED (31),
/* pointer array after mapping the Pool Directory */
2 P_SM$PDIR(2) POINTER,
/* pointer mapping the Pool Directory entries */
2 P_SM$PDEN POINTER,
/* Flag word of Pool Directory mapped */
2 S_SM$PDIR_FLAGS UNION,
3 B_SM$PDIR_FLAGS BIT(32) ALIGNED,
3 S_SM$PDIR_FLAG_BITS,
/* Map Flag, ’1’B: Write Access, ’0’B: Read only */
4 B_SM$PDIR_FLAG_MAP_ACCESS BIT(1),
4 B_SM$PDIR_FLAG_REST BIT(31),
/* local version number of Master Directory mapped */
2 L_SM$MDIR_AREA_ID_VERSION BIN FIXED (31),
/* pointer array after mapping the Master Directoryx*/
2 P_SM$MDIR(2) POINTER,
/* pointer mapping the Master Directory entries */
2 P_SM$MDEN POINTER,
/* Flag word of Master Directory mapped */
2 S_SM$MDIR_FLAGS UNION,
3 B_SM$MDIR_FLAGS BIT(32) ALIGNED,
3 S_SM$MDIR_FLAG_BITS,
/* Map Flag, ’1’B: Write Access, ’0’B: Read only */
4 B_SM$MDIR_FLAG_MAP_ACCESS BIT(1),
4 B_SM$MDIR_FLAG_REST BIT(31),
/* local version number of Type Directory mapped */
2 L_SM$TDIR_ID_VERSION BIN FIXED (31),

/* pointer array after mapping the Type Directory */

52 Version 1.0 June, 28 1988

PL/I Structures

2 P_SM$TDIR(2) POINTER,

/* pointer mapping the Type Directory entries */
2 P_SM$TDEN POINTER,

/* Flag word of Type Directory mapped */
2 S_SM$TDIR_FLAGS UNION,

3 B_SM$TDIR_FLAGS BIT(32) ALIGNED,
3 S_SM$TDIR_FLAG_BITS,
4 B_SM$TDIR_FLAG_REST BIT(32),

/* Type Directory index in the Master Directory */
2 L_SM$DBMC_TDIR_INDEX BIN FIXED(31),

/* Lock identification of the mapped Type Directory*/
2 L_SM$DBMC_TDIR_LOCK_ID BIN FIXED (31),

/* pointer to the Type Data Element mapping structure */

2 P_SM$DBMC_TDIR_DEMC POINTER,

/* default base pointer to the mapping context of */

/* all Data Element Directories of a selected */

/* Data Base */
2 P_SM$DBMC_EDIR POINTER,

/* REFER element for Data Element Directory entriesx/
2 L_SM$DBMC_MDIR_ENTRIES BIN FIXED (31),

/* default base pointer to the mapping context of */

/* all Areas of a selected Data Base */
2 P_SM$DBMC_AREA POINTER,

/* REFER element for Area Directory entries */
2 L_SM$DBMC_AREA_ENTRIES BIN FIXED (31);

/*Mapping contexts for each Data Element Directory in the Data Basex/

DCL 1 SM$DBMC_EDIR BASED(P_SM$DBMC_EDIR),
/* number of Master Directory entries = */
/* number of mapping context entries */

2 LM$DBMC_MASTER_DIR_MAX_ENTRIES BIN FIXED (31),

/* start of entries */
2 SM$DBMC_EDIR_ENTRY
(L_SM$DBMC_MDIR_ENTRIES REFER(LM$DBMC_MASTER_DIR_MAX_ENTRIES)),
/* local version number of an DE Directory mapped */

3 LM$DBMC_EDIR_ID_VERSION BIN FIXED (31),
/* pointer array after mapping the DE Directory */
3 PM$DBMC_EDIR(2) POINTER,

Version 1.0 June, 28 1988 53

GOOSY Data Management - Appendix

/* pointer mapping the DE Directory entries */
3 PM$DBMC_EDEN POINTER,
/* Flag word of DE Directory mapped */
3 S_SM$DBMC_EDIR_FLAGS UNION,
4 B_SM$DBMC_EDIR_FLAGS BIT(32) ALIGNED,
4 S_SM$DBMC_EDIR_FLAG_BITS,
5 B_SM$DBMC_EDIR_FLAG_REST BIT(32),
/* Lock identification of a mapped Data Element Dirx/
3 LM$DBMC_EDIR_LOCK_ID BIN FIXED (31),
/* pointer to the Data Element mapping structure */
3 PM$DBMC_DEMC POINTER;

/*Mapping context for all Data Elements in a Data Element Directoryx*/

/* default base pointer */
DCL P_SM$DBMC_DE POINTER;

/* REFER element */
DCL L_SM$DBMC_DE_ENTRIES BIN FIXED (31);
DCL 1 SM$DBMC_DE BASED(P_SM$DBMC_DE) ,

/* number of Data Element Directory entries = */

/* number of mapping context entries */

2 LM$DBMC_DE_DIR_MAX_ENTRIES BIN FIXED (31),
/* start of entries */

2 SM$DBMC_DE_ENTRY
(L_SM$DBMC_DE_ENTRIES REFER(LM$DBMC_DE_DIR_MAX_ENTRIES)),
/* local version number of a mapped Data Element */

3 LM$DBMC_DE_ID_VERSION BIN FIXED (31),
/* Pool index of a mapped Data Element */
3 LM$DBMC_DE_POOL_INDEX BIN FIXED (31),
/* Lock identification of a mapped Data Element */
3 LM$DBMC_DE_LOCK_ID BIN FIXED (31);
/* Mapping contexts for each Area in the Data Base */
DCL 1 SM$DBMC_AREA BASED(P_SM$DBMC_AREA) ,
/* number of Area Directory entries = */
/* number of mapping context entries */

54 Version 1.0 June, 28 1988

PL/I Structures

2

2

/* Direc

YREPLACE

YREPLACE

YREPLACE

YREPLACE

YREPLACE

LM$DBMC_AREA_DIR_MAX_ENTRIES BIN FIXED (31),
/* start of entries
SM$DBMC_AREA_ENTRY

*/

(L_SM$DBMC_AREA_ENTRIES REFER(LM$DBMC_AREA_DIR_MAX_ENTRIES)),

/* local version number of an Area mapped

3 LM$DBMC_AREA_ID_VERSION BIN FIXED (31),
/* pointer array after mapping the Area
3 PM$DBMC_AREA(2) POINTER,

/* Flag word of Area mapped
3 S_SM$DBMC_AREA_FLAGS UNION,
4 B_SM$DBMC_AREA_FLAGS BIT(32) ALIGNED,
4 S_SM$DBMC_AREA_FLAG_BITS,
/* Map Flag, ’1’B: Write Access, ’0’B: Read only
5 B_SM$DBMC_AREA_FLAG_MAP_ACCESS BIT(1),
5 B_SM$DBMC_AREA_FLAG_REST BIT(31),
/* Lock identification of a mapped Area
3 LM$DBMC_AREA_LOCK_ID BIN FIXED (31);

tory Extent types

/* Name extent

DEX__TYPE_NAME BY 1;

/* Link extent

DEX__TYPE_LINK BY 2;

/* Data Element data descriptor extent
DEX__TYPE_DESC BY 3;

/* Data Element name array descriptor
DEX__TYPE_NAME_ARRAY BY 4;

/* Access rights descriptor
DEX__TYPE_ACCESS_RIGHTS BY 5;

*/

*/

*/

*/

*/

*/

Version 1.0 June, 28 1988

55

GOOSY Data Management - Appendix

C.2 Home Block

The very first data pages in each Data Base are called the Home Block.

The Home Block has no Data Base Area Header in front, but a 12 byte PL/T AREA infor-
mation block for DEC & IBM internal usage. This allows the addressing of the Home Block as
a PL/T AREA inclusive OFFSET addressing within the Home Block.

The fifth longword of the Home Block and with it of the whole Data Base is a version number
of the Data Base structure. With this version the interpretation of the Data Base may be
differentiated.

To get the structure into a procedure include: SMSHBV1 which will now be listed:

/* GOOINC(SM$HBV1), Home Block structure Version 1 */

/* default base pointer P_SM$HBV1 is defined in */

/* SM$DBMC */

/* REFER element */
DCL L_SM$HBV1_BITMAP BIN FIXED (31);

/* Home Block Area */
DCL A_SM$HBV1 AREA(LM$HBV1_LEN_HOME_BLOCK*512)

BASED (P_SM$HBV1(1));

DCL 1 SM$HBVI BASED(P_SM$HBV1(1)),

/* reserved for DEC \& IBM Area information */
2 LM$HBVI_RESERVED(4) BIN FIXED (31),

/* version of Data Base */
2 LM$HBV1_VERSION BIN FIXED (31),

/* identification version of Data Base */
2 LM$HBV1_HB_ID_VERSION BIN FIXED (31),

/* length of Home Block in pages (512 bytes) */
2 LM$HBV1_LEN_HOME_BLOCK BIN FIXED (31),

/* length of Data Base in pages (512 bytes) */
2 LM$HBV1_LEN_DATA_BASE BIN FIXED (31),

/* length of Area Directory in pages (512 bytes)*/
2 LM$HBVI_AREA_DIR_LENGTH BIN FIXED (31),

/* start page of Area Directory in Data Base */
2 LM$HBVI_AREA_DIR_START_PAGE BIN FIXED (31),

/* length of Pool Directory in pages (512 bytes)*/
2 LM$HBV1_POOL_DIR_LENGTH BIN FIXED (31),

/* start page of Pool Directory in Data Base */
2 LM$HBV1_POOL_DIR_START_PAGE BIN FIXED (31),

/*length of Master Directory in pages(512 bytes)*/

56 Version 1.0 June, 28 1988

PL/I Structures

LM$HBV1_MASTER_DIR_LENGTH BIN FIXED (31),

/* start page of Master Directory in Data Base */
LM$HBV1_MASTER_DIR_START_PAGE BIN FIXED (31),

/* OFFSET to Home Block extent */
OM$HBV1_EXTENT_OFF OFFSET,

/* creation time of Data Base file (Global Sec.)*/
CFM$HBV1_DB_FILE_CREATION_TIME CHARACTER (24),

/* creation time of Data Base as a Global Sect. */
CFM$HBV1_DB_LAST_CREATION_TIME CHARACTER (24),

/* deletion time of Data Base (Global Section) */
CFM$HBV1_DB_LAST_DELETION_TIME CHARACTER (24),

/* last backup time of Data Base (Global Sect.) */

CFM$HBV1_DB_BACKUP_TIME CHARACTER (24),

/* current update number of Data Base */
CFM$HBV1_DB_LAST_UPDATE_TIME CHARACTER (24),

/* name of Data Base */
CVM$HBV1_DB_NAME CHARACTER (254) VAR,

/* file name of Data Base (Global Section) */
CVM$HBV1_DB_FILE_NAME CHARACTER (254) VAR,

/* number of bytes/bit in Bit Map */
LM$HBV1_NBYTE_BIT BIN FIXED (31),

/* number of data byte clusters = pages */
LM$HBV1_NDATA_BYTE_CLUSTERS BIN FIXED (31),

/* largest free contiguous part in Data Base */

/* in cluster units */
LM$HBV1_LARGEST_FREE BIN FIXED (31),

/* smallest free contiguous part in Data Base */

/* in cluster units */
LM$HBV1_SMALLEST_FREE BIN FIXED (31),

/* number of fragments in Data Base */
LM$HBV1_NFRAGMENTS BIN FIXED (31),

/* Bit Map length in bytes */
LM$HBV1_BITMAP_LENGTH BIN FIXED (31),

/* Bit Map for the Data Base (1 Bit = 1 Page) */
BM$HBV1_BITMAP
BIT(L_SM$HBV1_BITMAP REFER(LM$HBV1_NDATA_BYTE_CLUSTERS));

Version 1.0 June, 28 1988

57

GOOSY Data Management - Appendix

C.3 Area Header

All Areas allocated in the Data Base must be preceded by an Area header of the following format.

An Area size must always be a multiple of 512 bytes (1 VAX page).

The Area itself is divided into fixed data clusters. The cluster size is defined by the initial-
ization of the Area.

The Bit Map of each Area reflects the allocation of data clusters in the Area. For each data
cluster one bit is reserved. If the data cluster is allocated the corresponding bit is set.

The Bit Map of the Area Header contains all allocation information about the whole Area
incl. the header itself. Therefore the header has to be allocated as the first data block using the
data cluster size.

To get the PL/I structure of an Area Header into a procedure include: SM$ARHD which will
now be listed:

/* GOOINC(SM$ARHD), Area header */
/* default base pointer */
DCL P_SM$ARHD POINTER;
/* REFER element */
DCL L_SM$ARHD_BITMAP BIN FIXED (31);

DCL 1 SM$ARHD BASED(P_SM$ARHD),

/* reserved for DEC \& IBM Area information */
2 LM$ARHD_RESERVED(4) BIN FIXED (31),
/* total Area length in pages */
2 LM$ARHD_AREA_LENGTH BIN FIXED (31),
/* Area head length in bytes */
2 LM$ARHD_AREAHEAD_LENGTH BIN FIXED (31),
/* Area id index longword */
2 LM$ARHD_AREA_TINDEX BIN FIXED (31),
/* Area id version word */
2 LM$ARHD_AREA_ID_VERSION BIN FIXED (31),
/* no. of bytes/bit in Bit Map */
/* = data cluster size */
2 LM$ARHD_NBYTE_BIT BIN FIXED (31),
/* data space length in bytes */
2 LM$ARHD_DATA_LENGTH BIN FIXED (31),
2 SM$ARHD_TEMP_AREA_HEADER UNION,
/* OFFSET to start of data */
3 OM$ARHD_START_DATA OFFSET,
/* equiv. value of OFFSET */
3 LM$ARHD_OSTARTDATA_VALUE BIN FIXED (31),

58 Version 1.0 June, 28 1988

PL/I Structures

2

BIT(L_SM$ARHD_BITMAP REFER(LM$ARHD_NDATA_BYTE_CLUSTERS));

/* no. of data byte-blocks

LM$ARHD_NDATA_BYTE_CLUSTERS BIN FIXED (31),
/* largest free contiguous data
/* in cluster units

LM$ARHD _LARGEST_FREE BIN FIXED (31),
/* smallest free contiguous data
/* in cluster units

LM$ARHD_SMALLEST_FREE BIN FIXED (31),
/* number of fragments in data

LM$ARHD _NFRAGMENTS BIN FIXED (31),
/* Bit Map length in bytes

LM$ARHD_BITMAP_LENGTH BIN FIXED (31),
/* Bit Map

BM$ARHD _BITMAP

*/

*/
*/

*/
*/

Version 1.0 June, 28 1988

59

GOOSY Data Management - Appendix

C.4 General Directory Format

A Directory has always a fixed part, the Directory Header, and then n entry blocks. Each entry
block has a fixed length and depends on the Directory type. To get an entry block an Identification
index (index longword) is used. This index can be used as an index to an array of a structure
defining the Directory.

Each Directory entry has at least one extent part, the name of the entry. This extent part
has a variable length and is allocated in a heap storage following the Directory. Each extent may
have another extent and so on. This method allows to have variable length Directory entries.

To get the standard Directory Header PL/I structure into a procedure include: SM$DIRH
with structures SM$DIRH, SMSDENT, SM$DIEX, and SMSDNEX which will now be listed:

/* GOOINC(SM$DIRH), Directory Header structure */

/* default base pointer */
DCL P_SM$DIRH POINTER;

/* REFER element */
DCL L_SM$DIRH_BITMAP BIN FIXED (31);

/* Directory Area */
DCL A_SM$DIRH AREA(LM$DIRH_AREA_LENGTH*512) BASED(P_SM$DIRH);

DCL 1 SM$DIRH BASED(P_SM$DIRH),

/* reserved for DEC \& IBM Area information */
2 LM$DIRH_RESERVED(4) BIN FIXED (31),
/* total Area length in pages */
2 LM$DIRH_AREA_LENGTH BIN FIXED (31),
/* Area head length in bytes */
2 LM$DIRH_AREAHEAD_LENGTH BIN FIXED (31),
/* Area id index longword */
2 LM$DIRH_AREA_INDEX BIN FIXED (31),
/* Area id version word */
2 LM$DIRH_AREA_ID_VERSION BIN FIXED (31),
/* no. of bytes/bit in Bit Map */
/* = data cluster size */
2 LM$DIRH_NBYTE_BIT BIN FIXED (31),
/* data space length in bytes */
2 LM$DIRH_DATA_LENGTH BIN FIXED (31),
2 SM$DIRH_TEMP_AREA_HEADER UNION,
/* OFFSET to start of data */
3 OM$DIRH_START_DATA OFFSET,
/* equiv. value of OFFSET */
3 LM$DIRH_OSTARTDATA_VALUE BIN FIXED (31),

60 Version 1.0 June, 28 1988

PL/I Structures

2

DCL

DCL

2

/* no. of data byte-blocks */
LM$DIRH_NDATA_BYTE_CLUSTERS BIN FIXED (31),
/* largest free contiguous data */
/* in cluster units */
LM$DIRH_LARGEST_FREE BIN FIXED (31),
/* smallest free contiguous data */
/* in cluster units */
LM$DIRH_SMALLEST_FREE BIN FIXED (31),
/* number of fragments in data */
LM$DIRH_NFRAGMENTS BIN FIXED (31),
/* Bit Map length in bytes */
LM$DIRH_BITMAP_LENGTH BIN FIXED (31),
/* Bit Map */
BM$DIRH_BITMAP
BIT(L_SM$DIRH_BITMAP REFER(LM$DIRH_NDATA_BYTE_CLUSTERS));
/* Directory Entry structure */
/* default base pointer */
P_SM$DENT POINTER;
/* REFER element */
(L_SM$DENT_ENTRY,L_SM$DENT_DIR_VAR) BIN FIXED (31);
DCL 1 SM$DENT BASED (P_SM$DENT) ,
/* maximum number of entries */
LM$DENT_DIR_MAX_ENTRIES BIN FIXED (31),
/* current number of entries */
LM$DENT_DIR_CURR_ENTRIES BIN FIXED (31),
/* length of the variable part of an entry */
/* in bytes */
LM$DENT_DIR_ENTRY_VAR_LENGTH BIN FIXED (31),
/* top index of binary name tree */
LM$DENT_DIR_TOP_NAME_INDEX BIN FIXED (31),
/* start of entries */
SM$DENT_ENTRY
(L_SM$DENT_ENTRY REFER(LM$DENT_DIR_MAX_ENTRIES)),
/* entry id version */
3 LM$DENT_ID_VERSION BIN FIXED (31),
/* Flags of Directory entry */

3 SM$DENT_FLAGS UNION,
4 BM$DENT_FLAGS
4 SM$DENT_FLAG_BITS,

BIT(32) ALIGNED,

Version 1.0 June, 28 1988

61

GOOSY Data Management - Appendix

/*Entry usage flag, ’1’B: in use, ’0’B: not used*/

5 BM$DENT_FLAG_ENTRY_IN_USE

BIT(1),

/* Deletion protection flag, ’1’B:do not delete */

/* directory entry without privilege */
5 BM$DENT_FLAG_PROTECTED BIT(1),
/* Data Element entry queue flag */
/* 1°B: entry is part of a queue */
5 BM$DENT_FLAG_QUEUE_MEMBER BIT(1),
/* Data Element entry queue header flag */
/* 1°B: entry is the head of a queue */
5 BM$DENT_FLAG_QUEUE_HEAD BIT(1),
/* Data Element entry name array flag */
/* 1°B: entry is a name array member */
BM$DENT_FLAG_NAME_ARRAY_MEMBER BIT(1),
/* Data Element entry name array head flag */
/* '1°B: entry is the head of a name array */
BM$DENT_FLAG_NAME_ARRAY_HEAD BIT(1),
/* Data Element Type Descriptor Directory */
/* '1°B: entry is a Type Descriptor Directory */
5 BM$DENT_FLAG_TYPE_DIR BIT(1),
/* Not yet used bits */
5 BM$DENT_FLAG_REST BIT(25),
/* OFFSET to Directory extent */
3 OM$DENT_EXTENT_OFF OFFSET,
/* Directory index of preceding name */
3 LM$DENT_PRE_NAME_INDEX BIN FIXED (31),
/* Directory index of following name */
3 LM$DENT_FOLLOW_NAME_INDEX BIN FIXED (31),
/* binary name tree weight of this entry */
3 LM$DENT_NODE_WEIGHT BIN FIXED (31),
/* individual part of entry (depen. on Dir.) */

3 HM$DENT_DIR_VAR

(L_SM$DENT_DIR_VAR REFER(LM$DENT_DIR_ENTRY_VAR_LENGTH))

/* General Directory Extent structure

/* default base pointer
DCL P_SM$DIEX POINTER;

DCL 1 SM$DIEX BASED(P_SM$DIEX),
/* Directory extent type

BIN FIXED(7);

62

Version 1.0 June, 28 1988

PL/I Structures

2 LM$DIEX_TYPE BIN FIXED (31),
/* OFFSET to next Dir. extent for that entry
2 OM$DIEX_NEXT_EXT OFFSET;

/* Directory Name Extent structure

/* default base pointer

DCL P_SM$DNEX POINTER;
/* REFER element
DCL L_SM$DNEX_DIR_NAME BIN FIXED (31);

DCL 1 SM$DNEX BASED (P_SM$DNEX) ,
/* Directory extent type

2 LM$DNEX_TYPE BIN FIXED (31),
/* OFFSET to next Dir. extent for that entry
2 OM$DNEX_NEXT_EXT OFFSET,
/* minimal name abbreviation in bytes
2 IM$DNEX_MIN_ABBR BIN FIXED (15),
/* max. name length in bytes
2 IM$DNEX_MAX_LENGTH BIN FIXED (15),

/* name of entry
2 CVM$DNEX_DIR_NAME

*/

*/

*/

*/

*/

*/

CHARACTER(L_SM$DNEX_DIR_NAME REFER(IM$DNEX_MAX_LENGTH)) VAR;

Version 1.0 June, 28 1988

63

GOOSY Data Management - Appendix

C.5 Area Directory

An Area is the smallest mapping unit for the Data Base. Several Areas are collected in a Pool. If
there would be not enough room in an Area, a new, larger Area of the same Pool will be allocated.
The names of the Areas follow the Area Directory structure as Directory extents.
To get the PL/I structure into a procedure include: SM$ADIR with structures SM$SADIR
and SMSADEN which will now be listed:

/* GOOINC(SM$ADIR), Area Directory structure */

/* maximum number of characters for Area name */
%REPLACE L_SM$ADIR_MAX_NAME_LENGTH BY 254;

/* Initial number of entries for Area Directory */
#REPLACE L_SM$ADIR_INIT_ENTRIES BY 512;

/* default base pointer P_SM$ADIR is defined in */

/* SM$DBMC */

/* REFER element */
DCL L_SM$ADIR_BITMAP BIN FIXED (31);

/* Area Directory Area */
DCL A_SM$ADIR AREA(LM$ADIR_DIR_AREA_LENGTH*512)

BASED (P_SM$ADIR(1));

DCL 1 SM$ADIR BASED(P_SM$ADIR(1)),

/* reserved for DEC \& IBM Area information */
2 LM$ADIR_RESERVED(4) BIN FIXED (31),

/* total Area length in pages */
2 LM$ADIR_DIR_AREA_LENGTH BIN FIXED(31),

/* Area header length in bytes */

/* incl. the Bit Map rounded to */

/* data cluster */
2 LM$ADIR_AREAHEAD_LENGTH BIN FIXED(31),

/* Area index longword */
2 LM$ADIR_AREA_INDEX BIN FIXED(31),

/* Area id version */
2 LM$ADIR_AREA_ID_VERSION BIN FIXED(31),

/* no.of bytes/bit in Bit Map */
2 LM$ADIR_NBYTE_BIT BIN FIXED(31),

/* data space length in bytes */

/* without the Header */
2 LM$ADIR_DATA_LENGTH BIN FIXED(31),

64 Version 1.0 June, 28 1988

PL/I Structures

2

BIT(L_SM$ADIR_BITMAP REFER(LM$ADIR_NDATA_BYTE_CLUSTERS));

/* Area

DCL

DCL 1 SM

2

(L_

/* offset to data space
OM$ADIR_START_DATA OFFSET,

/* max. number of data clusters

/* incl. the Header
LM$ADIR_NDATA_BYTE_CLUSTERS BIN FIXED(31),

/* largest free contiguous data

/* in cluster units
LM$ADIR_LARGEST_FREE BIN FIXED (31),

/* smallest free contiguous data

/* in cluster units

LM$ADIR_SMALLEST_FREE BIN FIXED (31),
/* number of fragments in data

LM$ADIR_NFRAGMENTS BIN FIXED (31),
/* Bit Map length in bytes

LM$ADIR_BITMAP_LENGTH BIN FIXED(31),
/* Bit Map

BM$ADIR_BITMAP

Directory Entry structure

*/

*/
*/

*/
*/

*/
*/

*/

*/

/* default base pointer P_SM$ADEN is defined in */

/* SM$DBMC
/* REFER element
L_SM$ADEN_ENTRY BIN FIXED (31);

$ADEN BASED (P_SM$ADEN) ,
/* maximum number of entries
LM$ADEN_AREA_DIR_MAX_ENTRIES BIN FIXED (31),
/* current number of entries
LM$ADEN_AREA_DIR_CURR_ENTRIES BIN FIXED (31),

/* length of the variable part of an entry

/* in bytes
LM$ADEN_DIR_ENTRY_VAR_LENGTH BIN FIXED (31),
/* top index of binary name tree
LM$ADEN_DIR_TOP_NAME_INDEX BIN FIXED (31),

/* start of entries
SM$ADEN_ENTRY

/* entry id version

3 LM$ADEN_ID_VERSION BIN FIXED (31),

/* Flags of Area Directory entry

SM$ADEN_ENTRY REFER(LM$ADEN_AREA_DIR_MAX_ENTRIES)),

*/
*/

*/

*/
*/

*/

*/

Version 1.0 June, 28 1988

65

GOOSY Data Management - Appendix

3 SM$ADEN_FLAGS UNION,
4 BM$ADEN_FLAGS
4 SM$ADEN_FLAG_BITS,

BIT(32) ALIGNED,

/*Entry usage flag, ’1’B: in use, ’0’b: not used*/

5 BM$ADEN_FLAG_ENTRY_IN_USE

BIT(1),

/* Deletion protection flag, ’1’B:do not delete */

/* directory entry without privilege */
5 BM$ADEN_FLAG_PROTECTED BIT(1),

/* Data Element entry queue flag */

/* 1°B: entry is part of a queue */
5 BM$ADEN_FLAG_QUEUE_MEMBER BIT(1),

/* Data Element entry queue header flag */

/* 1°B: entry is the head of a queue */
5 BM$ADEN_FLAG_QUEUE_HEAD BIT(1),

/* Data Element entry name array flag */

/* 1°B: entry is a name array member */
5 BM$ADEN_FLAG_NAME_ARRAY_MEMBER BIT(1),

/* Data Element entry name array head flag */

/* '1°B: entry is the head of a name array */
5 BM$ADEN_FLAG_NAME_ARRAY_HEAD BIT(1),

/* Data Element Type Descriptor Directory */

/* '1°B: entry is a Type Descriptor Directory */

5 BM$ADEN_FLAG_TYPE_DIR BIT(1),
/* Not yet used bits */
5 BM$ADEN_FLAG_REST BIT(25),
/* OFFSET to Directory extent */
OM$ADEN_EXTENT_OFF OFFSET,
/* Area index of preceding name */
LM$ADEN_PRE_NAME_INDEX BIN FIXED (31),
/* Area index of following name */
LM$ADEN_FOLLOW_NAME_INDEX BIN FIXED (31),
/* binary name tree weight of this entry */
LM$ADEN_NODE_WEIGHT BIN FIXED (31),
/* length of Area in pages */
LM$ADEN_AREA_LENGTH BIN FIXED (31),
/* start page of Area in the Data Base */
LM$ADEN_START_PAGE BIN FIXED (31),
/* number of bytes/bit in Area Bit Map */
LM$ADEN_NBYTE_BIT BIN FIXED (31),
/* index of Area Pool */
LM$ADEN_POOL_INDEX BIN FIXED (31),
/* index of next Area in Pool */

66

Version 1.0 June, 28 1988

PL/I Structures

3 LM$ADEN_NEXT_POOL_AREA_TINDEX

BIN FIXED (31),

/* start of Directory extents

2 LM$ADEN_FIRST_EXTENT

BIN FIXED (31);

*/

Version 1.0 June, 28 1988

67

GOOSY Data Management - Appendix

C.6 Pool Directory

A Pool is a collection of several Areas with corresponding mapping attributes. The Areas collected
in a Pool are linked together by their Area-index longwords. The index of the next Area in a link
is kept in the Area Directory structure.

The names of the Pools follow the Pool Directory structure as Directory extents.

To get the PL/I structure into a procedure include: SMSPDIR with structures SMSPDIR and
SMSPDEN which will now be listed:

/* GOOINC(SM$PDIR), Pool Directory structure */

/* maximum number of characters for Pool name */
%REPLACE L_SM$PDIR_MAX_NAME_LENGTH BY 254;

/* Initial number of entries for Pool Directory */
#REPLACE L_SM$PDIR_INIT_ENTRIES BY 512;

/* default base pointer P_SM$PDIR is defined in */

/* SM$DBMC */

/* REFER element */
DCL L_SM$PDIR_BITMAP BIN FIXED (31);

/* Pool Directory Area */
DCL A_SM$PDIR AREA(LM$PDIR_DIR_AREA_LENGTH#*512)

BASED (P_SM$PDIR(1));

DCL 1 SM$PDIR BASED(P_SM$PDIR(1)),

/* reserved for DEC \& IBM Area information */
2 LM$PDIR_RESERVED(4) BIN FIXED (31),

/* total Area length in pages */
2 LM$PDIR_DIR_AREA_LENGTH BIN FIXED(31),

/* Area header length in bytes */

/* incl. the Bit Map rounded to */

/* data cluster */
2 LM$PDIR_AREAHEAD_LENGTH BIN FIXED(31),

/* Area index longword */
2 LM$PDIR_AREA_INDEX BIN FIXED(31),

/* Area id version */
2 LM$PDIR_AREA_ID_VERSION BIN FIXED(31),

/* no.of bytes/bit in Bit Map */
2 LM$PDIR_NBYTE_BIT BIN FIXED(31),

/* data space length in bytes */

/* without the Header */

68 Version 1.0 June, 28 1988

PL/I Structures

2

BIT(L_SM$PDIR_BITMAP REFER(LM$PDIR_NDATA_BYTE_CLUSTERS));

LM$PDIR_DATA_LENGTH
/* offset to data space
OM$PDIR_START_DATA OFFSET,
/* max. number of data clusters
/* incl. the Header
LM$PDIR_NDATA_BYTE_CLUSTERS BIN FIXED(31),
/* largest free contiguous data
/* in cluster units
LM$PDIR_LARGEST_FREE BIN FIXED (31),
/* smallest free contiguous data
/* in cluster units
LM$PDIR_SMALLEST_FREE BIN FIXED (31),
/* number of fragments in data
LM$PDIR_NFRAGMENTS BIN FIXED (31),
/* Bit Map length in bytes
LM$PDIR_BITMAP_LENGTH BIN FIXED(31),
/* Bit Map
BM$PDIR_BITMAP

BIN FIXED(31),

/* Pool Directory Entry structure

DCL

L

*/
*/

*/
*/

*/
*/

*/

*/

*/

/* default base pointer P_SM$PDEN is defined in */

/* SM$DBMC
/* REFER element

_SM$PDEN_ENTRY BIN FIXED (31);

DCL 1 SM$PDEN BASED (P_SM$PDEN) ,

/* maximum number of entries

2 LM$PDEN_POOL_DIR_MAX_ENTRIES BIN FIXED (31),

(L

/* current number of entries
LM$PDEN_POOL_DIR_CURR_ENTRIES BIN FIXED (31),

/* length of the variable part of an entry

/* in bytes
LM$PDEN_DIR_ENTRY_VAR_LENGTH BIN FIXED (31),
/* top index of binary name tree
LM$PDEN_DIR_TOP_NAME_INDEX BIN FIXED (31),

/* start of entries
SM$PDEN_ENTRY

SM$PDEN_ENTRY REFER(LM$PDEN_POOL_DIR_MAX_ENTRIES)),

/* entry id version
3 LM$PDEN_ID_VERSION

BIN FIXED (31),

*/
*/

Version 1.0 June, 28 1988

69

GOOSY Data Management - Appendix

/* Flags of Pool Directory entry

3 SM$PDEN_FLAGS UNION,
4 BM$PDEN_FLAGS
4 SM$PDEN_FLAG_BITS,

*/

BIT(32) ALIGNED,

/*Entry usage flag, ’1’B: in use, ’0’b: not used*/

5 BM$PDEN_FLAG_ENTRY_IN_USE

BIT(1),

/* Deletion protection flag, ’1’B:do not delete */

/* directory entry without privilege */
5 BM$PDEN_FLAG_PROTECTED BIT(1),
/* Data Element entry queue flag */
/* 1°B: entry is part of a queue */
5 BM$PDEN_FLAG_QUEUE_MEMBER BIT(1),
/* Data Element entry queue header flag */
/* 1°B: entry is the head of a queue */
5 BM$PDEN_FLAG_QUEUE_HEAD BIT(1),
/* Data Element entry name array flag */
/* 1°B: entry is a name array member */
5 BM$PDEN_FLAG_NAME_ARRAY_MEMBER BIT(1),
/* Data Element entry name array head flag */
/* '1°B: entry is the head of a name array */
5 BM$PDEN_FLAG_NAME_ARRAY_HEAD BIT(1),
/* Data Element Type Descriptor Directory */
/* '1°B: entry is a Type Descriptor Directory */
5 BM$PDEN_FLAG_TYPE_DIR BIT(1),
/* Not yet used bits */
5 BM$PDEN_FLAG_REST BIT(25),
/* OFFSET to Directory extent */
3 OM$PDEN_EXTENT_OFF OFFSET,
/* Pool index of preceding name */
3 LM$PDEN_PRE_NAME_INDEX BIN FIXED (31),
/* Pool index of following name */
3 LM$PDEN_FOLLOW_NAME_INDEX BIN FIXED (31),
/* binary name tree weight of this entry */

3 LM$PDEN_NODE_WEIGHT

BIN FIXED (31),

/* minimum data size of Area in Pool in bytes */

3 LM$PDEN_AREA_MIN_SIZE

BIN FIXED (31),

/* index of first Area in Pool */
3 LM$PDEN_FIRST_POOL_AREA_INDEX BIN FIXED (31),

/* Highest number of Area in Pool */
3 LM$PDEN_MAX_AREA_NUMBER BIN FIXED (31),

/* start of Directory extents */

70

Version 1.0 June, 28 1988

PL/I Structures

2 LM$PDEN_FIRST_EXTENT

BIN FIXED (31);

Version 1.0 June, 28 1988

71

GOOSY Data Management - Appendix

C.7 Master Directory

A Data Element Directory is a collection of Data Elements. The name of each Data Element of a
Data Base must be preceded by its Directory name. Each Data FElement Directory has an entry
in the Master Directory of a Data Base.

The names of the Directories follow the Master Directory structure as Directory extents.

To get the PL/I structure into a procedure include: SM$MDIR with structures SMSMDIR
and SMSMDEN which will now be listed:

/* GOOINC(SM$MDIR), Master Directory structure */

/* maximum number of characters for Directory name */
AREPLACE L_SM$MDIR_MAX_NAME_LENGTH BY 254;

/* Initial number of entries for Master Directory */
#REPLACE L_SM$MDIR_INIT_ENTRIES BY 512;

/* default base pointer P_SM$MDIR is defined in */

/* SM$DBMC */

/* REFER element */
DCL L_SM$MDIR_BITMAP BIN FIXED (31);

/* Master Directory Area */
DCL A_SM$MDIR AREA(LM$MDIR_DIR_AREA_LENGTH*512)

BASED (P_SM$MDIR(1));

DCL 1 SM$MDIR BASED(P_SM$MDIR(1)),

/* reserved for DEC \& IBM Area information */
2 LM$MDIR_RESERVED(4) BIN FIXED (31),

/* total Area length in pages */
2 LM$MDIR_DIR_AREA_LENGTH BIN FIXED(31),

/* Area header length in bytes */

/* incl. the Bit Map rounded to */

/* data cluster */
2 LM$MDIR_AREAHEAD_LENGTH BIN FIXED(31),

/* Area index longword */
2 LM$MDIR_AREA_INDEX BIN FIXED(31),

/* Area id version */
2 LM$MDIR_AREA_ID_VERSION BIN FIXED(31),

/* no.of bytes/bit in Bit Map */
2 LM$MDIR_NBYTE_BIT BIN FIXED(31),

/* data space length in bytes */

/* without the Header */

72 Version 1.0 June, 28 1988

PL/I Structures

2

BIT(L_SM$MDIR_BITMAP REFER(LM$MDIR_NDATA_BYTE_CLUSTERS));

LM$MDIR_DATA_LENGTH
/* offset to data space
OM$MDIR_START_DATA OFFSET,
/* max. number of data clusters
/* incl. the Header
LM$MDIR_NDATA_BYTE_CLUSTERS BIN FIXED(31),
/* largest free contiguous data
/* in cluster units
LM$MDIR_LARGEST_FREE BIN FIXED (31),
/* smallest free contiguous data
/* in cluster units
LM$MDIR_SMALLEST_FREE BIN FIXED (31),
/* number of fragments in data
LM$MDIR_NFRAGMENTS BIN FIXED (31),
/* Bit Map length in bytes
LM$MDIR_BITMAP_LENGTH BIN FIXED(31),
/* Bit Map
BM$MDIR_BITMAP

BIN FIXED(31),

/* Master Directory Entry structure

DCL

L

*/
*/

*/
*/

*/
*/

*/

*/

*/

/* default base pointer P_SM$MDEN is defined in */

/* SM$DBMC
/* REFER element

_SM$MDEN_ENTRY BIN FIXED (31);

DCL 1 SM$MDEN BASED (P_SM$MDEN) ,

/* maximum number of entries

2 LM$MDEN_MASTER_DIR_MAX_ENTRIES BIN FIXED (31),

(L

/* current number of entries
LM$MDEN_MASTER_DIR_CURR_ENTRIES BIN FIXED (31),
/* length of the variable part of an entry
/* in bytes
LM$MDEN_DIR_ENTRY_VAR_LENGTH BIN FIXED (31),
/* top index of binary name tree
LM$MDEN_DIR_TOP_NAME_INDEX BIN FIXED (31),
/* start of entries
SM$MDEN_ENTRY
SM$MDEN_ENTRY REFER(LM$MDEN_MASTER_DIR_MAX_ENTRIES)),
/* entry id version

3 LM$MDEN_ID_VERSION BIN FIXED (31)

*/
*/

Version 1.0 June, 28 1988

73

GOOSY Data Management - Appendix

/* Flags of Master Directory entry */

3 SM$MDEN_FLAGS UNION,
4 BM$MDEN_FLAGS
4 SM$MDEN_FLAG_BITS,

BIT(32) ALIGNED,

/*Entry usage flag, ’1’B: in use, ’0’b: not used*/

5 BM$MDEN_FLAG_ENTRY_IN_USE

BIT(1),

/* Deletion protection flag, ’1’B:do not delete */

/* directory entry without privilege */
5 BM$MDEN_FLAG_PROTECTED BIT(1),
/* Data Element entry queue flag */
/* 1°B: entry is part of a queue */
5 BM$MDEN_FLAG_QUEUE_MEMBER BIT(1),
/* Data Element entry queue header flag */
/* 1°B: entry is the head of a queue */
5 BM$MDEN_FLAG_QUEUE_HEAD BIT(1),
/* Data Element entry name array flag */
/* 1°B: entry is a name array member */
5 BM$MDEN_FLAG_NAME_ARRAY_MEMBER BIT(1),
/* Data Element entry name array head flag */
/* '1°B: entry is the head of a name array */
5 BM$MDEN_FLAG_NAME_ARRAY_HEAD BIT(1),
/* Data Element Type Descriptor Directory */
/* '1°B: entry is a Type Descriptor Directory */
5 BM$MDEN_FLAG_TYPE_DIR BIT(1),
/* Not yet used bits */
5 BM$MDEN_FLAG_REST BIT(25),
/* OFFSET to Directory extent */
3 OM$MDEN_EXTENT_OFF OFFSET,
/* Directory index of preceding name */
3 LM$MDEN_PRE_NAME_INDEX BIN FIXED (31),
/* Directory index of following name */
3 LM$MDEN_FOLLOW_NAME_INDEX BIN FIXED (31),
/* binary name tree weight of this entry */
3 LM$MDEN_NODE_WEIGHT BIN FIXED (31),
/* Area index of Data Element Directory */
3 LM$MDEN_EDIR_AREA_INDEX BIN FIXED (31),
/* start of Directory extents */

2 LM$MDEN_FIRST_EXTENT BIN FIXED (31);

74

Version 1.0 June, 28 1988

PL/I Structures

C.8 Data Element Directory

Each Data Element has an entry in one Data Element Directory of a Data Base. Each Data
Element Directory has one entry in the Master Directory of a Data Base.

The names of the Data Elements follow the Data Element Directory structure as Directory
extents.

To get the PL/I structure into a procedure include: SMSEDIR with structures SMSEDIR,
SMSEDEN, SMSEDDE, SMSEDNA, and SMSEDLE which will now be listed:

/* GOOINC(SM$EDIR), Data Element Directory structure */

/* maximum number of characters for Data Element name */

#REPLACE L_SM$EDIR_MAX_NAME_LENGTH BY 254;

/* Initial number of entries for */

/* Data Element Directory */
#REPLACE L_SM$EDIR_INIT_ENTRIES BY 512;

/* default base pointer */
DCL P_SM$EDIR(2) POINTER;

/* REFER element */
DCL L_SM$EDIR_BITMAP BIN FIXED (31);

/* Data Element Directory Area */
DCL A_SM$EDIR AREA(LM$EDIR_DIR_AREA_LENGTH*512)

BASED (P_SM$EDIR(1));

DCL 1 SM$EDIR BASED(P_SM$EDIR(1)),

/* reserved for DEC \& IBM */
2 LM$EDIR_RESERVED(4) BIN FIXED (31),

/* total Area length in pages */
2 LM$EDIR_DIR_AREA_LENGTH BIN FIXED(31),

/* Area header length in bytes */

/* incl. the Bit Map rounded to */

/* data cluster */
2 LM$EDIR_AREAHEAD_LENGTH BIN FIXED(31),

/* Area index longword */
2 LM$EDIR_AREA_INDEX BIN FIXED(31),

/* Area id version */
2 LM$EDIR_AREA_ID_VERSION BIN FIXED(31),

/* no.of bytes/bit in Bit Map */
2 LM$EDIR_NBYTE_BIT BIN FIXED(31),

/* data space length in bytes */

Version 1.0 June, 28 1988 75

GOOSY Data Management - Appendix

/* without the Header */
2 LM$EDIR_DATA_LENGTH BIN FIXED(31),

/* offset to data space */
2 OM$EDIR_START_DATA OFFSET,

/* max. number of data clusters */

/* incl. the Header */
2 LM$EDIR_NDATA_BYTE_CLUSTERS BIN FIXED(31),

/* largest free contiguous data */

/* in cluster units */
2 LM$EDIR_LARGEST_FREE BIN FIXED (31),

/* smallest free contiguous data */

/* in cluster units */
2 LM$EDIR_SMALLEST_FREE BIN FIXED (31),

/* number of fragments in data */
2 LM$EDIR_NFRAGMENTS BIN FIXED (31),

/* Bit Map length in bytes */
2 LM$EDIR_BITMAP_LENGTH BIN FIXED(31),

/* Bit Map */

2 BM$EDIR_BITMAP
BIT(L_SM$EDIR_BITMAP REFER(LM$EDIR_NDATA_BYTE_CLUSTERS));

/* Data Element Directory Entry structure */
/* default base pointer */
DCL P_SM$EDEN POINTER;
/* REFER element */
DCL L_SM$EDEN_ENTRY BIN FIXED (31);

DCL 1 SM$EDEN BASED (P_SM$EDEN) ,

/* maximum number of entries x/
2 LM$EDEN_DE_DIR_MAX_ENTRIES BIN FIXED (31),

/* current number of entries x/
2 LM$EDEN_DE_DIR_CURR_ENTRIES BIN FIXED (31),

/* length of the variable part of an entry */

/* in bytes */
2 LM$EDEN_DIR_ENTRY_VAR_LENGTH BIN FIXED (31),

/* top index of binary name tree */
2 LM$EDEN_DIR_TOP_NAME_INDEX BIN FIXED (31),

/* start of entries x/

2 SM$EDEN_ENTRY
(L_SM$EDEN_ENTRY REFER(LM$EDEN_DE_DIR_MAX_ENTRIES)),
/* entry id version */

76 Version 1.0 June, 28 1988

PL/I Structures

3 LM$EDEN_ID_VERSION BIN FIXED (31),
/* Flags of Data Element Directory entry */
3 SM$EDEN_FLAGS UNION,
4 BM$EDEN_FLAGS BIT(32) ALIGNED,

4 SM$EDEN_FLAG_BITS,
/*Entry usage flag, ’1’B: in use, ’0’b: not used*/

5 BM$EDEN_FLAG_ENTRY_IN_USE BIT(1),
/* Deletion protection flag, ’1’B:do not delete */
/* directory entry without privilege */
5 BM$EDEN_FLAG_PROTECTED BIT(1),
/* Data Element entry queue flag */
/* 1°B: entry is part of a queue */
5 BM$EDEN_FLAG_QUEUE_MEMBER BIT(1),
/* Data Element entry queue header flag */
/* 1°B: entry is the head of a queue */
5 BM$EDEN_FLAG_QUEUE_HEAD BIT(1),
/* Data Element entry name array flag */
/* 1°B: entry is a name array member */
5 BM$EDEN_FLAG_NAME_ARRAY_MEMBER BIT(1),
/* Data Element entry name array head flag */
/* '1°B: entry is the head of a name array */
5 BM$EDEN_FLAG_NAME_ARRAY_HEAD BIT(1),
/* Data Element Type Descriptor Directory */
/* '1°B: entry is a Type Descriptor Directory */
5 BM$EDEN_FLAG_TYPE_DIR BIT(1),
/* Not yet used bits */
5 BM$EDEN_FLAG_REST BIT(25),
/* OFFSET to Directory extent */
3 OM$EDEN_EXTENT_OFF OFFSET,
/* Data Element index of preceding name */
3 LM$EDEN_PRE_NAME_INDEX BIN FIXED (31),
/* Data Element index of following name */
3 LM$EDEN_FOLLOW_NAME_INDEX BIN FIXED (31),
/* binary name tree weight of this entry */
3 LM$EDEN_NODE_WEIGHT BIN FIXED (31),
/* index of data Area of Data Element */
3 LM$EDEN_DE_AREA_INDEX BIN FIXED (31),
/* OFFSET to data in Area of Data Element */
3 OM$EDEN_DE_START_DATA OFFSET,
/* length of Data Element in bytes */
3 LM$EDEN_DE_LENGTH BIN FIXED (31),
/* index of Type Descriptor of Data Element */

Version 1.0 June, 28 1988 77

GOOSY Data Management - Appendix

3 LM$EDEN_DE_TYPE_INDEX BIN FIXED (31),
/* Data Descriptor structure like VMS */
3 SM$EDEN_DE_DESC UNION,
/* Data Descriptor longword */
4 LM$EDEN_DE_DESC BIN FIXED (31),
/* Data Descriptor parts */

4 SM$EDEN_DE_DESC_PARTS,
/* Data Descriptor, Length of data item in bytes*/

/* length in bits for bit, */
/* length of an array element for arrays */
5 IM$EDEN_DE_DESC_LENGTH BIN FIXED (15),
/* Data Descriptor, data type code */
5 HM$EDEN_DE_DESC_DTYPE BIN FIXED (7),
/* Data Descriptor, data class code */
5 HM$EDEN_DE_DESC_CLASS BIN FIXED (7),
/* OFFSET to Data Element Directory Link extent */
3 OM$EDEN_LINK_EXTENT_OFF OFFSET,
/* index of forward queued Data Element */
3 LM$EDEN_FORWARD_QUEUE_INDEX BIN FIXED (31),
/* index of backward queued Data Element */
3 LM$EDEN_BACKWARD_QUEUE_INDEX BIN FIXED (31),
/* index of Data Element name array head */
3 LM$EDEN_NAME_ARRAY_HEAD_INDEX BIN FIXED (31),
/* start of Directory extents */
2 LM$EDEN_FIRST_EXTENT BIN FIXED (31);

/* Data Element Directory Data Descriptor Extent structure (VMS)x*/

/* default base pointer */
DCL P_SM$EDDE POINTER;

/* REFER element */
DCL L_SM$EDDE_DIMCT BIN FIXED (31);

DCL 1 SM$EDDE BASED (P_SM$EDDE) ,

/* Directory extent type */
2 LM$EDDE_TYPE BIN FIXED (31),

/* OFFSET to next Data Element Directory extent */

/* for that entry */
2 OM$EDDE_NEXT_EXT OFFSET,

/* Array descriptor structure */

2 SM$EDDE_ARRAY_DESC UNION,

78 Version 1.0 June, 28 1988

PL/I Structures

3 LM$EDDE_ARRAY_DESC
3 SM$EDDE_ARRAY_DESC_PARTS,
/* Scale factor

BIN FIXED (31),

4 HM$EDDE_ARRAY_SCALE BIN FIXED(7),

/* Number of decimal digits

4 HM$EDDE_ARRAY_DIGITS BIN FIXED(7),

/* Array flag bits

4 HM$EDDE_ARRAY_AFLAGS BIN FIXED(7),

/* Number of dimensions

4 HM$EDDE_ARRAY_DIMCT BIN FIXED(7),

/* Array bounds for each dimension
2 SM$EDDE_ARRAY_BOUNDS
(L_SM$EDDE_DIMCT REFER(HM$EDDE_ARRAY_DIMCT)),
/* Lower bound (signed) of ith dimension
3 LM$EDDE_ARRAY_LOWER BIN FIXED (31),
/* Upper bound (signed) of ith dimension
3 LM$EDDE_ARRAY_UPPER BIN FIXED (31);

*/

/* Data Element Directory Name Array Descriptor Extent Structure*/

DCL

DCL

/* default base pointer
P_SM$EDNA POINTER;
/* REFER element

L_SM$EDNA_DIMCT BIN FIXED (31);

DCL 1 SM$EDNA BASED (P_SM$EDNA) ,

/* Directory extent type

2 LM$EDNA_TYPE BIN FIXED (31),

/* OFFSET to next Data Element Directory Extent

/* for that entry
2 OM$EDNA_NEXT_EXT OFFSET,
/* Name array descriptor structure
/* Name array flag bits
2 IM$EDNA_ARRAY_FLAGS
/* Number of dimensions
2 IM$EDNA_ARRAY_DIMCT BIN FIXED (15),
/* Name array bounds for each dimension
2 SM$EDNA_ARRAY_BOUNDS
(L_SM$EDNA_DIMCT REFER(IM$EDNA_ARRAY_DIMCT)),
/* Lower bound (signed) of ith dimension
3 LM$EDNA_ARRAY_LOWER BIN FIXED (31),

BIN FIXED (15),

*/

*/

*/

*/
*/

*/
*/

Version 1.0 June, 28 1988

79

GOOSY Data Management - Appendix

/* Upper bound (signed) of ith dimension */
3 LM$EDNA_ARRAY_UPPER BIN FIXED (31);
/* Data Element Directory Link Extent structure */
/* default base pointer */
DCL P_SM$EDLE POINTER;

DCL 1 SM$EDLE BASED (P_SM$EDLE),

/* Directory extent type */
2 LM$EDLE_TYPE BIN FIXED (31),
/* OFFSET to next Data Element Dir. Link extent */
/* for that entry */
2 OM$EDLE_NEXT_EDLE OFFSET,
/* Flags of Data Element Directory Link */
2 SM$EDLE_FLAGS UNION,
3 LM$EDLE_FLAGS BIN FIXED (31),
3 SM$EDLE_FLAG_BITS,
/* Flag for Link direction of Data Element */
/* forward : ’1°B, backward : ’0°’B */
4 BM$EDLE_FLAG_DIRECTION BIT(1),
4 BM$EDLE_FLAG_REST BIT(31),
/* index of Directory of Linked Data Element */
2 LM$EDLE_LINKED_DIR_INDEX BIN FIXED (31),
/* index of Linked Data Element */
2 LM$EDLE_LINKED_DE_INDEX BIN FIXED (31);

80 Version 1.0 June, 28 1988

PL/I Structures

C.9 Type Directory

The Types are Data Elements of the Directory $TYPE. The Type Directory is therefore identical
to the Data Element Directory $TYPE.

The names of the Types follow the Type Directory structure as Directory extents.

To get the PL/I structure into a procedure include: SM$TDIR with structures SM$TDIR
and SMSTDEN which will now be listed:

/* GOOINC(SM$TDIR), Data Type (Element) Directory structure */
/* maximum number of characters for Data Type name */

#REPLACE L_SM$TDIR_MAX_NAME_LENGTH BY 254;
/* Initial number of entries for */
/* Data Type Directory */

#REPLACE L_SM$TDIR_INIT_ENTRIES BY 512;

/* default base pointer P_SM$TDIR is defined in */

/* SM$DBMC */

/* REFER element */
DCL L_SM$TDIR_BITMAP BIN FIXED (31);

/* Data Type Directory Area */
DCL A_SM$TDIR AREA(LM$TDIR_DIR_AREA_LENGTH*512)

BASED (P_SM$TDIR(1));

DCL 1 SM$TDIR BASED(P_SM$TDIR(1)),

/* reserved for DEC \& IBM Area information */
2 LM$TDIR_RESERVED(4) BIN FIXED (31),

/* total Area length in pages */
2 LM$TDIR_DIR_AREA_LENGTH BIN FIXED(31),

/* Area header length in bytes */

/* incl. the Bit Map rounded to */

/* data cluster */
2 LM$TDIR_AREAHEAD_LENGTH BIN FIXED(31),

/* Area index longword */
2 LM$TDIR_AREA_INDEX BIN FIXED(31),

/* Area id version */
2 LM$TDIR_AREA_ID_VERSION BIN FIXED(31),

/* no.of bytes/bit in Bit Map */
2 LM$TDIR_NBYTE_BIT BIN FIXED(31),

/* data space length in bytes */

/* without the Header */

Version 1.0 June, 28 1988 81

GOOSY Data Management - Appendix

2 LM$TDIR_DATA_LENGTH BIN FIXED(31),

/* offset to data space */
2 OM$TDIR_START_DATA OFFSET,

/* max. number of data clusters */

/* incl. the Header */
2 LM$TDIR_NDATA_BYTE_CLUSTERS BIN FIXED(31),

/* largest free contiguous data */

/* in cluster units */
2 LM$TDIR_LARGEST_FREE BIN FIXED (31),

/* smallest free contiguous data */

/* in cluster units */
2 LM$TDIR_SMALLEST_FREE BIN FIXED (31),

/* number of fragments in data */
2 LM$TDIR_NFRAGMENTS BIN FIXED (31),

/* Bit Map length in bytes */
2 LM$TDIR_BITMAP_LENGTH BIN FIXED(31),

/* Bit Map */

2 BM$TDIR_BITMAP

BIT(L_SM$TDIR_BITMAP REFER(LM$TDIR_NDATA_

/* Data Type (Element) Directory Entry structure

DCL

/* default base pointer P_SM$TDEN
/* SM$DBMC
/* REFER element

L_SM$TDEN_ENTRY BIN FIXED (31);

DCL 1 SM$TDEN BASED (P_SM$TDEN) ,

/* maximum number of entries

2 LM$TDEN_DE_DIR_MAX_ENTRIES BIN FIXED
/* current number of entries

2 LM$TDEN_DE_DIR_CURR_ENTRIES BIN FIXED
/* length of the variable part of
/* in bytes

2 LM$TDEN_DIR_ENTRY_VAR_LENGTH BIN FIXED
/* top index of binary name tree

2 LM$TDEN_DIR_TOP_NAME_INDEX BIN FIXED
/* start of entries

2 SM$TDEN_ENTRY

BYTE_CLUSTERS)) ;

(L_SM$TDEN_ENTRY REFER(LM$TDEN_DE_DIR_MAX_ENTRIES)),

/* entry id version

*/
is defined in */

*/

*/

*/
(31),

*/
(31),
an entry */

*/
(31),

*/
(31),

*/

*/

3 LM$TDEN_ID_VERSION BIN FIXED (31),

82

Version 1.0 June, 28 1988

PL/I Structures

/* Flags of Data Type Directory entry */
3 SM$TDEN_FLAGS UNION,
4 BM$TDEN_FLAGS BIT(32) ALIGNED,

4 SM$TDEN_FLAG_BITS,
/*Entry usage flag, ’1’B: in use, ’0’b: not used*/

5 BM$TDEN_FLAG_ENTRY_IN_USE BIT(1),
/* Deletion protection flag, ’1’B:do not delete */
/* directory entry without privilege */
5 BM$TDEN_FLAG_PROTECTED BIT(1),
/* Data Element entry queue flag */
/* 1°B: entry is part of a queue */
5 BM$TDEN_FLAG_QUEUE_MEMBER BIT(1),
/* Data Element entry queue header flag */
/* 1°B: entry is the head of a queue */
5 BM$TDEN_FLAG_QUEUE_HEAD BIT(1),
/* Data Element entry name array flag */
/* 1°B: entry is a name array member */
5 BM$TDEN_FLAG_NAME_ARRAY_MEMBER BIT(1),
/* Data Element entry name array head flag */
/* '1°B: entry is the head of a name array */
5 BM$TDEN_FLAG_NAME_ARRAY_HEAD BIT(1),
/* Data Element Type Descriptor Directory */
/* '1°B: entry is a Type Descriptor Directory */
5 BM$TDEN_FLAG_TYPE_DIR BIT(1),
/* Not yet used bits */
5 BM$TDEN_FLAG_REST BIT(25),
/* OFFSET to Directory extent */
3 OM$TDEN_EXTENT_OFF OFFSET,
/* Data Type index of preceding name */
3 LM$TDEN_PRE_NAME_INDEX BIN FIXED (31),
/* Data Type index of following name */
3 LM$TDEN_FOLLOW_NAME_INDEX BIN FIXED (31),
/* binary name tree weight of this entry */
3 LM$TDEN_NODE_WEIGHT BIN FIXED (31),
/* index of data Area of Data Type */
3 LM$TDEN_DE_AREA_INDEX BIN FIXED (31),
/* OFFSET to data in Area of Data Type */
3 OM$TDEN_DE_START_DATA OFFSET,
/* length of Data Type in bytes */
3 LM$TDEN_DE_LENGTH BIN FIXED (31),
/* index of Type Descriptor of Data Type */
3 LM$TDEN_DE_TYPE_INDEX BIN FIXED (31),

Version 1.0 June, 28 1988 83

GOOSY Data Management - Appendix

/* Data Descriptor structure like VMS
3 SM$TDEN_DE_DESC UNION,
/* Data Descriptor longword
4 LM$TDEN_DE_DESC BIN FIXED (31),
/* Data Descriptor parts
4 SM$TDEN_DE_DESC_PARTS,

*/

*/

*/

/* Data Descriptor, Length of data item in bytes*/

/* length in bits for bit,
/* length of an array element for arrays

5 IM$TDEN_DE_DESC_LENGTH BIN FIXED (15),
/* Data Descriptor, data type code
5 HM$TDEN_DE_DESC_DTYPE BIN FIXED (7),
/* Data Descriptor, data class code
5 HM$TDEN_DE_DESC_CLASS BIN FIXED (7),
/* OFFSET to Data Type Directory Link extent
3 OM$TDEN_LINK_EXTENT_OFF OFFSET,
/* index of forward queued Data Type
3 LM$TDEN_FORWARD_QUEUE_INDEX BIN FIXED (31),
/* index of backward queued Data Type
3 LM$TDEN_BACKWARD_QUEUE_INDEX BIN FIXED (31),
/* index of Data Type name array head
3 LM$TDEN_NAME_ARRAY_HEAD_INDEX BIN FIXED (31),

/* start of Directory extents
2 LM$TDEN_FIRST_EXTENT BIN FIXED (31);

*/
*/

*/

*/

*/

*/

*/

*/

84

Version 1.0 June, 28 1988

PL/I Structures

C.10 Type Descriptor

A Type Descriptor is a structure describing a Data Element of a Data Base.
To get the PL /I structure into a procedure include: SM$TYDSC with structures SMSTYDSC,
SMSTYLIM, and SMSTYREF which will now be listed:

/* GOOINC(SM$TYDSC), Structure for type declarations */
AREPLACE name_length BY 31; /* Nx4 BYTES x/

DCL P_sm$tydsc POINTER;

DCL P_sm$tylim POINTER;

DCL P_sm$tyref POINTER;

DCL L_sm$tydsc BIN FIXED (31);/#* Used for allocate of all three */
/* structures */

JREPLACE sm$tydsc_valid BY ’10101010101010101010101010101010°B;
JREPLACE sm$tydsc_no_valid BY ’01010101010101010101010101010101°B;
DCL 1 sm$tydsc based(P_sm$tydsc),

2 B_sm$tydsc_valid BIT (32) aligned,/* control pattern */
2 P_sm$tydsc_ul UNION,
3 P_sm$tydsc_next POINTER,
3 L_sm$tydsc_next BIN FIXED (31),
2 P_sm$tydsc_u3 UNION,
3 P_sm$tydsc_ref_obj POINTER, /* pointer to refer object */
3 L_sm$tydsc_ref_obj BIN FIXED (31),
2 L_sm$tydsc_length BIN FIXED (31),
2 H_sm$tydsc_type BIN FIXED (7),
2 H_sm$tydsc_class BIN FIXED (7),
2 CV_sm$tydsc_name CHARACTER (name_length) VAR,
2 P_sm$tydsc_u2 UNION,
3 P_sm$tydsc_extent POINTER, /* pointer to pointerlist */

3 L_sm$tydsc_extent BIN FIXED (31),/+* index to pointerlist */

2 P_sm$tydsc_ué4 UNION,
3 P_sm$tydsc_data POINTER, /*pointer to data (-1 for referx*/
3 L_sm$tydsc_data BIN FIXED (31), /* object */

2 H_sm$tydsc_scale BIN FIXED (7),

2 H_sm$tydsc_digits BIN FIXED (7),

2 B8_sm$tydsc_flags BIT (8) aligned,

2 H_sm$tydsc_dimens BIN FIXED (7),

2 SA_sm$tydsc_limits (L_sm$tydsc REFER(H_sm$tydsc_dimens)),

3 LA_sm$tydsc_lower BIN FIXED (31),

Version 1.0 June, 28 1988 85

GOOSY Data Management - Appendix

3 P_sm$tydsc_u6 UNION,

4 PA_sm$tydsc_ref_obj_low POINTER, /#* poin.to refer object */
4 LA_sm$tydsc_ref_obj_low BIN FIXED (31),
3 LA_sm$tydsc_upper

3 P_sm$tydsc_ub UNION,

BIN FIXED (31),

4 PA_sm$tydsc_ref_obj_upp POINTER, /#* poin.to refer object */
4 LA_sm$tydsc_ref_obj_upp BIN FIXED (31);

DCL 1 sm$tylim based(P_sm$tylim),
BIN FIXED (31),

2 L_sm$tylim_dimens
2 LA_sm$tylim_bounds

3 LA_sm$tylim_lower
3 LA_sm$tylim_upper

(L_sm$tydsc REFER(L_sm$tylim_dimens)),

BIN FIXED (31),
BIN FIXED (31);

DCL 1 sm$tyref based(P_sm$tyref),
BIN FIXED (31),

2 L_sm$tyref_number
2 LA_sm$tyref_ref
3 CV_sm$tyref_name
3 L_sm$tyref_value

(L_sm$tydsc REFER(L_sm$tyref _number)),

CHARACTER (NAME_LENGTH) VAR,
BIN FIXED (31);

To get the replace definitions of atomic Data

which will now be listed:

/* GOOINC($TYPREP)

/* Parameters for atomic data types
/* The code is RANK(char)-64

JREPLACE typ__H BY
JREPLACE typ__I BY
JREPLACE typ__L BY
JREPLACE typ__R BY
JREPLACE typ__D BY
JREPLACE typ__C BY
JREPLACE typ__V BY
JREPLACE typ__B BY
JREPLACE typ__S BY
JREPLACE typ__0 BY
JREPLACE typ__Y BY

JREPLACE typ__class_S BY
JREPLACE typ__class_A BY

8;
9;
12;
18;
4;
3;
22;
2;
19;
15;
25;

19;
1;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

Types in a procedure, include:

Byte

Word
Longword
Float (24)
Float(53)
Character
Character var
Bit aligned
Structure
Offset
Unknown

Scalar
Array

$TYPREP

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

86

Version 1.0 June, 28 1988

GOOSY Glossary

GOOSY Glossary

Analysis Manager (8ANL) Part of the analysis program controlling the data I/O and the
event loop.

$ANL The Analysis program as a GOOSY component. Runs in a subprocess named GN_env___$ANL.

$DBM The Data Base Manager as a GOOSY component. Runs in a subprocess named
GN_env____$DBM.

$DSP The Display Program as a GOOSY component. Runs in a subprocess named GN _env____$DSP.

$TMR The Transport Manager as a GOOSY component. Runs in a subprocess named
GN_env___STMR.

ATTACH Data Bases, Pools, and Dynamic Lists must be attached before they can be used.
The ATTACH operation specifies the protection mode for Data Base Pools.

Branch The CAMAC parallel branch connects up to seven CAMAC crates to a computer
Interface, e.g. to the MBD.

Buffer GOOSY buffers have a standard buffer header describing the content of the buffer
through type/subtype numbers. A GOOSY buffer may contain list mode data (events) file
headers, or other kind of data. Buffers can be sent over DECnet and copied from/to tape
and disks. Most GOOSY buffers contain buffer Data Elements.

Buffer Data Element A data structure preceeded by a 4 word header stored in a buffer. The
header keeps information about the size and the type of the buffer Data Element.

Buffer Unpack Routine A buffer unpack routine copies one event from the buffer into an
event Data Element. It has to control the position of the events in the buffer. It gets passed
the pointer to the buffer as argument.

CAMAC Computer Automated Measurement and Control. A standard for high-energy
physics and nuclear physics data acqusition systems, defined by the ESONE (European
Standard On Nuclear Electronics) committee between 1966 and 1969.

Version 1.0 June, 28 1988 87

GOOSY Glossary

CONDITION In contrast to SATAN, GOOSY conditions are independent of spectra. Be-
sides the multi window conditions which are similar to SATAN analyzer conditions, GOOSY
provides window-, pattern-, composed- and userfunction-conditions. Each condition has
counters associated for true/false statistics. Conditions can be executed in a Dynamic List
or by macro the $COND in an analysis routine. Each condition can be used as filter for
spectrum accumulation or scatter plots.

CONNECT A calibration can be connected to any number of spectra with the GOOSY
command CALIBRATE SPECTRUM.

CvC CAMAC VSB Computer. A CAMAC board with a 68030 processor running Lynx, OS9
or pSOS. It can be equipped with ethernet and SCSI and VSB.

Data Base A Data Base is located in a file and has a Data Base name. It is recommended
to use the same name for the file and the Data Base. The file type should be .SEC. A
logical name may be defined for the Data Base name. To activate a Data Base it must be
mounted. It is dismounted during a system shutdown or by command. If a Data Base runs
out of space, it can presently NOT be expanded.

Data Base Directory Similar to a VMS disk, GOOSY Data Bases are organized in Direc-
tories. They must be created.

Data Base Manager ($DBM) This is a program executing all commands to handle Data
Bases. It may run directly in DCL or in a GOOSY environment.

Data Base Pool The storage region of a Data Base is splitted in Pools. All Data Elements
are stored in Pools. A Pool can be accessed by a program with READ ONLY protection or
with READ/WRITE protection. Pools must be created. They are automatically expanded
if necessary, up to the space available in a Data Base.

Data Element A Data Element is allocated in a Data Base Pool. Its name is kept in a
Directory. Data Elements can be of atomic Types (scalars or arrays), or of the structure
Type (PL/1 structures). Besides the data structure a Data Element can be indexed (one or
two dimensional). Such Data Elements are called name arrays. Each name array member
has its own data and Directory entry.

Data Element Member Similar to PL/1, the variables in a structure are called members.

Data Element Type GOOSY Data Elements can be PL/1 structures. The structure dec-
larations must be in a file or text library module. They are used to create a Data Element
Type in the Data Base and can be included in a program to access the Data Flement.

Dynamic List A Dynamic List has several Fntries, each specifying an action like condition
check or spectrum accumulation. It is executed for each event in the analysis program. The
Entries are added or removed by commands even without stopping the analysis.

88 Version 1.0 June, 28 1988

GOOSY Glossary

Dynamic List Entry An Entry in a Dynamic List keeps all information to execute an action.
For example, an accumulation Entry contains the spectrum name, an object and optional
a condition and an increment parameter.

Dynamic List Executor The part of the analysis program which scans through a Dynamic
List for each event executing the actions specified by the Entries.

Environment The Transport Manager and the analysis programs run only in a GOOSY
environment which has to be created first. They are started by specific commands. The
Display and the Data Base Manager may run under DCL or in a GOOSY environment. The
display must run in a GOOSY environment if scatter plots are used. The main difference is
that in an environment several programs are ’stand by’, whereas in DCL you can run only
one program at a time.

Event Packet of data in the input or output stream which is processed by the same program
part (see event loop).

Event Buffer Data Element A data structure preceeded by a 4 word header stored in a
buffer. The header keeps information about the size and the type of the event buffer
Data Element. The event buffer Data Element is copied by unpack routines to event Data
Elements.

Event Data Element A Data Element in a Data Base which is used to store events. Event
Data Elements are used to copy events from an input buffer into the Data Base or from the
Data Base into an output buffer.

Event Unpack Routine An event unpack routine copies one event from the buffer into an
event Data Element. Different from a buffer unpack routine, it gets passed the pointer to
the event in the buffer as argument.

GOOSY Components GOOSY is composed of components, i.e. programs like the Trans-
port Manager $TMR, the Analysis Program $ANL, the Display $DSP and the Data Base
Manager $DBM. Data Base Manager and Display program may be envoced under DCL in a
‘stand alone’ mode. $TMR and $ANL can run only in a GOOSY environment. Components
run in an environment as VAX/VMS subprocesses of the terminal process.

GOOSY Prompter If GOOSY components run in an environment, their commands are the
input to the GOOSY prompter. The GOOSY prompter is entered by GOOSY and prompts
with SUC: GOOSY>. Now you can enter GOOSY commands which are dispatched to the
appropriate GOOSY components for execution. Single GOOSY commands can be executed
from DCL preceding them by GOOSY. The prompter exits after the command termination.
The GOOSY prompter can only be used after an environment was created!

J11 This is an auxiliary crate controller based on a PDP 11/73 processor (type CES 2180
Starburst). Has full PDP instruction set including floating point arithmetic. A J11 running
under RSX/11S controls one CAMAC crate and sends the data via DECnet to a VAX.

Version 1.0 June, 28 1988 89

GOOSY Glossary

LAM Look At Me. A signal on the CAMAC Dataway, which may request a readout (CAMAC
interrupt).

LOCATE In a program, any Data Element must be located, before it can be used. The
LOCATE operation returns the pointer to the Data Element. The macro SLOC provides a
convenient way to locate spectra, conditions or arbitrary Data Elements.

Mailbox An interprocess communication method provided by VMS. Processes on the same node
can send/receive data through mailboxes.

MBD Microprogrammed Branch Driver from BiRa Systems Inc. supports the protocol of the
CAMAC parallel Branch, defined by the CAMAC standard (GOLDA equivalent: CA11-C).
This is an interface between CAMAC and a VAX. It gets data from the crate controllers
(J11) and sends them to the transport manager running on a VAX.

MOUNT A GOOSY Data Base must be mounted before it can be accessed. The MOUNT
operation connects the Data Base name with the Data Base file name.

Object To increment a spectrum or execute a condition, the Dynamic List executor needs a
value for the spectrum channel, or a value to compare to window limits. These values are
called objects. An object must be a member of a Data Element.

Picture A Picture is a complex display. A picture is a set of up to 64 frames with spectra
and/or scatterplots. Once created and specified they remain in a Data Base independent
of programs. They are displayed by DISPLAY PICTURE command. Pictures are composed
of frames.

Picture Frame FEach frame is a coordinate system for a spectrum or scatter plot. Up to 64
different frames may inserted to a picture.

Prompter Command interface for GOOSY environment. The GOOSY prompter is called by
DCL command GOOSY. Then all commands are delivered to the environment components
for execution.

Scatter Plot The GOOSY display component can display any pairs of Data Flement mem-
bers event by event in scatter plot mode (live mode). Several scatter plots can be displayed
on one screen (pictures). Scatter plots are executed in Dynamic Lists and may be filtered
by conditions.

Spectrum A GOOSY spectrum differs from a SATAN analyzer in that there are no windows
or conditions associated. A spectrum can be filled in a Dynamic List Entry or in an analysis
routine by macro $ACCU.

STARBURST This is an auxiliary crate controller based on a PDP 11/73 processor (type
CES 2180 Starburst). Has full PDP instruction set including floating point arithmetic.
Each CAMAC crate is controlled by one STARBURST running a standalone program. The
STARBURST reads out the crate and sends the data to the MBD.

90 Version 1.0 June, 28 1988

GOOSY Glossary

Supervisor FEach environment has a supervisor component. The supervisor dispatches messages
between the GOOSY prompter and the environment components.

Transport Manager ($§TMR) This program acts as data buffer dispatcher. It gets data
buffers from the CAMAC branch (MBD) or via DECnet from a single CAMAC crate (J11)
or from a disk/tape file and writes them to disk/tape files, DECnet, and mailboxes. It
executes all CAMAC control commands. The $TMR runs only in a GOOSY environment.

Unpack Routine An unpack routine copies one event from the buffer into an event Data
Element. There are two types: buffer and event unpack routines. Buffer unpack routines
control the whole buffer, event unpack routines only one event.

Version 1.0 June, 28 1988 91

GOOSY Data Management - Index

92 Version 1.0 June, 28 1988

Index

Index

A

access
read only 39
read/write 39
access synchronization 10
Analysis
Manager 87
routine
macros 29, 31
area 17
header 58
area directory 18, 21, 64
attach 39
data base 40
data element directory 40
directory 40
pool 40
ATTACH 87

B

Branch 87

Buffer 87
Data Flement 87
Unpack Routine 87

C
Calibration 31
CAMAC 87
CLEAR 37
Command
menu 33
Composed condition 30
Condition 29, 88
composed 30

function 30
multiwindow 29
pattern 30
polygon 30
window 29

CONNECT &8
control key 2
CREATE 34

calibration 36
condition 34
Data Element 34
directory 34
dynamic entry 35
Dynamic List 35
picture 36

pool 34

spectrum 35
type 34

keys 2

CVC 88
CWHAT LOCKS DCL-command 45

Data

Base 27
directory 34
dismount 27, 28
Manager 33
mount 27
pool 34
structure 27
Element 27, 29, 34
calibration 31, 36

Version 1.0 June, 28 1988

93

GOOSY Data Management - Index

commands 33 Manager 88
condition 29, 34 Pool 88
create 34 data base management
picture 31, 36 functionality 9
polygon 30 implementation 13
spectrum 31, 35 data element 16
type 34 complex 17
user 31, 34 description 22
management directory 18, 21
commands 34, 36 examples 17
data area 17 get indices 40
locking 43 indexed 17
data base 18 locate 40
access synchronization 10 locking 43
area 17 member 16
area directory 18, 21, 64 member value 15
area header 58 name array 17
attach 40 simple 16
data area 17 Data Element 88
data element 16 Member 88
data element description 22 Type 88
data element directory 18, 21, 75 data element directory 18, 21, 75
data element member 16 attach 40
data pool 18 detach 40
detach 41 locking 43
examples 22 data environment 19
general directory format 60 data pool 18
home block 18, 21, 56 data type
integrity 10 directory 19
local mapping context 39, 48 data types 15
locking 10, 43 DELETE 37
mapping 10, 39, 47, 48 dequeue lock 43
master directory 18, 21, 72 detach
member value 15 data base 41
organization 15 data element directory 40
pool 18, 21 directory 40
pool directory 18, 68 pool 40
proctection 10, 17, 18 directory 18, 21
type descriptor 21, 85 area 64
type directory 19, 21, 81 attach 40
Data Base 88 data element 75
Directory 88 detach 40

94 Version 1.0 June, 28 1988

Index

general format 60

locking 43

master 72

pool 68

type 81
DISMOUNT

data base 27, 28
Dynamic

List 29, 30, 31, 35

entry 35

Dynamic List 88

entry 89

executor 89

E

enqueue lock 43

enter key 1

environment 19

Environment 89

Event 89
Buffer Data Element 89
Data Flement 89
Unpack Routine 89

F
Fn keys 2
Function condition 30

G

general directory format 60
global section 39
GOLD key 1

H

home block 18, 21, 56
locking 43

I

implementation 13

J

J11 89, 90

K

key
enter 1
GOLD 1
keypad 1
GOLD 1

L
LAM 90
local mapping context 39, 48
LOCATE 90
locate data element 40
lock
modes 44
names 43
locking 10, 43
area 43
data base 43
data element 43
data element directory 43
directory 43
home block 43
main directories 43

M
Mailbox 90
mapping 10, 39, 47, 48
mapping context 39, 48
master directory 18, 21, 72
MBD 90
member of data element 16
Member of Data Element 88
member value 15

data types 15
MLOCKS DCL-command 45
MOUNT

data base 27, 90
Multwindow condition 29
M$ATDB 40
MS$ATDI 40
MSATPO 40
MS$ATxx 39
M$DADB 41

Version 1.0 June, 28 1988

95

GOOSY Data Management - Index

MSDADI 40
MSDAPO 40
MSDEID 40
MSLODE 40
MSLOID 40
MS$SMODB 39
MSMPDB 39

N

name array of data elements 17

O

Object 90

organization of data bases 15

P

Pattern condition 30
PERICOM terminal 1
PFn keys 2
Picture 31, 90

frame 90
PL/I structures 47
Polygon 30
Polygon condition 30
pool 18

attach 40

detach 40
pool directory 18, 21, 68
Pools 27
Prompter 89, 90

R

read only access 39
read/write access 39
resource lock 43

S

Scatter plot 90
SHOW 36

show locks 45
SM$ADIR 64
SMS$ARHD 58
SMS$DBMC 39, 48, 50

SMSDIRH 60
SMSEDIR 75
SMSHBV1 56
SMSMDIR 72
SMSPDIR 68
SMSTDIR 81
SMSTYDSC 85
Spectrum 31, 90
Starburst 89, 90
structures in PL/1 47
Supervisor 91
SYS$DEQ 43
SYS$SENQ 43

T

Transport Manager 91
type
descriptor 21, 85
directory 19, 21, 81
replace definitions 86
Type of Data Element 88

U

Unpack
Routine 91

A%

Window condition 29

ANL 87
DBM &7
DSP 87
LCKxxx lock names 43
TMR 87

$
$
$
$
$
$TYPREP 86

96

Version 1.0 June, 28 1988

Contents

Contents

1 Preface 1
1.1 GOOSY Authors and Advisory Service oL 3
1.2 Further GOOSY Manuals 3
1.3 Intended Audience 5

2 Introduction 7

2.0.1 Glossary e e e e e 8

3 Data Management Functionality 9

4 Data Management Implementation 13
4.1 Commands L e e e e e e 13
4.2 Procedures e e e e e e 13
4.3 Macros . . . o o i e e e e e e e e e e 13

5 Data Management Organization 15

6 Detailed Description 21
6.1 Home Block 21
6.2 Area Directory L 21
6.3 Pool Directory 21
6.4 Master Directory e e e 21
6.5 Data Element Directory 21
6.6 Type Directory L o e e 21
6.7 Type Descriptor o e e e e e 21
6.8 Data Element Descriptor. o 22
6.9 Data Base Usage L 22

7 Data Base Manager 25
7.1 Data Base Manager Introduction 26
7.2 Data Management o e 27
7.3 GOOSY Data Elements 0. 29

Version 1.0 June, 28 1988 i

GOOSY Data Management

7.3.1 Conditions e e e e 29
Window Conditions e 29

Multiwindow Conditions 29

Pattern Conditionso 30

Function Conditions o 30

Polygon Conditions L L 30

Composed Conditions Lo 30

7.3.2 Polygons e e 30

7.3.3 Spectrao e 31

7.3.4 Calibrations e 31

7.3.5 Pictures e e e e e e 31

7.3.6 User Defined Data Elements 31

7.4 Data Base Manager o e 33
7.4.1 CREATE Commands 34

Create Directories e e e 34

Create Pools e 34

Create Data Element Types o L. 34

Create Data Elements 34

Create Conditions e 34

Create Spectra e 35

Create Dynamic Lists o o 35

Create Dynamic Entrieso o oo 35

Create Pictures e 36

Create Calibrations e 36

7.4.2 SHOW Commands e 36

7.4.3 CLEAR Commands i 37

7.4.4 DELETE commands, 37

7.4.5 Miscellaneous Commands 37
APPENDIX 37
A Mapping Concept 39
B Locking Concept 43
C PL/I Structures 47
C.1 Data Base Mapping Context 48
C.2 Home Block e e 56
C.3 Area Header. e 58
C.4 General Directory Format L o 60
C.5 Area Directory o e 64
C.6 Pool Directory o e e 68

il

Version 1.0 June, 28 1988

C.7 Master Directory 0 o o e 72

C.8 Data Element Directory e 75
C.9 Type Directory o e e 81
C.10 Type Descriptor o o 0 o e 85
GOOSY Glossary 87
Index 92

Version 0.0 June, 28 1988 iii

