Precision predictions for heavy-ion collisions From real and virtual photons to heavy quarks

Michael Klasen

Institute for Theoretical Physics, University of Münster

20 November 2013

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung
 Introduction
 Real Photons
 Weak Bosons
 Heavy Quarks
 Conclus

 00000
 00000000000
 0000000000
 0000000
 0000000
 0

Many facets of QCD in pp, pA and AA collisions

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Hard probes (1)

Direct photons:

- Photons not originating from decays (in particular $\pi^0 o \gamma\gamma$)
- Thermal photons (at low p_T) are an important signal for QGP
- Also prompt photons from hard QCD processes (at larger p_T)

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Hard probes (1)

Direct photons:

- Photons not originating from decays (in particular $\pi^0 \rightarrow \gamma \gamma$)
- Thermal photons (at low p_T) are an important signal for QGP
- Also prompt photons from hard QCD processes (at larger p_T)
- Systematic study of different contributions and uncertainties

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Hard probes (1)

Direct photons:

- Photons not originating from decays (in particular $\pi^0 \rightarrow \gamma \gamma$)
- Thermal photons (at low p_T) are an important signal for QGP
- Also prompt photons from hard QCD processes (at larger p_T)
- Systematic study of different contributions and uncertainties

Massive vector bosons:

- Large nuclear PDF (in particular g) uncertainties at large x
- Transition region: Shadowing \rightarrow antishadowing \rightarrow EMC effect
- Traditional process (prompt photons) is theoretically uncertain

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Hard probes (1)

Direct photons:

- Photons not originating from decays (in particular $\pi^0 \rightarrow \gamma \gamma$)
- Thermal photons (at low p_T) are an important signal for QGP
- Also prompt photons from hard QCD processes (at larger p_T)
- Systematic study of different contributions and uncertainties

Massive vector bosons:

- Large nuclear PDF (in particular g) uncertainties at large x
- Transition region: Shadowing \rightarrow antishadowing \rightarrow EMC effect
- Traditional process (prompt photons) is theoretically uncertain
- Massive vector bosons offer a promising alternative

Real Photons

Weak Bosons 000000000000 Heavy Quarks

Conclusion O

Hard probes (2)

Heavy quarks:

- Mostly produced in early stage / hard collisions
- Energy loss through elastic / inelastic interaction with QGP
- In-medium hadron formation / dissociation

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Hard probes (2)

Heavy quarks:

- Mostly produced in early stage / hard collisions \rightarrow Massive vs. massless NLO calculations
- Energy loss through elastic / inelastic interaction with QGP \rightarrow Monte Carlo simulation required
- In-medium hadron formation / dissociation
 → Different fragmentation models

Introduction
00000

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

References

 MK, C. Klein-Bösing, F. König, J.P. Wessels How robust is a thermal photon interpretation of the ALICE low-p_T data? JHEP 1310 (2013) 119 [1307.7034]

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

References

- MK, C. Klein-Bösing, F. König, J.P. Wessels How robust is a thermal photon interpretation of the ALICE low-p_T data? JHEP 1310 (2013) 119 [1307.7034]
- M. Brandt, MK Parton densities from LHC vector boson production at small and large transverse momenta Phys. Rev. D 88 (2013) 054002 [1305.5677]

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

References

- MK, C. Klein-Bösing, F. König, J.P. Wessels How robust is a thermal photon interpretation of the ALICE low-p_T data? JHEP 1310 (2013) 119 [1307.7034]
- M. Brandt, MK Parton densities from LHC vector boson production at small and large transverse momenta Phys. Rev. D 88 (2013) 054002 [1305.5677]
- M. Brandt, F. König, MK Nuclear parton density modifications from low-mass lepton pair production at the LHC in preparation [1312.nnnn]

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

References

- MK, C. Klein-Bösing, F. König, J.P. Wessels How robust is a thermal photon interpretation of the ALICE low-p_T data? JHEP 1310 (2013) 119 [1307.7034]
- M. Brandt, MK Parton densities from LHC vector boson production at small and large transverse momenta Phys. Rev. D 88 (2013) 054002 [1305.5677]
- M. Brandt, F. König, MK Nuclear parton density modifications from low-mass lepton pair production at the LHC in preparation [1312.nnnn]
- MK, C. Klein-Bösing, G. Kramer, M. Topp, J.P. Wessels NLO Monte Carlo predictions for heavy-quark production at the LHC

in preparation [1312.nnnn]

7 / 38

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Classification of contributions

Photons:

• Decay / Direct

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Classification of contributions

Photons:

- Decay / Direct
 - Thermal / Prompt

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Classification of contributions

Photons:

- Decay / Direct
 - Thermal / Prompt
 - Direct / Fragmentation

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Partonic production of direct photons at LO

QCD Compton process:

Quark-antiquark fusion:

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

NLO corrections to partonic processes

Virtual loop corrections:

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

NLO corrections to partonic processes

Virtual loop corrections:

Real emission corrections:

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Renormalization and factorization

NLO corrections to partonic processes:

$$|\mathcal{M}^{V}|^{2}_{ab\to 12} = \ln\left(\frac{\mu^{2}}{p_{T}^{2}}\right) |\mathcal{M}^{B}|^{2}_{ab\to 12} \beta_{0} + \dots \\ |\mathcal{M}^{R}|^{2}_{ab\to 123} = \ln\left(\frac{\mu_{f}^{2}}{p_{T}^{2}}\right) |\mathcal{M}^{B}|^{2}_{cb\to 12} P_{c\leftarrow a}(x) + \dots$$

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Renormalization and factorization

NLO corrections to partonic processes:

$$\begin{aligned} |\mathcal{M}^{V}|^{2}_{ab\to 12} &= \ln\left(\frac{\mu^{2}}{p_{T}^{2}}\right) |\mathcal{M}^{B}|^{2}_{ab\to 12} \beta_{0} + \dots \\ |\mathcal{M}^{R}|^{2}_{ab\to 123} &= \ln\left(\frac{\mu^{2}_{f}}{p_{T}^{2}}\right) |\mathcal{M}^{B}|^{2}_{cb\to 12} P_{c\leftarrow a}(x) + \dots \end{aligned}$$

Evolution equations (e.g. for quark fragmentation):

 $\frac{\mathrm{d}D_{\gamma/q}}{\mathrm{d}\ln\mu^2} = \frac{\alpha}{2\pi} P_{\gamma\leftarrow q} \otimes D_{\gamma/\gamma} + \frac{\alpha_s}{2\pi} \left[P_{q\leftarrow q} \otimes D_{\gamma/q} + P_{g\leftarrow q} \otimes D_{\gamma/g} \right]$

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Renormalization and factorization

NLO corrections to partonic processes:

$$\begin{aligned} |\mathcal{M}^{V}|^{2}_{ab\to 12} &= \ln\left(\frac{\mu^{2}}{p_{T}^{2}}\right) |\mathcal{M}^{B}|^{2}_{ab\to 12} \beta_{0} + \dots \\ |\mathcal{M}^{R}|^{2}_{ab\to 123} &= \ln\left(\frac{\mu_{f}^{2}}{p_{T}^{2}}\right) |\mathcal{M}^{B}|^{2}_{cb\to 12} P_{c\leftarrow a}(x) + \dots \end{aligned}$$

Evolution equations (e.g. for quark fragmentation):

$$\frac{\mathrm{d}D_{\gamma/q}}{\mathrm{d}\ln\mu^2} = \frac{\alpha}{2\pi} P_{\gamma\leftarrow q} \otimes D_{\gamma/\gamma} + \frac{\alpha_s}{2\pi} \left[P_{q\leftarrow q} \otimes D_{\gamma/q} + P_{g\leftarrow q} \otimes D_{\gamma/g} \right]$$

Hadronic cross section:

$$\frac{d\sigma_{AB}^{\gamma}}{dp_{T}} = \int f_{a/A}(x_{a}, \mu_{f}^{2}) f_{b/B}(x_{2}, \mu_{f}^{2}) \frac{D_{\gamma/c}(z, \mu_{D}^{2})}{dt} \frac{d\hat{\sigma}_{ab}^{c}}{dt}(\mu^{2}, \mu_{f}^{2}, \mu_{D}^{2})$$

Real Photons

Transverse-momentum dependence of partonic processes

MK, C. Klein-Bösing, F. König, J.P. Wessels, JHEP 1310 (2013) 119

PbPb $\rightarrow \gamma$ X at $\sqrt{s_{NN}} = 2.76$ TeV with |y| < 0.75

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Nuclear PDF uncertainties

MK, C. Klein-Bösing, F. König, J.P. Wessels, JHEP 1310 (2013) 119

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Transverse-momentum dependence of fragmentation

MK, C. Klein-Bösing, F. König, J.P. Wessels, JHEP 1310 (2013) 119

PbPb $\rightarrow \gamma$ X at $\sqrt{s_{NN}} = 2.76$ TeV with |y| < 0.750.60 $g \rightarrow \gamma$ Fragmentation 0.55 $q \to \gamma$ Fragmentation 0.50 ----- Direct γ 0.45 Subprocess Fraction 0.40 0.35 0.30 0.25 0.20 0.15 0.10 6 10 12 14 16 $p_{_{T}}$ (GeV)

14 / 38

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Fragmentation function uncertainties

MK, C. Klein-Bösing, F. König, J.P. Wessels, JHEP 1310 (2013) 119

Real Photons

Weak Bosons

Heavy Quarks

Conclusion o

Measurement of direct photons in pp and PbPb collisions

M. Wilde et al. [ALICE Coll.], Nucl. Phys. A 904 (2013) 573c

• Invariant yield:

$$\frac{1}{2\pi N_{\rm ev}} \frac{\mathrm{d}N}{\Delta y \, \rho_{T} \mathrm{d}\rho_{T}} = \langle T_{\rm PbPb} \rangle_{0-40\%} \frac{\mathrm{d}\sigma}{2\pi \, \Delta y \, \rho_{T} \mathrm{d}\rho_{T}}$$

• Nuclear overlap function:

 $\langle T_{\rm PbPb} \rangle_{0-40\%} = 12.8 \pm 1.3 \ ({\rm stat.}) \pm 0.2 \ ({\rm syst.}) \ {\rm mb}^{-1}$

• Rapidity range: |y| < 0.75

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Transverse-momentum distribution of direct photons

MK, C. Klein-Bösing, F. König, J.P. Wessels, JHEP 1310 (2013) 119

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Exponential fit to pQCD subtracted ALICE data

MK, C. Klein-Bösing, F. König, J.P. Wessels, JHEP 1310 (2013) 119

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Reliability of pQCD prediction at large p_T

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Pre-LHC prompt photon data

P. Aurenche, M. Fontannaz, J.P. Guillet, M. Werlen, Phys. Rev. D 73 (2006) 094007

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Post-LHC prompt photon data

D. d'Enterria, J. Rojo, Nucl. Phys. B 860 (2012) 311

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Comparison of theory with experiment

Observations:

- Large discrepancies at small p_T and \sqrt{s}
- Better agreement at large p_T and \sqrt{s}

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Comparison of theory with experiment

Observations:

- Large discrepancies at small p_T and \sqrt{s}
- Better agreement at large p_T and \sqrt{s}

Remedies:

- Resummation (k_T , threshold, joint) \rightarrow small enhancement
- Large fragmentation contributions ightarrow apply isolation criteria
- PDFs with intrinsic $k_T \rightarrow$ little experimental information
- Virtual photons / weak bosons ightarrow mass as regulator

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

NLL predictions for weak boson production

M. Brandt, MK, Phys. Rev. D 88 (2013) 054002

Hadronic cross section:

$$\frac{d^2 \sigma_{h_1 h_2}^{\gamma^*}}{dp_T^2 dy} = \sum_{ij} \int dx_1 dx_2 f_{h_1}^i(x_1, \mu_f^2) f_{h_2}^j(x_2, \mu_f^2) \frac{s d^2 \hat{\sigma}_{ij}^{\gamma^*}}{dt du} (Q, p_T, y; \mu^2, \mu_f^2)$$

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

NLL predictions for weak boson production

M. Brandt, MK, Phys. Rev. D 88 (2013) 054002

Hadronic cross section:

$$\frac{d^2 \sigma_{h_1 h_2}^{\gamma^*}}{dp_T^2 dy} = \sum_{ij} \int dx_1 dx_2 f_{h_1}^i(x_1, \mu_f^2) f_{h_2}^j(x_2, \mu_f^2) \frac{s d^2 \hat{\sigma}_{ij}^{\gamma^*}}{dt du} (Q, p_T, y; \mu^2, \mu_f^2)$$

Partonic cross section:

[Arnold, Kauffman, Nucl. Phys. B 349 (1991) 381]

- *p_T*-resummation at NLL
- $\sigma^{\text{tot}} = \sigma^{\text{res}} + \sigma^{\text{per}} \sigma^{\text{asy}}$
- Scale uncertainty: $\mu, \mu_f = [0.5; 2] imes \sqrt{Q^2 + p_T^2}$

Real Photons 00000000000000 Weak Bosons

Heavy Quarks

Conclusion O

Fixed-target virtual photon data

E.L. Berger, L.E. Gordon, MK, Phys. Rev. D 58 (1998) 074012

Weak Bosons 00000000000

LHC weak boson data

M. Brandt, MK, Phys. Rev. D 88 (2013) 054002

pp \rightarrow ZX at \sqrt{s} = 7 TeV

 Real Photons
 Weak Bosons
 Heavy Quarks

 000000000000
 0000000000
 000000

Conclusion O

Transverse momentum dependence of contributions

M. Brandt, MK, Phys. Rev. D 88 (2013) 054002

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

PDFs from LHC vector boson production

M. Brandt, MK, Phys. Rev. D 88 (2013) 054002

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Nuclear collisions

M. Brandt, MK, F. König, in preparation

Thermal effects in AA collisions:

• Real photons: Excess at $p_T \leq$ 4 GeV, $T = 304 \pm 58$ MeV

[MK, C. Klein-Bösing, F. König, J.P. Wessels, 1307.7034]

- Weak bosons: $R_{AA} \sim 1$ [Atlas prl 110, 022301; CMS pas hin-13-004]
- Virtual photons: Interesting transition region!

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Nuclear collisions

M. Brandt, MK, F. König, in preparation

Thermal effects in AA collisions:

• Real photons: Excess at $p_T \leq$ 4 GeV, $T = 304 \pm 58$ MeV

[MK, C. Klein-Bösing, F. König, J.P. Wessels, 1307.7034]

- Weak bosons: $R_{AA} \sim 1$ [Atlas prl 110, 022301; CMS pas hin-13-004]
- Virtual photons: Interesting transition region!

Nuclear PDFs from pA collisions:

- Real photons [F. Arleo, K.J. Eskola, H. Paukkunen, C.A. Salgado, JHEP 1104 (2011) 055]
- Photons + heavy quarks [F. Arleo, I. Schienbein, T. Stavreva, JHEP 1302 (2013) 072]
- Virtual photons [M. Brandt, MK, F. König, in preparation]
- Weak bosons (isospin effects!) [M. Brandt, MK, F. König, in preparation]

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Nuclear modification of PDFs

K.J. Eskola, H. Paukkunen, C.A. Salgado, JHEP 0904 (2009) 065

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

nPDFs from low-mass lepton pair production (1)

M. Brandt, MK, F. König, in preparation

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

nPDFs from low-mass lepton pair production (2)

M. Brandt, MK, F. König, in preparation

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Heavy-quark production in hadron collisions (1)

MK, C. Klein-Bösing, G. Kramer, M. Topp, J. Wessels, in preparation

Partonic processes at LO:

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Heavy-quark production in hadron collisions (1)

MK, C. Klein-Bösing, G. Kramer, M. Topp, J. Wessels, in preparation

Partonic processes at LO:

FONLL:

[M. Cacciari, M. Greco, P. Nason, JHEP 05 (1998) 007]

NLO calculation with massive quarks

ightarrow Correct for $p_T \leq m$

- Massless limit ⊗ perturbative massive FFs evolved via DGLAP
 → Correct for p_T ≫ m (but no qg, qq contributions at LO)
- Logarithmic matching conditions for α_s , PDFs and FFs \rightarrow FONLL = FO + (NLL - FOM0)×G(m, p_T)

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Heavy-quark production in hadron collisions (2)

MK, C. Klein-Bösing, G. Kramer, M. Topp, J. Wessels, in preparation

Partonic processes at LO:

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Heavy-quark production in hadron collisions (2)

MK, C. Klein-Bösing, G. Kramer, M. Topp, J. Wessels, in preparation

Partonic processes at LO:

GM-VFNS: [B. Kniehl, G. Kramer

[B. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, EPJC 72 (2012) 2082]

- NLO massless calculation \otimes massless FFs evolved via DGLAP \rightarrow Correct for $p_T \gg m$
- Non-logarithmic terms from massive calculation
 → Correct for p_T ≤ m (but no logarithmic matching)

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Heavy-quark production in hadron collisions (3)

MK, C. Klein-Bösing, G. Kramer, M. Topp, J. Wessels, in preparation

NEW: POWHEG

[S. Frxione, G. Ridolfi, P. Nason, JHEP 09 (2007) 126]

- NLO calculation with massive quarks
 → Correct for p_T ≤ m (but no logarithmic matching)
- Full parton showering and fragmentation with PYTHIA
- Exact implementation of experimental cuts
- Systematic study of PDF uncertainty with CTEQ6.6
- Predictions for $\sqrt{s} = 5.02 \text{ TeV}$

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

Electrons from B decays in pp collisions at 7 TeV

MK, C. Klein-Bösing, G. Kramer, M. Topp, J. Wessels, in preparation

$pp \rightarrow b+X (\rightarrow c+X) \rightarrow e+X \text{ at } \sqrt{s} = 7 \text{ TeV}$

Real Photons

Weak Bosons

Heavy Quarks

Conclusion 0

Electrons from B decays in pp collisions at 5.02 TeV

MK, C. Klein-Bösing, G. Kramer, M. Topp, J. Wessels, in preparation

$pp \rightarrow b+X (\rightarrow c+X) \rightarrow e+X \text{ at } \sqrt{s} = 5.023 \text{ TeV}$

Real Photons

Weak Bosons

Heavy Quarks

Conclusion O

D^0 mesons in pp collisions at 7 TeV

MK, C. Klein-Bösing, G. Kramer, M. Topp, J. Wessels, in preparation

Real Photons

Weak Bosons

Heavy Quarks

Conclusion

Conclusion

Prompt photons:

- Thermal photons extracted after subtracting NLO QCD
- Uncertainties from scales, PDFs and FFs taken into account
- ALICE data well described by exp./power law at low/high p_T

Weak Bosons

Heavy Quarks

Conclusion

Conclusion

Prompt photons:

- Thermal photons extracted after subtracting NLO QCD
- Uncertainties from scales, PDFs and FFs taken into account
- ALICE data well described by exp./power law at low/high p_T

Weak bosons:

- Mass serves as an infrared regulator \rightarrow no need for isolation
- Production dominated by QCD Compton process at high p_T
- Good alternative to determine gluon PDF/(anti)shadowing

Weak Bosons

Heavy Quarks

Conclusion

Conclusion

Prompt photons:

- Thermal photons extracted after subtracting NLO QCD
- Uncertainties from scales, PDFs and FFs taken into account
- ALICE data well described by exp./power law at low/high p_T

Weak bosons:

- Mass serves as an infrared regulator ightarrow no need for isolation
- Production dominated by QCD Compton process at high p_T
- Good alternative to determine gluon PDF/(anti)shadowing

Heavy quarks:

- Three theoretical approaches: FONLL, GM-VFNS, POWHEG
- Only NLO Monte Carlo will allow for quenching studies
- First results in *pp* test of reliability and PDF sensitivity