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Preliminary x-ray spectra recorded by the detector at the observation 
angle of 350 for 90 MeV/u U88+→ N2 collisions

Comparison of the two-photon energy distribution with fully relativistic 
calculation [5].
The continuum is caused by the 2E1 decay of the [1s2s] 1S0 state 
whereas the Kα line results from the M1 decay of the [1s2s] 3S1 level

The TEOP and M1 are separated by 280 eV with 
branching ratios ~90% and ~10% (theory)[8].

The experimental study of the production of the low-lying excited states in He-like (Li-like) Tin and Uranium produced by the selective K-shell ionization of initially Li-like (Be-like) species has been performed. This  technique 
allows for a background-free study of the spectral shape of the two-photon decay with possible disentanglement of different He-like ions. In addition the selective formation of excited states in high-Z ions was used to populate 
the 1s(2s)2 state of Li-like species which can decay via an exotic transitions, namely  two-electron one-photon transition. The data analysis is currently in progress.
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Experimental setup at the ESR storage ringExperimental setup at the ESR storage ring
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Comparison of the relativistic and 
nonrelativistic decay rates for the
21S0 state [4].

Full width at the half maximum of the two-photon energy 
distribution of the 21S0 state as function of Z [5].
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2S states in the He-like ions can decay to the ground state by the following transitions:

M1: (23S1 → 11S0) – magnetic dipole transition  

2E1: (21S0 → 11S0) – two-photon transition  

• In low Z region (Z<30), Auger decay is 
a the dominant decay channel. The Auger 
rate is nearly constant along all the 
sequence. 

• In the range of  30<Z<80, the E1 TEOP 
decay to the 1s22p 2P1/2  becomes as 
important as the Auger decay.

• At Z close to 90, the M1 decay to 1s22s 
2S1/2 becomes also very important.

Registration of up- and down-
charged ions by MWPC with 

efficiency ~100%.

Gas target areal density of 
about 1012 particles/cm2.

X-ray were registered by Ge
detectors, which were calibrated 
by means of radiative sources. 

Gasjet target

The time coincidence information between x-rays and up-,  
down-charged particles was used to separate different 
radiative processes, such as radiative capture, ionization 
and excitation of the projectile.

No x-x coincidence

Introduction and motivationIntroduction and motivation
In relativistic collisions with gaseous targets the process of K-shell ionization of Li-like high-Z ions has proven 
to be a highly-selective mechanism for the population of excited (n=2) s-states [1]. This process allows one 
to measure the undistorted two-photon energy distribution for the 2E1 decay of the [1s2s] (1S0) state, which 
is of particular interest for a decisive test of theoretical predictions. Extending our previous experiment on He-
like uranium to the medium-Z regime, we present first data of the two-photon decay energy distributions in 
He-like tin (Z=50). Further, these investigations were extended to initially Be-like uranium allowing us to 
produce almost exclusively the 1s(2s)2 level in the Li-like species which is expected to undergo 
predominantly an exotic two-electron one-photon (TEOP) decay. Recently at low-Z, similar studies have 
been performed for Li-like aluminum ions [2] and for the process of dielectronic recombination [3]. The decay 
properties of the 1s2s2 2S1/2 state are of particular interest for atomic structure investigations because of the 
sensitivity of the TEOP transition to electron correlation.  
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Decay modes of the 1s2s2   2S1/2 in U89+

The Two-Electron One-Photon Transition (TEOP) [8].

TEOP is predicted to be 
dominant decay mode 

Only one single x-ray line stemming from the 
decay of the 1s(2s)2 state (TEOP) and M1.

The data analysis is under evaluation aiming 
on a precise determination of the centroid of 
the peak.

Possible contamination of the ground 
1s22s2 state by the metastable (~107s) 

1s22s2p3P0 state of about 5-10%
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Decay rates for the 1s2s2 state, as 
functions of atomic number [8].The ionization and/or excitation probabilities as a 

function of an impact parameter b(λ-Compton 
wavelength) [7].
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Preliminary x-ray spectra recorded at the observation 
angle of 350 for 300 MeV/u Sn47+→ N2 collisions

Fully relativistic calculations for the 
two-photon energy distribution for 
He-like ions [9].
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"Experiment-theory/theory" ratio for 
He-like Ar, Sn, Yb and U theoretical 
values as a function of relative photon 
energy.

The experimental technique allows one to measure the spectral 
distribution with enough precision  to disentangle different elements 

Exp: Sn48+
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