

Atomic Physics at GSI: Current and Future Research

Danyal Winters

GSI summer student programme 2011 Tuesday, 16 August 2011, 11:10 – 12:30

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

PHYSIKALISCHES I N S T I T U T

Atomic Physics Group

Contents of my talk

- atomic physics at GSI
- strong electromagnetic fields \rightarrow QED, relativity, correlation
- the hydrogen atom
- the creation of ions and charge exchange processes
- storing and cooling of ions
- the experimental storage ring ESR
- mass spectrometry, laser and x-ray spectroscopy
- the HITRAP facility
- the future facility FAIR

Atomic Physics at GSI

+ mc² Transfer Excitation 0 Free Pair Production | Negative Energy Continuum e+

Atomic Structure at High-Z

- bound state quantum electrodynamics (QED)
- effects of relativity on the atomic structure
- electron correlation in the presence of strong fields
- borderline of atomic & nuclear physics

Atomic Collision at High-Z

- time reversal of elementary atomic processes
- photon-matter interaction
- dynamically induced strong field effects

the interest in highly-charged ions

Simple (few electron) systems: from hydrogen to H-like uranium.

Tests of QED in extreme electromagnetic fields. New access to fundamental constants and to nuclear ground state properties.

Extremely short and extremely intensive electromagnetic pulses at relativistic energies of highly-charged ions.

The best place to start off with is...

Derivation of the Bohr (hydrogen) atom groundstate energy. Force balance:

$$m\ddot{\vec{r}} = \vec{F_C} + \vec{F_{cf}} = -\frac{Ze^2}{4\pi\epsilon_0 r^2}\hat{r} + \frac{mv^2}{r}\hat{r} = 0$$
(1)

Quantization of angular momentum:

$$mvr = n\hbar \tag{2}$$

Energy balance:

$$E_{tot} = E_{kin} + E_{pot} = \frac{mv^2}{2} - \frac{Ze^2}{4\pi\epsilon_0 r}$$
(3)

Rewrite eq. (1) as:

$$\frac{Ze^2}{4\pi\epsilon_0 r} = mv^2 \tag{4}$$

Use (4) in (3) and obtain for the total energy of the system:

$$E_{tot} = \frac{mv^2}{2} - mv^2 = -\frac{mv^2}{1}$$
Bound states!
$$(5)$$

Multiply both right- and left-hand side of (1) by r^2 , and insert (2):

$$mv^2r = v(mvr) = vn\hbar = \frac{Ze^2}{4\pi\epsilon_0}$$
(6)

For the velocity v we thus obtain:

$$v = \frac{Ze^2}{4\pi\epsilon_0 n\hbar} \qquad \qquad v = \frac{Z\alpha c}{n} \tag{7}$$

Combining (5) and (7) gives the *quantised* energies:

$$E_n = -\frac{mv^2}{2} = -\frac{m}{2} \left(\frac{Ze^2}{4\pi\epsilon_0 n\hbar}\right)^2 \tag{8}$$

Using the fine structure coefficient $\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \approx 1/137$, we finally obtain

$$E_n = -\frac{1}{2}mc^2 \frac{(Z\alpha)^2}{n^2} \tag{9}$$

Using $m = 9.11 \times 10^{-31}$ kg, $c = 3 \times 10^8$ m/s, $e = 1.6 \times 10^{-19}$ C, and Z = 1 and n = 1, the groundstate energy is $E_1 = -13.6$ eV.

the simple Bohr model

These are important lines for highly-charged ions!

the real structure of hydrogen

the scale of things:

```
To remove the 1^{st} electron in hydrogen,
an energy of the order of \sim 10 \text{ eV} is needed.
(Z=1)
```

To remove the 92nd electron in uranium, requires an energy of the order of ~100 keV. $(Z=92 \rightarrow ~Z^2)$

→ One needs a lot of energy for complete ionisation of heavy elements!

→ Experimentally, photons can't really do the trick, but fast electrons & ions can!

three methods to create multi-charged ions:

electron cyclotron resonance ion source (ECRIS)

the stripper target

Simple method and fast
needs pre-acceleration
emittance growth

this method yields large numbers of ions in high charge states

charge state distributions

charge exchange processes

electron impact ionisation

$$A^{q+} \rightarrow A^{(q+1)+}$$

For the generation of (highly-charged) ions, this process is also frequently used.

(since it is easier to create keV electrons than it is to produce keV photons)

photo ionisation

$$A^{q+} \rightarrow A^{(q+1)+}$$

Excitation is, of course, also a possibility ! We also study such effects at GSI: (electron excitation, proton excitation, etc.)

radiative recombination (RR)

$$A^{q+} \rightarrow A^{(q-1)+}$$

ÍΩ

But the captured electron can also be bound to an atom (quasi-free):

radiative electron capture (REC)

$$A^{q+} \rightarrow A^{(q-1)+}$$

neutralisation !

Auger process (KLL)

$$A^{*q+} \rightarrow A^{(q+1)+}$$

ionisation !

For example, *KLL* Auger electrons from ${}^{14}{}_7N^{4+}$ or ${}^{16}{}_8O^{5+}$ 1s(2*l*)² configurations typically have energies of several hundred eV.

Note: the ejected electron is called the `Auger electron'

dielectronic recombination (DR)

$$A^{q+} \rightarrow A^{**(q-1)+}$$

neutralisation !

the current GSI facility

pioneers of storing and cooling

Principle of Penning Traps Frans Michel Penning

Storage and Cooling of Atoms Nobel Prize 1997 S. Chu C. Cohen-Tannoudji W. D. Phillips

Bose-Einstein Condensation Nobel Prize 2001 E. Cornell W. Ketterle C. Wieman

<u>Storage and</u> <u>Cooling</u> <u>of Antiprotons</u> Nobel Prize 1984 J. van der Meer C. Rubbia

Storage and Cooling of Ions Nobel Prize 1989 H. Dehmelt W. Paul

impressive results with confined ions

thallium ← lead

Experimental Storage Ring

UHV, ~10⁻¹¹ mbar bakeout ~300 °C

internal target (gas jet H₂, He, N₂...)

new liquid targets with high densities

the electron cooler

the electron cooler at the ESR

cooling: narrowing velocity, size and divergence

Primary uranium beam

momentum distribution

Spectroscopy at the ESR

Dielectronic recombination (DR)

Mass spectrometry

Laser spectroscopy and laser cooling

X-ray spectroscopy

Electron target \rightarrow Dielectronic recombination

DR experiments of Li-like heavy ions at the ESR: the achieved accuracy is comparable with that of x-ray experiments

Isotopic shift of Li-like ¹⁴²Nd⁵⁷⁺ vs. ¹⁵⁰Nd⁵⁷⁺

 $DR \rightarrow$ measure charge radii (stable and exotic ions)

C. Brandau, C. Kozhuharov, et al. PRL 2008

Dielectronic recombination (DR)

Mass spectrometry

Laser spectroscopy and laser cooling

X-ray spectroscopy

(single particle) mass measurements

Dielectronic recombination (DR)

Mass spectrometry

Laser spectroscopy and laser cooling

X-ray spectroscopy

lasers at the ESR

Measurement of the ground state HFS in ²⁰⁹Bi⁸⁰⁺

M. Lochmann, R. Sanchez, C. Geppert, W. Nörtershäuser... Th. Kühl, D. Winters, Th. Stöhlker... Ch. Weinheimer, V. Hannen, R. Jöhren,... G. Birkl, Th. Walther...

UNIVERSITÄT HEIDELBERG PHYSIKALISCHES

GS hyperfine structure in highly-charged ions

$$J=1/2 \& I=9/2, \rightarrow F=4,5$$

laser spectroscopy of the HFS in ²⁰⁹Bi

With the same laser ~615 nm @ 428 MeV/u

```
<sup>209</sup>Bi<sup>82+</sup> (H-like)
```

```
<sup>209</sup>Bi<sup>80+</sup> (Li-like)
```

J=1/2 and I=9/2 give F=4,5

 $F=4 \rightarrow F=5$ transition

Especially the Li-like transition is of great interest, since there is quite some debate about its value.

In the 3 previous attempts the 1550 nm line was not found...

P. Beiersdorfer *et al.* Phys. Rev. Lett. **80** (1998) 3022 V.M. Shabaev *et al.*, Phys. Rev. Lett. **86** (2001) 3959

Th. Kühl, W. Nörtershäuser, D. Winters, M. Lochmann et al.

Test of Special Relativity with 7Li+

(a modern lves & Stilwell experiment)

C. Novotny, S. Reinhardt, G. Saathoff, S. Karpuk... B. Botermann, W. Nörtershäuser, C. Geppert... Th. Kühl, Th. Stöhlker...

experiments at the TSR

best upper bound for $\delta \alpha$:

 $\delta \alpha < 8.4 \times 10^{-8}$

[G. Saathoff, et al. PRL 91 (2003) 190403]

[S. Reinhardt, et al. Nature Physics 3 (2007) 861]

Why go to the ESR?

Production of excited Li⁺ ions

Old recipe: LiF in an Electron Cyclotron Resonance Ion Source (ECRIS)
 New recipe: Penning Ionisation Gauge (PIG) with source material LiCu
 → ESR ion current x5, fraction of excited Li⁺ in ESR x2 !!
 this recipe will be used for the coming beamtime

Laser Cooling of C³⁺

M. Bussmann, U. Schramm... W. Wen, X. Ma... G. Birkl, Th. Walther... D. Winters, Th. Stöhlker... M. Steck, F. Nolden, C. Dimopoulou...

UNIVERSITÄT

Motivation

- only cooling method available at SIS300 (also spectroscopy of high-Z Li-like ions)
- applicable to all stable and unstable (Li-like) ions
- study laser cooling without pre-electron cooling
- use broadband pulsed laser cooling for fast cooling of many ions
- set up fluorescence detection to determine the lower limit for longitudinal cooling $\Delta p/p < 10^{-7}$

laser cooling of relativistic ion beams

Laser cooling of Li-like ions: - fastest cooling method

- smallest momentum spread $\Delta p/p \approx 10^{-8}$

Only cooling method for SIS300, since electron cooling would require too high voltages.

ESR experiments:

(257 nm @ 122 MeV/u)

¹²C³⁺ (Li-like) @ 155 nm

(1s²2s) ${}^{1}S_{1/2} \rightarrow (1s^{2}2p) {}^{1}P_{1/2,3/2}$

Experiment improvements

Dielectronic recombination (DR)

Mass spectrometry

Laser spectroscopy and laser cooling

X-ray spectroscopy

0° x-ray spectroscopy at the electron cooler

the 1s-Lamb shift in He-like U \rightarrow a test of QED

parity violation in He-like uranium

first observation of the $\Delta n=0$ ${}^{3}P_{2} \rightarrow {}^{3}S_{1}$ at high-Z

2D Si(Li)-detector for Compton polarimetry

Si(Li) and Ge(i) based Compton polarimeter

crystall size: 4" x 4"

energy resolution - timing - 2D position sensitiviy

exploiding position and energy resolution

 $\hbar\omega' = \frac{\hbar\omega}{1 + \frac{\hbar\omega}{m_e c^2} (1 - \cos\theta_C)}$

polarisation measurement via Compton scattering

120

30

150

2D JiSTRIP

GSI

x-ray images for Compton scattering as a function of the scattering angle

overview of the HITRAP facility

0 1 2 3 4 5 6 7 8 9 10m

Facility for Antiproton an Ion Research

(FAIR)

the **SPARC** collaboration:

- heavy HCI

CN

- relativistic heavy ions
- radioactive nuclei
- extreme static EM fields
- extreme dynamic fields

the FLAIR building

relativistic projectiles in extreme dynamic fields

PhD possibilities at GSI

- 🔨 👻 100%

😜 Internet