Heavy flavour in high-energy heavy-ion collisions

- Introduction: HF probes of the medium
- Calibrating HF probes: pp results
- HF production in nucleus-nucleus:
 - Semi-leptonic decays
 - D mesons
 - B and b-jets
- HF azimuthal anisotropy
- Proton-nucleus: control data ... and more?
- Outlook: detector upgrades at RHIC and LHC

Introduction: HF probes of the medium

- Calibrating HF probes: pp results
- ♦ HF production in nucleus-nucleus:
 - Semi-leptonic decays
 - D mesons
 - ➤ B and b-jets
- HF azimuthal anisotropy
- Proton-nucleus: control data ... and more?
- Outlook: detector upgrades at RHIC and LHC

What's special about heavy quarks: probes through the full system history

- ◆ Large mass (m_c ~1.5 GeV, m_b ~5 GeV) → produced in large virtuality Q² processes at the initial stage of the collision with short formation time Δt < 1/2m ~ 0.1 fm << τ_{QGP} ~ 5-10 fm
- Characteristic flavour, conserved in strong interactions
 Production in the QGP is subdominant
 - Interactions with QGP don't change flavour identity
- ◆ Uniqueness of heavy quarks: cannot be "destroyed/created" in the medium → transported through the full system evolution
 → "Brownian motion markers of the medium" (*)

The parton palette and the properties of QCD energy loss

q: colour triplet – u,d,s: m~0, C_R=4/3

g: colour octet g: m=0, C_R=3

Q: colour triplet c: m~1.5 GeV, C_R=4/3 b: m~5 GeV, C_R=4/3 Parton Energy Loss by

- medium-induced gluon radiation
- collisions with medium gluons

$$\Delta E(\varepsilon_{medium}; C_R, m, L)$$

 C_R : colour charge dep. *m*: mass dependence

 $\Delta E_{o} > \Delta E_{c \approx a} > \Delta E_{b}$

'QCD medium'

6000

See e.g.:

Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493.

GSI seminar, 27.11.13

Andrea Dainese

 C_R = Casimir coupling factor: 4/3 for q, 3 for g

 \rightarrow Colour charge dependence of radiative energy loss

$$\Delta E_g > \Delta E_{c \approx q}$$

Baier, Dokshitzer, Mueller, Peigné, Schiff, NPB 483 (1997) 291. Zakharov, JTEPL 63 (1996) 952. Salgado, Wiedemann, PRD 68(2003) 014008.

GSI seminar, 27.11.13

GSI seminar, 27.11.13

-7

Mass dependence in collisional energy loss *Example: Langevin formalism*

Langevin equation gives momentum (p) evolution vs. time (t):

GSI seminar, 27.11.13

Andrea Dainese

From energy loss to R_{AA}

$$\Delta E_g > \Delta E_{c\approx q} > \Delta E_b$$

$$R_{AA}(p_T) = \frac{1}{\left\langle N_{coll} \right\rangle} \frac{dN_{AA} / dp_T}{dN_{pp} / dp_T}$$

- What is the expected R_{AA} pattern?
 - > No trivial relation between ΔE and R_{AA}
 - Need to account for different steepness of partonic p_T spectrum and different fragmentation functions

From energy loss to R_{AA}

- 1. Comparing D and B: $R_{AA}^D < R_{AA}^B$
- (below 30 GeV/c)
- For essentially all mechanisms / models
- Small effect from partonic p_T steepness and fragmentation (at LHC)

From energy loss to R_{AA}

- 1. Comparing D and B: $R_{AA}^D < R_{AA}^B$
- 2. Comparing π and D:
 - Pions at LHC originate predominantly from gluons, below 10-15 GeV/c

 $R_{AA}^{\pi} \leq R_{AA}^{D}$

The softer p_T spectrum and fragmentation of gluons tends to counterbalance their larger energy loss (colour charge)

(below 30 GeV/c)

(below 30 GeV/c)

Predictions range from a moderate difference to almost no difference

Andrea Dainese

- Introduction: HF probes of the medium
- Calibrating HF probes: pp results
- ♦ HF production in nucleus-nucleus:
 - Semi-leptonic decays
 - D mesons
 - ➤ B and b-jets
- HF azimuthal anisotropy
- Proton-nucleus: control data ... and more?
- Outlook: detector upgrades at RHIC and LHC

Heavy flavour production in pp • Example pQCD calculation: Fixed Order Next-to-Leading Log $\frac{d\sigma}{dp_T} = A(m)\alpha_s^2 + B(m)\alpha_s^3 + G(m, p_T) \left[\alpha_s^2 \sum_{i=2}^{\infty} a_i [\alpha_s \log(\mu/m)]^i + \alpha_s^3 \sum_{i=1}^{\infty} b_i [\alpha_s \log(\mu/m)]^i\right]$ FONLL: Cacciari, Frixione, Mangano, Nason and Ridolfi, JHEP0407 (2004) 033

[coincides with NLO for low p_{T} (total cross section); more accurate at high p_{T}]

Describes consistently energy dependence of total cross sections

Charm (beauty) x10 (100) from 0.2 to 2.76 TeV

- Charm production described within uncertainties
- Consistently at upper limit of theoretical band from 0.2 to 7 TeV

pp: pQCD calculations vs data Beauty p_T -differential cross section

1.96 TeV

7 TeV

 Beauty production described very well by central value of calculation

• FONLL: "b > c" for $p_T > 4$ (5) GeV/c at RHIC (LHC)

- Introduction: HF probes of the medium
- Calibrating HF probes: pp results
- HF production in nucleus-nucleus:
 - Semi-leptonic decays
 - D mesons
 - ➤ B and b-jets
- HF azimuthal anisotropy
- Proton-nucleus: control data ... and more?
- Outlook: detector upgrades at RHIC and LHC

HF-decay electrons at RHIC

Inclusive measurement (c+b) using non-photonic electrons

- Same suppression as for light-flavour hadrons above 5 GeV/c
- Smaller suppression at 2-3 GeV/c, but cannot conclude on mass effects

◆ Electrons and muons from D+B \rightarrow e,µ decays

Note: p_T^{hadron} ~ 2 p_T^{lepton}

Z.Conesa (QM2012)

Clear and consistent centrality dependence for
 R_{AA} of muons at forward rapidity (ALICE)
 R_{CP} of muons at central rapidity (ATLAS)
 No sign of p_T dependence from 4 to 12 GeV/c

- Introduction: HF probes of the medium
- Calibrating HF probes: pp results
- HF production in nucleus-nucleus:
 - Semi-leptonic decays
 - D mesons
 - ➤ B and b-jets
- HF azimuthal anisotropy
- Proton-nucleus: control data ... and more?
- Outlook: detector upgrades at RHIC and LHC

Charm: D mesons at RHIC

STAR: D⁰ R_{AA} in Au-Au (and U-U!) at RHIC

Without secondary vertex reco, but ~800M Au-Au events

Suppressed by a factor ~4 at high p_T in central Au-Au

Large enhancement at 1.5 GeV/c: radial flow + coalescence? F.Geurts (HP2013)

Charm: D mesons at LHC 2 \Box R_{AA} prompt 1.8-**D**0 ALICE Secondary vertex 0-20% centrality .6 reconstruction (ALICE) Pb-Pb, 2.76 TeV pointing angle θ_{n} 1.2 D^{0} reconstructed momentum d_0^K D'flight line Κ primary verte secondary vertex 0.8 0.6 impact parameters ~100 µ m 0.4 0.2 12 16 8 14 10 p, (GeV/c) ALICE, JHEP 09 (2012) 112

- First D R_{AA} measurement in heavy-ion collisions, presented by ALICE at QM2011 (LHC run 2010)
 - Strong suppression observed

 First D R_{AA} measurement in heavy-ion collisions, presented by ALICE at QM2011 (LHC run 2010)

- Strong suppression observed
- Measurement extended with LHC run 2011, from 1 to 30 GeV/c

D_{s} meson R_{AA} at LHC

First measurement of D_s in heavy ions

Large D_s enhancement expected, if c quarks recombine in the QGP

 \succ Data very intriguing, but not conclusive (\rightarrow next LHC run, upgrades)

Z.Conesa (QM2012)

GSI seminar, 27.11.13

25

D R_{AA} at RHIC and LHC

- D R_{AA} similar at RHIC and LHC at 5-6 GeV/c
- Looks quite different at 1-2 GeV/c:
 - Could it be shadowing + recombination + radial flow? (stronger effect at RHIC because of steeper dN/dp_T)
 - A transport model (Rapp et al.) with these ingredients predicts maximum R_{AA}~1.3 at RHIC and ~0.7 at LHC

D consistent with pions for p_T>5-6 GeV

• Hint for D > π in 2-5 GeV/c?

> Below 2 GeV/c: no direct comparison, π not expected to scale with N_{coll}

Is it consistent with the colour charge dependence?

D mesons vs. pions at LHC

Shows strong colour charge effect in partonic R_{AA} (g vs. light and c)

Suggests that colour charge effect helps to describe the observed $R_{AA}^{D} \sim R_{AA}^{\pi}$

M. Djordjevic and M. Djordjevic, arXiv:1307.4098

<u>GSI seminar, 27.</u>

0.8

0.4

0.2

0

0

10

20

40

30

E(GeV)

50

28

- Introduction: HF probes of the medium
- Calibrating HF probes: pp results
- HF production in nucleus-nucleus:
 - Semi-leptonic decays
 - D mesons
 - B and b-jets
- HF azimuthal anisotropy
- Proton-nucleus: control data ... and more?
- Outlook: detector upgrades at RHIC and LHC

First measurement of beauty R_{AA} by CMS (СМS-PAS-HIN-12-014)

- > Centrality dependence of $B \rightarrow J/\psi R_{AA}$
 - 50-100%: factor ~1.4 → 0-5%: factor ~2.5
- Hint of less suppression at mid-rapidity
- \succ Hint of larger suppression at higher p_T

Looking for mass dependence: R_{AA} of D and B at the LHC

D mesons (ALICE) and J/\u03c6 from B decays (CMS)

First clear indication of a dependence on heavy quark mass:

 $R_{AA}^{B} > R_{AA}^{D}$

Looking for mass dependence: R_{AA} of D and B at the LHC

D mesons (ALICE) and J/ψ from B decays (CMS)

With this selection:

- B <p_T> ~ 11 GeV
- D <p_T> ~ 10 GeV

First clear indication of a dependence on heavy quark mass:

 $R_{AA}^{B} > R_{AA}^{D}$

CMS-HIN-12-003

- Introduction: HF probes of the medium
- Calibrating HF probes: pp results
- ♦ HF production in nucleus-nucleus:
 - Semi-leptonic decays
 - D mesons
 - ➤ B and b-jets
- HF azimuthal anisotropy
- Proton-nucleus: control data ... and more?
- Outlook: detector upgrades at RHIC and LHC

Heavy flavour v_2 : a two-fold observable, I^{NFN}

- Low p_{T} : do heavy quarks take part in the "collectivity"?
 - > Due to their large mass, c and b quarks should "feel" less the collective expansion
 - Reaction In-plane \rightarrow need frequent interactions with large coupling to build v₂
 - \rightarrow V₂^b < V₂^c
- High p_{T} : probe path length dependence of HQ energy loss

J. Aichelin et al. in arXiv:1201.4192

GSI seminar, 27.11.13

Heavy Flavour v_2 at RHIC

Electrons from HF show a v₂ of up to 0.15 at RHIC (PHENIX, STAR)

- Charm does flow!
- v₂ significantly smaller than for pions above 2 GeV/c (might be decay kinematics, rather than a difference heavy vs. light)

Heavy Flavour v_2 at LHC

D meson v₂ in 30-50%: ~0.2 in 2-6 GeV/c

Comparable with charged particle v₂

- HF-decay e (|y|<0.7) and μ (2.5<y<4) v₂ in 20-40%: >0 in 1.5-5 GeV/c
- What is the origin of this v₂? c quark flow? coalescence?
- Much more to learn with future data

LHC R_{AA} and v_2 vs. models

BAMPS Uphoff et al. arXiv: 1112.1559, Aichelin et al. Aichelin et al. Phys. Rev. C 79 (2009) 044906,

WHDG W. A. Horowitz et al. J. Phys. G38, 124064 (2011), POWLANG W. M. Alberico et al. Eur. Phyis J. C 71, 1666 (2011), TAMU M. He, R. J. Fries and R. Rapp, arXiv:1204.4442[nucl-th], UrQMD arXiv:1211.6912, J. Phys. Conf. Ser. 426, 012032 (2013), Cao, Quin, Bass arXiv:1308.0617

NFN

A closer look to D mesons JHEP 09 (2012) 112 Phys. Rev. Lett. 111, 102301 (2013) _₹1 ⊈ \sim ALICE D⁰, D⁺, D^{*+} average, lyl<0.5 ALICE D⁰, D⁺, D^{*+} average Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 0.4 Syst. from data Centrality 30-50% Syst. from B feed-down Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 0.3 Centrality 0-20% 0.8 WHDG rad+coll POWI ANG 0.2 Cao, Qin, Bass Aichelin et al, Coll+LPM rad 0.6 BAMPS 0.1 TAMU elastic 0.4 WHDG rad+coll POWLANG 0.2 Cao, Qin, Bass Aichelin et al, Coll+LPM rad **TAMU** elastic BAMPS UrQMD 16 14 16 p_ (GeV/c) 12 14 4 8 10 12 p_ (GeV/c) ALI-DER-48662 ALI-DER-48710

- All these models describe both HF-e R_{AA} and v₂ at RHIC
- Models without HQ interactions with expanding medium underestimate v₂ (WHDG, POWLANG), but are among the best for R_{AA}
- Max v₂~0.15-0.20 is better described by models that include collisional energy loss of heavy quarks in expanding medium (BAMPS, UrQMD, Aichelin et al). Some include coalescence (UrQMD, Aichelin et al)
- However, they tend to overshoot (undershoot) R_{AA} at low (high) p_T

Outline of the Talk

- Introduction: HF probes of the medium
- Calibrating HF probes: pp results
- ♦ HF production in nucleus-nucleus:
 - Semi-leptonic decays
 - D mesons
 - ➤ B and b-jets
- HF azimuthal anisotropy
- Proton-nucleus: control data ... and more?
- Outlook: detector upgrades at RHIC and LHC

R_{AA} suppression: a QCD medium effect?

- The observed suppression can have a contribution from initial-state effects, not related to the hot QCD medium
- High parton density in high-energy nuclei leads to reduction/ saturation/shadowing of the *PDFs* at small x (and small Q²)

R_{AA} suppression: a QCD medium effect?

- Small effect expected from PDFs shadowing above 5 GeV/c
- Suggests that this is a hot medium effect
- pA data crucial to measure initial-state effects

HF-decay e and μ in d-Au at RHIC $e_{HF}^{\pm}R_{dA}$ $\pi^{0}R_{dA}$ $e_{HF}^{\pm}R_{AA}$ $\pi^{0}R_{AA}$ $\pi^{0}R_{AA}$ $\pi^{0}R_{AA}$ $\pi^{0}R_{AA}$ $\pi^{0}R_{AA}$

- Low-p_T electrons (mid-y) and muons (backward y) largely enhanced
 - More than expected from anti-shadowing?
 - Significant role of (mass-dependent?) k_T broadening?

 \rightarrow Au-Au high-p_T suppression is a final state effect

D mesons in p-Pb at LHC

- D meson R_{DA} consistent with unity
 - Both pQCD+Shadowing (EPS09) and Colour Glass Condensate can describe the data
- \rightarrow Pb-Pb high-p_T suppression is a final state effect

Eskola et al., JHEP 0904 (2009) 065 Fujii, Watanabe, priv. comm.

HF-decay electrons in p-Pb at LHC

- HF-decay electron R_{pA} consistent with unity
 - pQCD+Shadowing (EPS09) can describe the data
- \rightarrow Pb-Pb high-p_T suppression is a final state effect

HF-decay electrons in p-Pb at LHC

- HF-decay electron R_{pA} consistent with unity
 - pQCD+Shadowing (EPS09) can describe the data
- \rightarrow Pb-Pb high-p_T suppression is a final state effect
- It looks similar to PHENIX electrons, will be interesting to see the forward muon R_{pA} from ALICE
 Eskola et al., JHEP 0904 (2009) 065

 Correlation between HF-decay electrons and hadrons in (high-mult) – (low-mult) p-Pb collisions: a "double ridge" similar to what observed for hadron-hadron

 Resembles the structure that in AA is interpreted in terms of collective flow

- For hadrons, a flow-like mass ordering is observed
- Alternative interpretations include initial-state effects (Color Glass Condensate) and "vacuum QCD" effects (color reconnection of strings)
- Heavy flavour can provide important additional information

Outline of the Talk

- Introduction: HF probes of the medium
- Calibrating HF probes: pp results
- ♦ HF production in nucleus-nucleus:
 - Semi-leptonic decays
 - D mesons
 - ➤ B and b-jets
- HF azimuthal anisotropy
- Proton-nucleus: control data ... and more?
- Outlook: detector upgrades at RHIC and LHC
 Heavy flavour: a central topic for upgrades of all HI experiments!

Projections 5x10⁹ evts

PHENIX: Vertex Tracker (VTX)

Electron b-fraction in pp

Ongoing in Au-Au

M. Rosati, QM2012

Projections 0.5x10⁹ evts

meson R_{CP} D meson v_2 D %) 2.0 Hydro 200 GeV Au+Au Collisions 200 GeV Au+Au Collisions at RHIC 25 charged hadrons (D⁰: 500M min bias events; |y|<0.5) (D⁰: 500M minimum bias events; |y|<0.5) Anisotropy Parameter v₂ $v_2(c) = v_2(q)$ $v_{2}(c) = 0$ 1.0 20 N_{bin} scaling 15 R_{CP} N_{part} scaling 10 0.2 5 Charged hadron R 0.1 Expected errors on D⁰ R_{CP} 0 2 6 2 3 4 8 10 4 5 0 0 Transverse Momentum p_{τ} (GeV/c) Transverse Momentum p_{τ} (GeV/c)

J. Bielcik, Moriond2013

NFN

ALICE Upgrade Physics Motivation

Three main physics topics that are unique of the upgraded ALICE detector:

Heavy-flavour transport parameters in the QGP

- ➢ Heavy-quark diffusion coefficient (→ QGP equation of state, viscosity of the QGP fluid), via precise HQ v₂
- > Heavy-quark thermalization and hadronization in the QGP, via v_2 and baryons
- Mass dependence of parton energy loss in QGP medium

2. Low-mass dielectrons: thermal photons and vector mesons from the QGP

- > Photons from the QGP ($\gamma \rightarrow e^+e^-$) \rightarrow map temperature during system evolution
- > Modification of ρ spectral function ($\rho \rightarrow e^+e^-$) \rightarrow chiral symmetry restoration

3. Charmonia (J/ ψ and ψ ') down to zero p_T

- Only the comparison of the two states can shed light on the suppression/ regeneration mechanism
- Study QGP-density dependence with measurements at central and forward rapidity

ALICE Upgrade LOI, CERN-LHCC-2012-012

ALICE Upgrade strategy (2018)

Requirements:

- 1. High tracking precision at low p_{T}
- 2. High-rate capability to exploit envisaged Pb luminosity increase of LHC

ALICE Upgrade: HF suppression and flow

- Pin down mass dependence of energy loss
- Investigate transport of heavy quarks in the QGP
 - Sensitive to medium viscosity and equation of state

Prompt D⁰ and Non-prompt J/ ψ R_{AA}

Prompt and non-prompt D⁰ v₂

 R_{AA} and v_2 of D and

B in a wide p_{T} range

Input values from BAMPS model: C. Greiner et al. arXiv:1205.4945

ALICE, CERN-LHCC-2013-024

Heavy flavour in-medium hadronization?

Baryon/meson enhancement and strange-enh. → most direct indication of light-quark hadronization in a partonic system
 Measure this in the HF sector! Does it hold for charm?
 Charm baryons (Λ_c) and charm-strange mesons (D_s)

Andrea Dainese

GSI seminar, 27.11.13

56

ALICE Upgrade: HF physics reach

Observable	$p_{\mathrm{T}}^{\mathrm{min}}~(\mathrm{GeV}/c)$	$p_{\mathrm{T}}^{\mathrm{min}}~(\mathrm{GeV}/c)$ statistical uncertainty		
	Heavy Flavour	(at 2 GeV/ c)		
D meson $R_{\rm AA}$	0	0.3%		
$\mathrm{D_s} \mathrm{meson} \; R_\mathrm{AA}$	< 2	3%		
D meson from B decays R_{AA}	2	2%		
${ m J}/\psi$ from B $R_{ m AA}$	1	5 %		
B ⁺ yield	3	$10\%~(> 3~{ m GeV}/c)$		
$\Lambda_{ m c} \; R_{ m AA}$	2	15%		
Charm baryon-to-meson ratio	2	15%		
$\Lambda_{ m b}$ yield	7	20% (7-10 GeV/c)		
D meson elliptic flow $(v_2 = 0.2)$	0	3%		
D_s meson elliptic flow ($v_2 = 0.2$)	< 2	8%		
D from B elliptic flow $(v_2 = 0.1)$	2	20~%		
J/ψ from B elliptic flow ($v_2 = 0$.	1) 1	30~%		
$\Lambda_{ m c}$ elliptic flow ($v_2 = 0.15$)	3	20% (3-6 GeV/c)		

ALICE, CERN-LHCC-2013-024

INFN

Conclusions (1)

 From the experimental point of view, we have just entered the "golden age" for heavy-flavour observables in HI collisions

Thanks to the LHC detectors and RHIC upgrades

Whom and What (in AA, as of today)

	PHENIX	STAR	ALICE	ATLAS	CMS
HF electrons	 ✓ 	~	v		
HF muons	 ✓ 		 ✓ 	 ✓ 	
D ⁰ , D ⁺ , D ^{*+}		~	v		
D_s^+			~		
B→J/ψ					v
B jets					~

Compiled by Z. Conesa dV

Conclusions (1)

 From the experimental point of view, we have just entered the "golden age" for heavy-flavour observables in HI collisions

Thanks to the LHC detectors and RHIC upgrades

Whom and What (in AA, as of today)

Conclusions (2)

 From the experimental point of view, we have just entered the "golden age" for heavy-flavour observables in HI collisions

Thanks to the LHC detectors and RHIC upgrades

Whom and What (in p(d)A, as of today)

	PHENIX	STAR	ALICE	ATLAS	CMS	LHCb
HF electrons	~		v			
HF muons	~					
D ⁰ , D ⁺ , D ^{*+}		~	v			
D_{s}^{+}			 ✓ 			
B→J/ψ						~
B jets						

Conclusions (2)

 From the experimental point of view, we have just entered the "golden age" for heavy-flavour observables in HI collisions

Thanks to the LHC detectors and RHIC upgrades

Whom and What (in p(d)A, as of today)

Thank You !

62

EXTRA SLIDES

GSI seminar, 27.11.13

Andrea Dainese

63

pp reference at 2.76 TeV via \sqrt{s} -scaling (ALICE D mesons and electrons)

- Scale the 7 TeV cross sections by the 2.76/7 factor from FONLL, with full theoretical uncertainty
 - relative scaling uncertainty: 30% → 5% in the p_t range 2 → 16 GeV/c
- Validated by comparing to measured cross section at 2.76 TeV (fewer p_t bins)

Averbeck et al., arXiv:1107.3243

GSI seminar, 27.11.13

LHC: comparison with models (R_{AA})

 Several models based on E-loss and heavy-quark transport describe qualitatively the measured light, charm, and beauty R_{AA}

High-multiplicity pp and p-Pb collisions

- LHC energy and luminosity allow for study of pp and p-Pb collisions with very high particle multiplicity
 - e.g. pp or p-Pb events with same multiplicity as non-central nucleusnucleus at RHIC energy
- Look for similar effects as seen in nucleus-nucleus!
- E.g. characteristic patterns in two-particle correlations
 PbPb

Two-particle correlations: near-side ridge

 Near-side ridge (long-range correlation in η at Δφ=0) observed in high-multiplicity pp and p-Pb (CMS)

Pronounced structure at large $\Delta \eta$ around $\Delta \phi \sim 0$!

Two-particle correlations: near-side ridge

 Near-side ridge (long-range correlation in η at Δφ=0) observed in high-multiplicity pp and p-Pb (CMS)

CMS, PLB 724 (2013) 213

Two-particle correlations: double-ridge!

- Idea: subtract the "pp-like" structure of low-multiplicity p-Pb from the structure of high-multiplicity p-Pb
- Double ridge discovered by ALICE, followed by ATLAS
- Resembles the structure that in Pb-Pb is attributed to collective flow

Quantifying the modulation: v_2

• v_2 vs. p_T and multiplicity with various methods

Similar pattern in p-Pb and Pb-Pb

• v_2 rises to 2 GeV, then ~flattens out to 5

CMS, PLB 724 (2013) 213

N F N

Pb-Pb

 Mass ordering, interpreted in terms of collective radial and elliptic flow

ALI-DER-52227

 Mass ordering, interpreted in terms of collective radial and elliptic flow Clear indication for mass ordering in p-Pb

 Resembles Pb-Pb and supports "flow" picture

- High-multiplicity p-Pb presents several aspects that in Pb-Pb are explained by collective flow of an expanding medium
- Models including hydrodynamical expansion can describe the observations (e.g. EPOS)

- High-multiplicity p-Pb presents several aspects that in Pb-Pb are explained by collective flow of an expanding medium
- Hydrodynamical expansion
- Alternative explanation (1): Initial-state effect, CGC (Colour Glass Condensate) many-gluon processes can yield correlations

Dusling, Venugopalan, PRD 87, 094034 (2013)

- High-multiplicity p-Pb presents several aspects that in Pb-Pb are explained by collective flow of an expanding medium
- Hydrodynamical expansion
- Alternative explanation (1): Initial-state effect
- Alternative explanation (2): MPI (multi-parton interactions) and "colour reconnection" (as implemented in PYTHIA8) can induce flow-like effects

see e.g. Ortiz et al, PRL111, 042001 (2013)

- High-multiplicity p-Pb presents several aspects that in Pb-Pb are explained by collective flow of an expanding medium
- Hydrodynamical expansion
- Alternative explanation (1): Initial-state effect
- Alternative explanation (2): MPI and "colour reconnection"

These results are clearly intriguing, several interpretations are being put forward, and new measurements from the experiments will provide stringent tests for theory