

Heavy lons @ the LHC: where do we stand?

Federico Antinori INFN, Padova, Italy and CERN, Geneva, Switzerland

Nuclear collisions at the LHC!

- two successful Pb-Pb runs already
 - 2010 → ~ 10/µb
 - 2011 → ~ 100/µb
- + p-Pb "control" run
 - 2013 → ~ 30/nb

some numbers (2011 Pb-Pb run):

- ~ 1.1 10⁸ ions/bunch
- 358 bunches
 - 200 ns basic spacing
- β* = 1 m
- L ~ 5 10²⁶ cm⁻²s⁻¹
- \rightarrow ~ 4000 Hz interaction rate

Particle multiplicity

for the most central collisions: ~ 1600 charged particles per unit of η

 $\sqrt{s_{NN}}=2.76$ TeV Pb+Pb, 0-5% central, $|\eta|<0.5$ 2 dNch/d η / <Npart> = 8.3 ± 0.4 (sys.)

Centrality dependence

model comparisons

- DPMJET (with string fusion)
- HIJING 2.0 (no quenching)
 - centrality-dependent gluon shadowing
 - tuned to multiplicity in 0-5%
- saturation models
- very similar centrality dependence at LHC & RHIC
 - once corrected for difference in absolute values

Azimuthal asymmetry

- to quantify the asymmetry:
 - \rightarrow Fourier expansion of the angular distribution:

 $1 + 2v_1 \cos(\varphi) + 2v_2 \cos(2\varphi) + \dots$

- − in the central detector region (~ 90°) \rightarrow v₁ ~ 0 \rightarrow asymmetry quantified with v₂
- v₂ still almost as large as expected by hydrodynamics
 - small increase in η/s wrt RHIC?

Higher harmonics

- a beautiful phenomenon...
- initial state geometrical asymmetries \longrightarrow final state momentum asymmetries

 wonderful tool to study response of medium to initial fluctuations
 → infer medium properties

It shines!

• direct photon spectrum

• "temperature" ~ 300 MeV → largest ever man-made

Asymmetrically...?

• direct photon v2 in 0-40% Pb-Pb

Particle yields

• thermal model fit

INFN

- now including ${}^3_{\Lambda}$ H!

- some tension...
 - especially p and K*

- at RHIC?
 - some tension too?
 - lower precision...

Identified particles

negative particles - 0-5% most central

• different particles have different mass \rightarrow info on collective expansion

positive particles – 0-5% most central

- p_T distributions can be predicted assuming expansion is "hydrodynamical" (i.e.: one common velocity field)
- \rightarrow OK for π and K, but p seem to "misbehave" (less yield, flatter spectrum)

Azimuthal asymmetry of identified particles

• comparison of identified particles $v_2(p_T)$ with hydrodynamic prediction

ALI-PREL-2448

 \rightarrow again, protons are off...

Strong quenching!

 Pb-Pb significantly below scaled pp for central collisions (filled points)

INFN

• RAA:

Strong angular dependence

• significant effect, even at 20 GeV and beyond!

 \rightarrow sensitivity to path length dependence of energy loss

Di-jet imbalance

Pb-Pb events with large di-jet imbalance observed at the LHC

→ recoiling jet strongly quenched!

CMS: arXiv:1102.1957

Di-jet imbalance

• imbalance quantified by the di-jet asymmetry variable A_J :

$$A_{J} = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}} \qquad \begin{array}{c} E_{T1} > 100 GeV \\ E_{T2} > 25 GeV \end{array}$$

$$R = 0.4 \qquad |\eta| < 2.8$$

- with increasing centrality:
- → enhancement of asymmetric di-jets with respect to pp
 - & HIJING + PYTHIA simulation

ATLAS: PRL105 (2010) 252303

Di-jet $\Delta \phi$

• no visible angular decorrelation in $\Delta \phi$ wrt pp collisions!

→ large imbalance effect on jet energy, but very little effect on jet direction!

Jet R_{AA}

CMS PAS HIN-12-004

Jet R_{AA} , low p_T

• change of behaviour at low p_T ? it seems to decrease further...

caveat: orange and mandarin...

Particle composition

• peak excess particle composition similar to pp!

NFN

J/ψ suppression at LHC

• LHC: 2.5 < y < 4, p_T > 0 (ALICE)

$J/\psi R_{AA}$: p_T dependence

consistent with coalescence models

J/ψ flow?

• some hint for a modulation...?

What about ψ ?

• ψ ' less suppressed than J/ ψ ? (CMS) • not confirmed by ALICE...

Y (1S)

• Y(1S) R_{AA} (compared with $J/\psi R_{AA}$)

Heavy Flavours

- a very promising tool: probe the system with heavy quarks: c (charm) and b (beauty)
- these are produced in pairs in the initial impact between the two nuclei ...
- ...they propagate through the quark and gluon soup...
- ... and finally emerge carrying out information on the system properties

[→] R.Baier et al., Nucl. Phys. **B483** (1997) 291 ("BDMPS")

Energy loss for heavy flavours is expected to be reduced:

- i) Casimir factor
 - light hadrons originate from a mixture of gluon and quark jets, heavy flavoured hadrons originate from quark jets
 - C_R is 4/3 for quarks, 3 for gluons
- ii) dead-cone effect
 - gluon radiation expected to be suppressed for θ < M_Q/E_Q [Dokshitzer & Karzeev, Phys. Lett. **B519** (2001) 199]
 [Armesto et al., Phys. Rev. D69 (2004) 114003]

INFN

Reconstructed D mesons!

Heavy Flavours R_{AA}

- p_T < 8 GeV/c:
 - hint of less suppression than for π ?
- p_T > 8 GeV/c
 - same suppression as for π ...
- F Antinori GSI 23 October 2013

 + indication of less suppression for beauty?

The $\rm D_{\rm s}$

- a hint of strangeness enhancement?
- more stats needed!

F Antinori - GSI - 23 October 2013

D meson v_2

- Hint of non-zero v₂
 - consistent with strong coupling of c to medium

 theory must describe simultaneously v₂ and R_{AA} …

p-Pb collisions in the LHC!

- tricky, but can be done...
- 2-in-1 design...

- ightarrow identical bending field in two beams
- → locks the relation between the two beam momenta:
 - p (Pb) = Z p(proton)
- ➔ different speeds for the two beams!
- adjust length of closed orbits!
 - to compensate different speeds
- different RF freq for two beams at injection and ramps
- short low lumi pilot run (a few hours) on 12/9/2012
- first run in Jan-Feb 2013!
- → ~ 30/nb

$dN_{ch}/d\eta$

• saturation predictions seem to have too steep η dependence...

 $< p_T > vs. N_{ch}$

- pp: weak \sqrt{s} dependence
- p-Pb follows pp for $N_{\rm ch} < 15$
 - 90% σ in pp
 - 50% σ in p-Pb
 - 18% in Pb-Pb
- for N_{ch} > 40, p-Pb ~ // Pb-Pb
 1% σ in p-Pb
 70% in Pb-Pb

- Color reconnection very important to describe <p_T> in pp
- DPMJET, HIJING, AMPT fail to describe
 <p_T> in p-Pb and Pb-Pb
- Superposition of independent pp collisions (Glauber approach) fails in p-Pb and Pb-Pb
- EPOS (1.99, v3400, collective effects by parameterization) in the right ballpark (p-Pb)

ALICE, arXiv:1307.1094

Gluon shadowing...

• different parton distribution functions in protons and nuclei

x = fraction of nucleon momentum carried by gluon

a priori, large uncertainty
 → measure p-Pb collisions!!!

[K J Eskola et al: JHEP04(2009)065]

Control experiment: R_{pPb}

• measurement of nuclear modifications in initial state

R_{pPb} for charged jets

- Charged jet spectrum in minimum bias p-Pb with anti-k_T for R=0.2 and 0.4 in $|\eta_{lab}|$ <0.5

- Reference spectrum for pp using 7 TeV data and scaled with PYTHIA6 (Perugia 2011)
- No sign of nuclear modification
 - Nuclear modification factor consistent with unity within large uncertainties
 - Jet structure ratio consistent with that in pp

R_{pPb} for D

 Reference constructed using data at 7 TeV scaled by FONLL

- R_{pPb} for D-mesons consistent and unity (within large) uncertainty
- both CGC and shadowing calculations describe the data

 R_{pPb} for J/ψ

 Uncertainty on R_{pPb} dominated by uncertainty of pp reference (constructed by interpolation)

- Comparison with models
 - Good agreement with models incorporating shadowing (EPS09 NLO) and/or a contribution of coherent parton energy loss
 - . CGC model (Fujii et al.) disfavored by the data

F Antinori - GSI - 23 October 2013

Events/(100 MeV/c²)

The Ridge

• in addition to near side peak and away-side recoil...

... there's an additional near side ridge in p-Pb first observed by CMS [PLB718 (2013) 795]

The Double Ridge

• Can we separate the jet and ridge components?

- the ridge is doubled! first observed by ALICE, then confirmed by ATLAS
- \rightarrow the origin of this structure is still unknown!

a similar structure observed in Pb-Pb is attributed to hydrodynamic flow!

CGC-glasma graphs also produce symmetric ridges!

INFN

' Aq (rad)

Ridge harmonics

• long-range –p-Pb structures can be expressed as harmonics

 \rightarrow substantial v₂ (and even v₃...)

Identified particles

• how does the correlation depend on the particle species?

whatever it is we are on to something big...

INFN

...and how about the pp ridge?

CMS has observed a near-side ridge in high multiplicity pp

• is it doubled on the away-side?

- how about the harmonics?
- particle id dependence?

[CMS, JHEP 1009 (2010) 091]

Centrality in p-Pb?

• can geometry be related to multiplicity?

Centrality biases!

0.9

0.8

- <N_{coll}> from Glauber seems not to be the right scaling variable for usual centrality estimators
- Multiplicity per N_{part} strongly biased in p-Pb
- In HIJING: mean NN impact parameter increases in peripheral collisions

 \rightarrow softer collisions than average?

 veto for high-p_T processes in low multiplicity classes...

10

centra

15

Toy model: Glauber + Pythia

- add N_{coll} Pythia events
 Ncoll from Glauber
- slice in multiplicity
 just like real data
- high pT bias ~ incoherent superposition of pp!
- → Glauber Ncoll x pp: not the proper pA ref.

 \rightarrow full dynamical biases must be taken into account!

Conclusion

- the LHC has ushered in a new era for ultrarelativistic AA collisions
 - abundance of hard probes
 - state-of-the-art collider detectors (ALICE, + AA capabilities in ATLAS, CMS)
- Run 1: two major discoveries...
 - new regime for J/ψ production \rightarrow evidence for recombination!
 - double ridge in p-Pb (and pp?) → signal of collectivity? saturation?
- ...+ rich harvest of other results
 - heavy flavour: indications of flavour dependence of quenching (finally!)
 - jets:
 - very strong quenching: R_{AA}, FF "flat" up to highest available jet energies
 - "signs of life" at low p_T (R_{AA} , FF, broadening)
 - photons:
 - high "inverse slope" direct photons with v₂?!
- next: dig deeper!

ALICE Outlook (i)

- 2013-14: Long Shutdown 1
 - complete Transition Radiation Detector
 - install Di-jet electromagnetic CALorimenter (DCAL)
- 2015-17: Run 2 \rightarrow complete approved ALICE "1/nb" programme
 - Pb-Pb, pp rare triggers int lumi: Run1 x 10
 - high stats jets and di-jets (to 100-200 GeV)
 - → high stats quarkonia (J/ ψ v₂, central J/ ψ , Y)
 - Pb-Pb, pp min bias: Run1 x 10
 - increase stats for charm, id particle correlations, event shape engineering, ...
 - p-Pb: Run1 x 10 !

ALICE Outlook (ii)

- 2018: Long Shutdown 2
 - ALICE Upgrades (new beam pipe, new ITS, high rate, ...)
- 2019 ...: ALICE 2.0!
 - continuous read-out \rightarrow 10/nb min bias (Run 2 int lumi x 10, Run 2 min bias x 100-1000!)
 - → heavy flavour: Λ_c , D_s, B, "dream" stats D
 - → quarkonia: high stats ψ ', χ_c , Y(2/3s), ...
 - \rightarrow virtual photons: thermal emission, v₂!, chiral symmetry restoration
 - \rightarrow jets: detailed study of fragmentation (id. particle, HF tagging, correlations, ...)
 - \rightarrow other collision systems (p-Pb, Ar-Ar?, ...)

Thank You!