

HGS-HIRe for FAIR

DIRC detector upgrade for the GlueX experiment

Ahmed Ali

R. Dzhygadlo, K. Peters, J. Schwiening for the GlueX Collaboration

Jefferson Laboratory (JLab)

The GlueX Experiment is a key element of the Jefferson Lab 12 GeV upgrade. The experiment is at the end of a new beamline from the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab.

GlueX Experiment

GlueX DIRC

- Radiators: reusing 48 synthetic fused silica bars (4 bar boxes) from BaBar experiment at SLAC.
- Expansion volume: The water tanks are new and follow the concept from SuperB FDIRC, there are two water tanks each one is coupled to two bar boxes and filled with distilled water.
- **Focusing**: segmented mirror.
- Design options for GlueX DIRC limited to expansion volume, focusing, sensors, and electronics.

Expected GlueX DIRC Performance

Expected Performance based on BaBar results:

GlueX DIRC expected to provide particle identification, particularly separate K and π to better than 3 sigmas for momenta between 0.15 up to 4 GeV/c

GlueX improvements:

- □ Smaller expansion volume (due to focusing)
- PMTs with better quantum efficiency with higher photon yield

Significantly extends reach in search for exotic hadrons (hybrid, multi-quark, etc.) containing strange quarks

Support Structure

Bar Box Transportation

- □ Transporting the very fragile DIRC bar boxes from SLAC to JLab, after a decade in storage, was a major concern and logistical challenge.
- Integrity of the glue joints and bar surfaces during transport achieved by complex crate design and detailed monitoring.

Transportation Strategy

- Transport 4 bar boxes from SLAC to JLab in two separate shipments
- First bar box shipment in Fall 2017, second shipment of remaining three will be in June 2018.
- Real-time monitoring system for bar boxes in transit. Multiple cameras for viewing bars N₂ flow sensors, accelerometers, etc.

Camera tests at SLAC

Photon Detection and Readout

- Photosensors: 216 Hamamatsu H12700 MaPMTs (~14k channels)
- Optical coupling: silicone cookies (only 2-4% photon loss vs. 25% with the air gap)
- Electronics: boards developed for CLAS12 RICH in HallB (JLab), the core of the design is to use the MAROC3 chip. Compatible with generic JLab DAQ

PMTs

ASIC BOARD

GA BOAR

Calibration System Simulations Study

- Time offsets between pixels, due to cable length and pixel-to-pixel differences inside the photon sensors, have to be removed to achieve the time resolution required for the GlueX DIRC.
- The light will be distributed by optical fibers to the expansion volume and coupled via square optical diffusers to illuminate the entire readout plane.
- Simulation of the LED-based calibration system shows stable to determination with an error < 100 ps.

Occupancy distribution on PMT plane using square diffuser

Photon time error map

PMTs Testing System

- □ System setup was completed
- **D** PMTs testing going to start soon
- Two sets of (6) PMTs can be mounted at the same time
- Testing: Gain, HV threshold, cross talk, timing resolution.

FPGA board ASIC board Adapter board

PMT

Reconstruction Methods

Geometric reconstruction (BaBar method)

- Lookup Table (LUT): store direction at the end of the radiators for each fired pixel by full simulation using photon gun.
- Reconstruction: direction from LUT for fired pixels are combined with charge track direction to determine Cherenkov angle.
- □ Kernel Density Estimation
 - Creating Probability Density Function based on hit patterns of different particles species.
 - Reconstruction: calculating likelihoods
- □ Time Imaging
 - Creating PDF based on propagation time of different particle species.
 - Reconstruction: calculating likelihoods

Geometric reconstruction example: Cherenkov angle resolution per photon for π/K at (θ =11, Φ =90) degree at 4GeV/c

Summary & Outlook

- DIRC will extend the physics potential of the GlueX experiment by separating π and K up to 4 GeV/c.
- □ Installation of the support structure and services for first optical box was completed.
- GlueX DIRC will reuse 4 BaBar bar boxes, the first bar box was successfully transported from SLAC to JLab, the second shipment of remaining three will be in June 2018.
- Simulation of the LED-based calibration system shows stable t_0 determination with an error < 100ps.
- **D** PMTs testing setup was completed.
- **□** Three reconstruction methods are developed and constantly improved.
- 2018: Install first optical box and available MaPMTs and begin commissioning detector with available beam time.
- **D** 2019: Complete installation and commission complete detector.