Fluctuations on the phase boundary

Bengt Friman GSI Darmstadt

in collaboration with

P. Braun-Munzinger, F. Karsch, P.M. Lo, O. Kaczmarek, K. Morita, K. Redlich, C. Sasaki, V. Skokov

Aug 21, 2013

・ロト ・ 戸 ・ ・ ヨ ・ ・

- Experiments
- Lattice QCD

(日)

- Model calculations
- Functional methods
- Fluctuations at CEP Fluctuations at $\mu_B \simeq 0$

Use results from Lattice QCD and model calculations (FRG) to explore the critical dynamics of conserved charges at the QCD transition (so far on a qualitative level).

Critical fluctuations and critical slowing down

Critical fluctuations at 2^{nd} order phase transition

Landau theory:

Critical fluctuations:

- Low energy: small fraction of all modes
 - → EOS, expansion dynamics ~ unaffected
 - Example: $\Omega_{sing} \sim t^{2-\alpha}$, $\alpha \simeq -.2$
 - → Need derivatives to "see" singularity!

$$\chi_n = \partial^n \Omega / \partial t^n \sim t^{2 - \alpha - n}$$

(susceptibilites \leftrightarrow fluctuations)

- Long wave length: critical slowing down
 - \leftrightarrow Slow equilibration of soft modes
 - → Need time to see fully develop criticality!

(日)

Example: critical opalescence

Mixture of methanol and cyclohexane:

One phase $(T > T_c)$:

Critical point $(T = T_c)$:

イロト イヨト イヨト イ

Light scattered on critical fluctuations separated fluids \leftrightarrow uniform mixture index of refraction, $n_1 \neq n_2$

Critical fluctuations \rightarrow phase boundary?

Fluctuations of order parameter $\rightarrow \infty$ at 2^{nd} order transition < ∞ at cross over transition

Fluctuations of order parameter (Chiral susceptibility)

Freeze-out close to chiral cross over

$$T_c(\mu) \simeq T_c(0)(1 - 0.06(\mu_q/T_c(0))^2) \circ C$$

BENGT FRIMAN (GSI)

EMMI-NQM 6/26

Why conserved charges?

- Problems with fluctuations of order parameter
 - No direct measurement
 - Destroyed by subsequent interactions
- Fluctuations of conserved quantities
 - + Survive if
 - → Total system large
 - → Surface effects small
 - + Measurable event-by-event (difficult?)
 - Critical fluctuations suppressed → higher cumulants!

A B > A
 B > A
 B
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A

Fluctuations of conserved quantities

- Consider small subsystem $v \ll V$
- Grand canonical fluctuations

$$P(N, \mathbf{v}) = e^{\mu N} \frac{Z_C(T, N, \mathbf{v})}{Z_{GC}(T, \mu, \mathbf{v})}$$
$$\langle N^n \rangle = \sum_N N^n P(N, \mathbf{v})$$

• Cumulants (gen. susceptibilities)

$$c_n = \frac{\partial^n \log \mathcal{Z}_{GC}(T, \mu, \mathbf{v})}{\partial (\mu/T)^n} \sim \chi_n^B \equiv \chi_B^{(n)}$$
$$c_2 = \langle N^2 \rangle - \langle N \rangle^2 \equiv \langle (\delta N^2) \rangle \sim \mathbf{v}$$
$$\delta N = N - \langle N \rangle$$
$$c_4 = \langle \delta N^4 \rangle - 3 \langle (\delta N)^2 \rangle^2 \sim \mathbf{v}$$

Critical scaling

Chiral transition of 2-flavor QCD expected in universality class of 3d *O*(4) spin model (Pisarski & Wilczek 1984)

Singular part of free energy density: $f = f_r + f_s$ where $f_s(t, h) = h^{1+1/\delta} f_f(z)$

Scaling variable (no other scale) $z = t/h^{1/\beta\delta}$ $t = (T - T_c)/T_c$ $h = m_q/T_c$

Order parameter $M = -\partial f / \partial h \simeq h^{1/\delta} f_G(z)$ $f_G(z) = -(1 + 1/\delta) f(z) + (z/\beta \delta) f'(z)$ $M/h^{1/\delta} = f_G(z)$

Chiral susceptibility

$$\chi_m = \frac{\partial M}{\partial h} \sim h^{1/\delta - 1} \sim \xi^2 \to \infty \, (h \to 0)$$

 $\beta \simeq .38, \delta \simeq 4.8$

(Ejiri et al., HotQCD, 2009)

Physical m_{π} in O(N) scaling regime!

$$G_{\sigma}(r) \sim \frac{1}{r} e^{-r/\xi}$$

BENGT FRIMAN (GSI)

EMMI-NQM 9/26

Baryon-number susceptibilities ($\mu_q = 0$)

- generalize scaling parameter $t = (T T_c)/T_c + \kappa (\mu_q/T_c)^2$ $z = t/h^{1/\beta\delta}$
- $\chi^B_{2n} = -\partial^{2n} (f/T^4) / \partial (\mu/T)^{2n} \sim -h^{(2-\alpha-n)/\beta\delta} f_f^{(n)}(z) + \dots$
- $\chi_4^B \sim -h^{-\alpha/\beta\delta} f_f^{(2)}(z)$ finite in chiral limit ($\alpha \simeq -0.2$)
- $\chi_6^B \sim -h^{-(1+\alpha)/\beta\delta} f_f^{(3)}(z) \sim \xi^{1.1}$
- $\chi^B_8 \sim -h^{-(2+\alpha)/\beta\delta} f_f^{(4)}(z)$ ~ $\xi^{2.4}$
- f';'(z) J > J_ 1.5 0 94 0.95 0.97 J < J, 0.90 1.0 0.91 0.92 $z = Eh^{-1/\Delta}$ 0.5 -5 -4 -3 -2 -1 0 3 1 2 4 5 6

・ロト ・聞ト ・ヨト ・ヨト

• O(4) order parameter scaling function (Karsch & Engels)

Baryon-number susceptibilities ($\mu_q = 0$)

C. Schmidt, QM 2012

BENGT FRIMAN (GSI)

FLUCTUATIONS

EMMI-NQM 11/26

(日)

Baseline: HRG (no critical fluctuations)

• The Hadron Resonance Gas yields good description of Lattice results below T_c .

< 口 > < 同

• HRG: good description of multiplicities...

- ... and of fluctuations (event-by-event $p \bar{p}$, STAR) $p_{HRG} = f(T) \cosh(\mu_B/T) + \dots$
 - $$\begin{split} \chi_B^{(n)} &= \partial^n (p/T^4) / \partial (\mu_B/T)^n \\ \chi_B^{(4)} / \chi_B^{(2)} &\simeq 1 \\ \chi_B^{(3)} / \chi_B^{(2)} &\simeq \tanh(\mu_B/T) \\ \chi_B^{(2)} / \chi_B^{(1)} &\simeq \coth(\mu_B/T) \end{split}$$

Critical fluctuations expected in higher susceptibilites!

Andronic et al.

Karsch & Redlich

Effective models, FRG

- Effective models
 - Models respect the (global) symmetries of QCD chiral symmetry SU(2)_L ⊗ SU(2)_R (~ O(4)), order parameter ⟨q̄q⟩ (NJL, QM) + center symmetry Z(3), order parameter Polyakov Loop ⟨L⟩ (PNJL, PQM)
 - Tune effective model to Lattice results, explore higher cumulants and $\mu_q \neq 0$.
- Functional Renormalization Group (FRG)
 - Include critical fluctuations: need non-perturbative approach, which respects symmetries → FRG
 - FRG yields scaling properties and proper critical exponents (universal quantities)

Use local potential approximation.

< □ > < 同 >

Net quark number density fluctuations $\delta N_q = N_q - \langle N_q \rangle$

• Zeroes of χ_n not universal, but shape ~ O(4) scaling functions.

BENGT FRIMAN (GSI)

Net quark number density fluctuations $\mu_q \neq 0$

• Negative regions of χ_6 and χ_8 follow phase boundary.

• • • • • • • • • •

Electric charge fluctuations

V.Skokov, B.F., K. Redlich

1.3 1.2 1.2 $\chi_0^{<0}$ 1.2 $\chi_0^{<0}$ 1.1 $\Sigma_0^{<0}$ 1.2 $\chi_0^{<0}$ 1.2 $\chi_0^{<math>$

C. Schmidt, QM 2012 Quantitative understanding still needed. Electric charge fluctuations follow similar pattern as baryon fluctuations.

Freeze-out and the QCD transition

- If $T_{fo} \simeq T_{pc}$, expect measured χ_6/χ_2 and χ_8/χ_2 to deviate from HRG expectation, (< 0)
- Signature of cross-over transition (STAR@RHIC)?

- Clear deviation from HRG expectation.
- Need to understand dependence on centrality and on energy!

····· Poisson

Net-proton

0-40%

d 40-80%

< □ > < 同 > < 回 > <

100 200

Cumulants and net-baryon probability distribution

• Canonical partition function

 $Z(N, T, \mathbf{v}) = \operatorname{Tr}_N e^{-\beta H}$

• Grand-canonical partition function

$$\mathcal{Z}(\mu_q, T, \mathbf{v}) = \operatorname{Tr} e^{-\beta(H - \mu_q N)} \\ = \sum_N Z(N, T, \mathbf{v}) e^{\beta \mu N}$$

• Probability distribution for finding net charge *N* in sub-volume

$$P(N) = \frac{1}{\mathcal{Z}(\mu_q, T, \mathbf{v})} Z(N, T, \mathbf{v}) e^{\beta \mu N}$$

Moments

$$\langle N^n \rangle = \sum_N N^n P(N) \sim \mathbf{v}^n$$

Cumulants

$$\chi_2 = \frac{1}{vT^3} \left(\langle N^2 \rangle - \langle N \rangle^2 \right)$$
$$\chi_4 = \frac{1}{vT^3} \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2$$

 $\chi_n \sim (\mathbf{v})^0$ (cancellations!)

• Critical behavior in tail of distributions

Skellam distribution

• Boltzmann distribution for baryons and antibaryons (Poisson)

$$P(N_i) = \frac{1}{N_i!} \frac{\bar{N}_i^{N_i}}{e^{\bar{N}_i}}$$

$$\bar{N}_i = \langle N_i \rangle \quad (i = b, \bar{b})$$

• Distribution of net baryon number $(N = N_b - N_{\bar{b}})$

$$P(N) = \left(\frac{\bar{N}_b}{\bar{N}_{\bar{b}}}\right)^{N/2} I_N(2\sqrt{\bar{N}_b\bar{N}_{\bar{b}}}) e^{-(\bar{N}_b+\bar{N}_{\bar{b}})}$$

• Skellam distribution describes fluctuations of net baryon number in HRG (no criticality)

• Central collisions, $\sqrt{s} = 7.7 \text{ A GeV}$

Image: A matrix and a matrix

Skellam distribution

• Boltzmann distribution for baryons and antibaryons (Poisson)

$$\begin{split} P(N_i) &= \frac{1}{N_i!} \, \frac{\bar{N}_i^{N_i}}{e^{\bar{N}_i}} \\ \bar{N}_i &= \langle N_i \rangle \quad (i = b, \bar{b}) \end{split}$$

• Distribution of net baryon number $(N = N_b - N_{\bar{b}})$

$$P(N) = \left(\frac{\bar{N}_b}{\bar{N}_{\bar{b}}}\right)^{N/2} I_N(2\sqrt{\bar{N}_b\bar{N}_{\bar{b}}}) e^{-(\bar{N}_b + \bar{N}_{\bar{b}})}$$

• Skellam distribution describes fluctuations of net baryon number in HRG (no criticality)

• Semi-central collisions, $\sqrt{s} = 200 \text{ A GeV}$

Image: A matrix and a matrix

Sufficient reach in N?

In experiment:
$$\langle N^n \rangle = \sum_{N=-N_{max}}^{N_{max}} N^n P(N)$$

- *N_{max}* large enough to reproduce cumulants?
- Skellam: convergence for $N_{max} \gtrsim a_n \sqrt{\bar{N}_b}$

- N_{max} large enough to see criticality?
- c_6 in PQM model (FRG)
- $N_{max} \sim N_{max}^{Skellam}$

Can be checked by varying N_{max} in data

Other things to worry about

- Conservation of total charge $(V < \infty, R \searrow)$
- Acceptance corrections (dilutes signal, p not B measured) (Bzdak & Koch) Net electric charge easier!
- Non-critical fluctuations, e.g. of volume $(R \nearrow)$

Glauber: fix N_{ch} $\langle v \rangle \sim \langle N_{part} \rangle, \langle v^2 \rangle \sim \langle N_{part}^2 \rangle$

(Bzdak, Koch, Skokov)

BENGT FRIMAN (GSI)

Tuning the models: gluon dynamics

Fluctuations associated with deconfinement transition?

- Order parameter of deconfinement $(M_{quark} \rightarrow \infty)$
 - Polyakov loop $L = \frac{1}{3} \operatorname{tr} e^{i \int A_4 \, d\tau} = e^{-F_{quark}/T}$
 - In color SU(3): $L = L_R + iL_I$

• Fluctuations of order parameter:

$$\chi_R = \langle L_R L_R \rangle - \langle L_R \rangle^2$$

- $\chi_I = \langle L_I L_I \rangle \langle L_I \rangle^2$
- $\chi_A = \langle |L||L|\rangle \langle |L|\rangle^2$

(日)

BENGT FRIMAN (GSI)

Ratios of susceptibilities less dependent on lattice artefacts

• $\chi_4^B / \chi_2^B = (B)^2$

1.2 (32³x8) HISO (24³x6) HISO n_f=2+1 n_f=2+1 1.5 RA $\stackrel{\bullet}{\bullet} \chi^{B}_{4}/\chi^{B}_{2}$ $\stackrel{\bullet}{\bullet} \chi^{L}_{4}/\chi^{L}_{R}$ 1 0.8 this w 0.6 0.5 0.4 T/T_c 0.2 0.5 1.5 2.5 2 3 3.5 1 150 200 T[MeV]

χ_4^B/χ_2^B : deconf. of quarks, R_A : deconf. of gluons

• $R_A = \chi_A / \chi_R$

・ロト ・ 得 ト ・ ヨ ト

Conclusions and outlook

- QCD in scaling regime → critical fluctuations potentially detectable (finite size and finite time effects!)
- The 6th- and 8th-order cumulants potential probes of chiral transition. Basically robust effect, but many issues still unclear Large cancellations in high cumulants, depend on the tails of the distribution
- Additional constraints from electric charge P(Q) and strangeness P(S) distributions.
- Experimental ratios show interesting qualitative effect,
 - but dependence on N_{part} and \sqrt{s} not understood
 - worry about removing idealizations
 - tune effective models to reproduce also non-universal properties of QCD (gluon dynamics)
- Looking for CEP at finite μ :
 - Different universality class (Z(2)):
 - $\rightarrow \chi_2 \rightarrow \infty$
 - \rightarrow characteristic difference in χ_4
 - $\rightarrow \chi_6$ similar to O(4)
 - Lower beam energy: corrections due to $V < \infty$ more important!