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Plan of lectures

• 1 15.04.2015 Preliminary Discussion / Introduction

• 2 22.04.2015 Experiments (discovery of the positron, formation of antihydrogen, ...)
• 3 29.04.2015 Experiments (Lamb shift, hyperfine structure, quasimolecules and MO spectra)
• 4 06.05.2015 Theory (from Schrödinger to Dirac equation, solutions with negative energy)
• 5 13.05.2015 Theory (bound-state solutions of Dirac equation, quantum numbers)
• 6 20.05.2015 Theory (bound-state Dirac wavefunctions, QED corrections)

• 7 27.05.2015 Experiment (photoionization, radiative recombination, ATI, HHG...)
• 8 03.06.2015 Theory (description of the light-matter interaction)
• 9 10.06.2015 Experiment (Kamiokande, cancer therapy, ….)
• 10 17.06.2015 Theory (interaction of charged particles with matter)

• 11 24.06.2015 Experiment (Auger decay, dielectronic recombination, double ionization)
• 12 01.06.2015 Theory (interelectronic interactions, extension of Dirac (and Schrödinger) theory for the

description of many-electron systems, approximate methods)
• 13 08.07.2015 Theory (many-electron atoms)

• 14 15.07.2015 Experiment (Atomic physics PNC experiments (Cs,...), heavy ion PV research)

Many-electron ions (part 2)

(Spectra of many-electron atom, coupling schemes 
and advanced many-electron methods) 

08 July 2015
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Plan of lecture

Central field approximation for N-electron system

Spectra of many-electron ions: Perturbative approac h

jj coupling

LS coupling

Variational methods: Hartree-Fock and Dirac-Fock ap proaches

08 July 2015

Central field approximation for N electrons
(reminder from the last lecture)

08 July 2015

Generalization of the central field approximation (and, as its particular case, the
independent particle model) for the system of N electrons is rather straightforward:

where central field Hamiltonian:

and remaining (non-spherical) part is:
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Central field approximation for N electrons
(reminder from the last lecture)

08 July 2015

Since the many-electron wavefunction:

is obtained as a solution of central-field Hamiltonian:

the total energy of the N-electron ion is given by:

where:
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For central filed Hamiltonians the total energy of the syste m
is entirely determined by the electron configuration!!! (i.e. by
the way how electrons “sit down” in atom/ion).

Central field approximation for He-like ions
(energy levels)

08 July 2015
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0:1 2
2/1 =Js

1,0:21 2/12/1 =Jss
1,0:21 2/12/1 =Jps

2,1:21 2/32/1 =Jps

1,0:31 2/12/1 =Jss

singly-excited states

0:2 2
2/1 =Js

………..………..

1,0:22 2/12/1 =Jps

2,1:22 2/32/1 =Jps

doubly-excited states

bbaa jnjn EEE +=

1s1/2 + “free” electron continuum

2s1/2 + “free” electron continuum

That we have discussed
for the two-electron ions.
How it will be for many-
electron ones?

Let us consider ground-
state of our system!
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Ground states of many-electron ions
(relativistic framework)

08 July 2015

Let us start “filling” our ion with electrons!

But don’t forget Pauli principle!

n j (-1)l notation

1 1/2 + 1s1/2

2 1/2 + 2s1/2

2 1/2 - 2p1/2

2 3/2 - 2p3/2

3 1/2 + 3s1/2

Only (2j+1) electrons may occupy the
same subshell (i.e. have the same n and j).

For given total momentum j:

µj = -j, …. +j (magnetic)

E
ne

rg
y

………..………..

2 electrons

2 electrons

2 electrons

4 electrons

2 electrons
.....

By following these rules
we can easily “build”
ground state of heavy
many-electron ion.

Ground states of many-electron ions
(relativistic framework)

08 July 2015

E
ne
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y

………..………..

Let us start “filling” our ion with electrons!

But don’t forget Pauli principle!

2/11s

2/12s 2/12p
n j (-1)l notation

1 1/2 + 1s1/2

2 1/2 + 2s1/2

2 1/2 - 2p1/2

2 3/2 - 2p3/2

3 1/2 + 3s1/2

2 electrons

2 electrons

2 electrons

4 electrons

2 electrons
.....

1s1/2 H-like ion

1s2
1/2 He-like ion

1s2
1/2 2s1/2 Li-like ion

1s2
1/2 2s2

1/2 Be-like ion

So far: energy levels are independent on total J.

2/32p
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Excited states of many-electron ions
(relativistic framework)

08 July 2015

E
ne

rg
y

………..………..

Of course, we may also fill electrons into
excited states of ions/atom.

Pauli principle is anyway has to be satisfied!

2/11s

2/12s 2/12p
n j (-1)l notation

1 1/2 + 1s1/2

2 1/2 + 2s1/2

2 1/2 - 2p1/2

2 3/2 - 2p3/2

3 1/2 + 3s1/2

2 electrons

2 electrons

2 electrons

4 electrons

2 electrons
.....

2/32p

Let us consider, for example, C-like ion:

1s2
1/2 2s2

1/2 2p2
1/2 ground state

1s2
1/2 2s2

1/2 2p1/2 2p3/2 excited state

1s2
1/2 2s2

1/2 2p2
3/2 excited state

So far: energy levels are independent on
total J.

Please, remind yourself: there is splitting of
energy levels with different J if “perturbation”
is taken into account.

Central field approximation for N electrons
(reminder from the last lecture)

08 July 2015

Generalization of the central field approximation (and, as its particular case, the
independent particle model) for the system of N electrons is rather straightforward:

where central field Hamiltonian:

and remaining (non-spherical) part is:
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By neglecting first the non-spherical part, we find solution of H0
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Excited states of many-electron ions
(carbon-like ions)

08 July 2015

We make use of perturbation theory to take into account “non- central” term:

And to find energy shift:
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We have to use the full notation:

Jjnjnjn ccbbaa ,...),,(

jj-coupling

08 July 2015

All the results which we have discussed before have been obta ined in
assumption that the electron-electron interactions are we aker comparing to
relativistic ones.
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sum of one-electron (relativistic) Hamiltonians perturbation (includes e-e terms)

nucleus
(point-like)
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But all this is true only for heavy ions!

What shall we do for low- Z elements?
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08 July 2015

Task 1
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Plan of lecture

Central field approximation for N-electron system

Spectra of many-electron ions: Perturbative approac h

jj coupling

LS coupling

Variational methods: Hartree-Fock and Dirac-Fock ap proaches

08 July 2015
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Please, remind yourself: we have already included spin into non-relativistic
consideration also and got simple model:

This wavefunction is solution of Schrödinger equation:

with some central potential.

Back to Schrödinger equation
(non-relativistic theory with spin included)

08 July 2015
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Note: there is no need to couple l and s since there is no 
spin-orbit coupling in non-relativistic case.

Why some? We have discussed until now 
only Coulomb case for Schrödinger equation!

Central field approximation
(non-relativistic case)

08 July 2015

Similarly to relativistic case, we may build up central fiel d approximation for the
Schrödinger equation:

where:

and remaining non-central part is:
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By neglecting for the moment this remaining part we  again find solution of the Hamiltonian: 
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Central field approximation
(non-relativistic case)

08 July 2015

Similarly to relativistic case, we may build up central fiel d approximation for the
Schrödinger equation:

where:

and remaining non-central part is:

( ) ( ) ( ),...,,..,ˆˆ
21211 rrrr Ψ=Ψ+ EHH c

∑∑ 






 +∇−==
k

kk
k

kc rVhH )(
2

1~ˆ 2
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By neglecting for the moment this remaining part we  again find solution of the Hamiltonian: 
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Please, note: we did not couple 
electron momenta so far!

Central field approximation
(non-relativistic case)

08 July 2015

Again, since the for the moment we just consider wavefunctio n:

which is eigenfunction of the central-field Hamiltonian:

The total energy of the ion (atom) is completely determined b y the electron
configuration:
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What is the difference here from the relativistic case?
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Electronic configuration
(non-relativistic case)

08 July 2015

Let us start “filling” our ion with electrons!

But don’t forget Pauli principle!

Only 2(2l+1) electrons may occupy the
same subshell (i.e. have the same n and l).

For given orbital momentum l:

ml = -l, …. +l (magnetic)
ms = +1/2, -1/2 (spin)

E
ne

rg
y

………..………..

2 electrons

2 electrons

6 electrons

2 electrons

6 electrons
.....

By following these rules
we can easily “build”
ground state of heavy
many-electron ion.

n l (-1)l notation

1 0 + 1s

2 0 + 2s

2 1 - 2p

3 0 + 3s

3 1 - 3p

Electronic configuration
(non-relativistic case)

08 July 2015

2 electrons

2 electrons

6 electrons

2 electrons

6 electrons
.....

n l (-1)l notation

1 0 + 1s

2 0 + 2s

2 1 - 2p

3 0 + 3s

3 1 - 3p

Let us start “filling” our ion with electrons!
(This time without animation.)

Everything looks very similar to relativistic
case.
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ht

tp
://

w
w

w
.m

ik
eb

la
be

r.o
rg

/



11

Electronic configuration
(non-relativistic case)

08 July 2015

2 electrons

2 electrons

6 electrons

2 electrons

6 electrons
.....

n l (-1)l notation

1 0 + 1s

2 0 + 2s

2 1 - 2p

3 0 + 3s

3 1 - 3p

Let us start “filling” our ion with electrons!
(This time without animation.)

Everything looks very similar to relativistic
case.

But...
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Hund’s law: for degenerate orbitals, the lowest energy is attained when the number
of electrons with the same spin is maximized.

Electronic configuration
(non-relativistic case)

08 July 2015

n l (-1)l notation

1 0 + 1s

2 0 + 2s

2 1 - 2p

3 0 + 3s

3 1 - 3p

3 2 + 3d

4 0 + 4s

4 1 - 4p

4 2 + 4d

What is going on after Argon?

At Potassium a “natural order” of filling the orbitals
ends up.

P
ic

tu
re

 fr
om

: 
ht

tp
://

w
w

w
.m

ik
eb

la
be

r.o
rg

/

162622 43322119 spspssK
This departure from the “natural order” 
of filling requires more detailed analysis.



12

Ionization potential of neutral atoms

08 July 2015

By using our knowledge on electronic configurations of many -electron atoms
we may understand Z-behaviour of ionization potential.
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The ionization potential reaches maxima for the noble gases (He, Ne, Ar, Kr, Xe)
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Ionization potential of neutral atoms

08 July 2015

By using our knowledge on electronic configurations of many -electron atoms
we may understand Z-behaviour of ionization potential.
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The ionization potential is smallest for the alkalis (Li, Na, K, Rb, Cs)
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spssNa

ssLi

sKrRb

spspssK

5][37

43322119 62622

One electron above “closed shell”

Lithium     Sodium     Potassium                    Rubidium                   
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Periodic table of elements

08 July 2015

Dmitry Mendeleev Lothar Meyer

Periodic table (in its “final” form) has been proposed by Dmi try Mendeleev and
Lothar Meyer in 1869! (More than 50 years prior to Quantum Mec hanics).

Periodic table of elements

08 July 2015
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The periodic table is structured so that elements with the sa me type (symmetry)
of valence electron configuration are arranged in columns.

Chemical properties follow electronic configuration of at oms.
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Ionic bonding

08 July 2015

Na Cl

Ionic bonding is one of the types of chemical
bonding that can form, for example, between
alkali atom and halogen through electrostatic
attraction.

Example is sodium chloride (Na Cl): When
sodium (Na) and chlorine (Cl) are combined,
the sodium atoms each lose an electron,
forming a cation (Na +), and the chlorine atoms
each gain an electron to form an anion (Cl -).
These ions are then attracted to each other in a
1:1 ratio to form sodium chloride (NaCl).

Picture from: http://www.wikipedia.org

ClNaClNaClNa →+→+ −+

Taking correlations into account

08 July 2015

Up to now we have discussed solutions of the central field pot ential:

Similar to the relativistic case, we have to include now non- central part into
account:

Indeed, we may again use perturbation theory! But in which ba sis?
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=ΨSo far our wavefunctions are:

Shall we couple electron momenta?
But which?

Let us answer a question: what are the commuting operators in our case? 
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LS (Russel-Saunders) coupling

08 July 2015

Since the non-relativistic Hamiltonian commutes with oper ators of total angular
momentum L and total spin S its eigenfunction (which we still have to find) are
also eigenfunctions of these operators!

For perturbation procedure it makes sense to couple our “unp erturbed”
wavefunctions:

where:

SLbbbaaaSL MSMLslnslnMSML :,....,≡γ

Henry Norris Russell 

∑=
k

klL ˆˆ ∑=
k

ksS ˆˆand

Energy levels corresponding to
definite values of L and S are
called terms and are denoted as:

LS 12 +

L=0     S
L=1     P
L=2     D

....

Taking correlations into account

08 July 2015

Now, in the new coupled basis we may apply perturbation theor y:

SLSL MMSLHMMSLE γγ 1
ˆ=∆

PSL 3,1,1 ==

DSL 1,0,2 ==

SSL 1,0,0 ==

Hc (central field)                              Hc + H1

Note: taking into account
correction H1 leads to the
splitting of energy levels with
different L and S!

The term with the largest possible value of
S (for a given configuration) has the lowest
energy.

Hund’s law
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Few words about Hund’s law

08 July 2015
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Taking relativistic effects into account

08 July 2015

By making use of the perturbation approach, we were able to ob tain eigenvalues
and eigenfunctions of the non-relativistic Hamiltonian:

where and
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But, by increasing nuclear charge Z we expect relativistic effects (in particular 
spin-orbit coupling) become more sizable. 

How to take these effects into account? 

To come back to the fully-relativistic (jj) framework? But what if the e-e interaction 
effects are still stronger than the relativistic ones? 

We can use perturbation theory second time! (Now, our unperturbed basis is 
provided by eigenfunctions of Hc + H1 Hamiltonian!)
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Taking relativistic effects into account

08 July 2015

Now, we write our Hamiltonian as:

where:

By using this basis and the first-order perturbation theory :

( ) ( ) ( ),...,,..,ˆˆˆ
212121 rrrr Ψ=Ψ++ EHHH c

non-relativistic terms perturbation: relativistic terms

SL ˆˆˆ
2 ∝H L and S are not good quantum numbers anymore!

We need to build new basis!

( ) SL
MM

JSLJ MSMLMJMSMLMJSL
SL

γγ ∑=

J
S L12 +

JJJJ MJSLMJSLAMJSLHMJSL γγγγ LS≈2

New notation for the term symbol:

Ground-state configuration of carbon

08 July 2015

PSL 3,1,1 ==

DSL 1,0,2 ==

SSL 1,0,0 ==

Hc (central field)                              Hc + H1                                                         Hc + H1+H2

0
3

1
3

2
3

,0

,1

,2

PJ

PJ

PJ

=

=

=

2
1,2 DJ =

0
1,0 SJ =

Due to the perturbation H2 term 2S+1L splits into a number of fine-structure
components, characterized by the value of the total angular momentum J.

The various fine structure components are said to form a multiplet.
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Ground-state configuration of carbon

08 July 2015

http://physics.nist.gov/

Energy levels corresponding to
definite values of L and S are
called terms and are denoted as:

J
S L12 +

LS and jj coupling schemes
(summary)

08 July 2015

In general, we have dealt with the Hamiltonian:

And we discussed a perturbative approach of how to take these terms into account

( ) ( ) ( ),...,,..,ˆˆˆ
212121 rrrr Ψ=Ψ++ EHHH c

e-e terms relativistic terms

Ψ+Ψ 21 HH

21 HH >> 21 HH ≈ 21 HH <<

Relativistic effects are
small (usually for Z<30).

Spin s and orbital
momentum l is rather
“decoupled” from each
other.

Relativistic effects are
strong (for high-Z).

Spin s and orbital
momentum l are coupled
into total spin j.

LS (or Russel-Saunders) 
coupling jj coupling

intermediate coupling
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LS and jj coupling schemes
(summary)

08 July 2015

∑=
k

klL

∑=
k

ksS
SLJ += kkk slj +=∑=

k
kjJ

Plan of lecture

Central field approximation for N-electron system

Spectra of many-electron ions: Perturbative approac h

jj coupling

LS coupling

Variational methods: Hartree-Fock and Dirac-Fock ap proaches

08 July 2015
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Many-electron systems: variational approach
(Hartree-Fock/Dirack-Fock methods)

08 July 2015

Douglas Rayner Hartre

Vladimir Fock

The starting point of this approach is again model
of independent electrons:

We again wish to evaluate functional:

With the “real” Hamiltonian:

After some algebra, we may obtain:

( )
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ba=Ψ )(),( ququ ba
are not anymore hydrogenic functions

[ ] ΨΨ=Ψ HE

∑
=

+=
2,1 12

1ˆˆ
k

k r
hH

[ ] [ ]∑∑∑ −+=Ψ
λ µ

λµλµ
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k
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Z
h −∇−= 2
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1ˆ

Many-electron systems: variational approach
(Hartree-Fock/Dirack-Fock methods)

08 July 2015

After some algebra, we obtained for the functional:

Where:

One-electron operator:

Two-electron operator (direct term):

Two-electron operator (exchange term):

)()( quhquI λλλ =

[ ] [ ]∑∑∑ −+=Ψ
λ µ

λµλµ
λ

λ KJIE
2

1

Don’t forget: u(q) are not 
hydrogenic functions anymore!

)()(
1

)()( 21
12

21 ququ
r

ququJ µλµλλµ =

)()(
1

)()( 12
12

21 ququ
r

ququK µλµλλµ =

Having obtained the functional E we now proceed to the second step of calculations…
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Many-electron systems: variational approach
(Hartree-Fock/Dirack-Fock methods)

08 July 2015

We shall express that functional E stationary with respect to variations of the
orbitals uλ(q).

Hartree-Fock (Dirac-Fock) equations
(system of coupled integro-differential equations from which one can find orbitals uλ(r))
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[ ]
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ΨΨ
=Ψ

H
E [ ] 0=ΨEδ

Self-consistent calculations

08 July 2015

Atomic orbitals

From: www.wikipedia.org

A number of computer programs are
available nowadays to deal with HF/DF
methods in atomic and molecular physics.
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Configuration interaction

08 July 2015

HF/DF is very powerful method in atomic physics but the energ ies obtained from
these methods are still not exact ones:

How to take the correlation effects into account? Of course, we may again use
perturbation approach with HF/DF functions.

But there is an alternative way to use variational method with a new trial function
which is built as (here, in relativistic notations):

corrDFHFexact EEE += /

Still, part of e-e interactions!

Jr
r

r MPJc γ∑=Φ

variational parameters different electronic configurations

Muticonfiguration Dirac-Fock (Hartree-Fock) approaches are widely 
used nowadays in atomic structure and dynamics calculations.

08 July 2015

Task 2

Use variational method to find ground-state energy of non-relativistic Helium atom:

As a trial function take:

Where:  
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Plan of lectures

• 1 15.04.2015 Preliminary Discussion / Introduction

• 2 22.04.2015 Experiments (discovery of the positron, formation of antihydrogen, ...)
• 3 29.04.2015 Experiments (Lamb shift, hyperfine structure, quasimolecules and MO spectra)
• 4 06.05.2015 Theory (from Schrödinger to Dirac equation, solutions with negative energy)
• 5 13.05.2015 Theory (bound-state solutions of Dirac equation, quantum numbers)
• 6 20.05.2015 Theory (bound-state Dirac wavefunctions, QED corrections)

• 7 27.05.2015 Experiment (photoionization, radiative recombination, ATI, HHG...)
• 8 03.06.2015 Theory (description of the light-matter interaction)
• 9 10.06.2015 Experiment (Kamiokande, cancer therapy, ….)
• 10 17.06.2015 Theory (interaction of charged particles with matter)

• 11 24.06.2015 Experiment (Auger decay, dielectronic recombination, double ionization)
• 12 01.06.2015 Theory (interelectronic interactions, extension of Dirac (and Schrödinger) theory for the

description of many-electron systems, approximate methods)
• 13 08.07.2015 Theory (many-electron atoms)

• 14 15.07.2015 Experiment (Atomic physics PNC experiments (Cs,...), heavy ion PV research)


