
Fishing For the QCD Phase 
Transition
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The QCD Phase diagram
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Can be very rich
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At least theoretically……
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What we know about the Phase 
Diagram
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T

µ~920 MeV

Lattice QCD: 
Tc ~ 155 MeV 
pseudo-critical line up to O(µ2) 
pressure (EoS) up to O(µ4)

Theory 
Measurements 

155MeV



Equal-pressure and Pseudo critical 
line(s)
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Is there a critical point?
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Going DOWN in energy

Models

Lattice

Strategy:
explore: RHIC low energy run

quantify: CBM@FAIR
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Going DOWN in energy

Models

Lattice

Strategy:
explore: RHIC low energy run

quantify: CBM@FAIR

Lots of them!



Is there a critical point?
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Introduction µ = 0 µ > 0 Taylor method Fluctuations µ > 0 full method Summary

µ=0 phase diagram: mass/lattice spacing dependence

m

ms

ud

P

Z(2)

O(4)

physical point!

cross−over region

region
1st order

1st order

physical quark masses: important for the nature of the transition
nf =2+1 & mq=0 or 1 give first order; intermediate mass crossover

continuum limit is important for the order of the transition:
F.Karsch et al., Nucl.Phys.Proc. 129 (’04) 614 G.Endrodi, Z.Fodor, K.Katz, K.Szabo, PoS Lat’07 182
deForcrand, S.Kim, O.Philipsen, PoS Lat’07 178 Y.Maezawa, A.Bazavov, F.Karsch, P.Petreczky, S.Mukherjee PoS Lat’13 149

nf =3 case (standard action, Nt=4): critical Mps⇡300 MeV
different discretization error (p4 action, Nt=4): critical mps⇡70 MeV
stout action: Mps<35/47 MeV (Nt=4/6); hisq: Mps<80 MeV (Nt=6)

Z. Fodor QCD thermodynamics on the lattice: results and outlook



Is there a critical point?
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Note: Surface may bend back!



Two critical points?

10

M. Pinto et al, Phys.Rev. C82 (2010) 055205

Seen in both Nambu and Linear Sigma Model

mπ ~ 30 MeV



Remarks on Phase diagram
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Liquid-Gas 
Water, nuclear matter, ...

T

µ

1 
“gas”

2 
“liquid”

T

µ
“QCD”

1 
“hadron gas”

2 
“QGP-liquid”

Steinheimer et al, Phys.Rev. C89 (2014) 034901
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Liquid-gas

Pressure

Temperature

“QCD”

1 
“hadron gas”

2 
“QGP-liquid”

T

µ

1 
“hadron gas”

2 
“QGP-liquid”

“QCD”
T

µ

2 
“liquid”

1 
“gas”

Pressure

Liquid-gas

Temperature

1 
“gas” 2 

“liquid”



Liquid Gas vs QCD PT

13See e.g. Hempel et al, arXiv:1302.2835

Clausius-Clapeyron: 

Pressure

Temperature

“QCD”

1 
“hadron gas”

2 
“QGP-liquid”

Pressure

Liquid-gas

Temperature

1 
“gas” 2 

“liquid”

dP

dT
=

S1/B1 � S2/B2

1/⇢1 � 1/⇢2
⇢2 > ⇢1 ! (1/⇢1 � 1/⇢2) > 0

dP

dT
> 0 ! S1/B1 > S2/B2

dP

dT
< 0 ! S1/B1 < S2/B2

✓
S

B

◆

gas

>

✓
S

B

◆

liquid

✓
S

B

◆

hadron�gas

>

✓
S

B

◆

QGP�liquid



Liquid-gas vs QCD
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QCD: pressure at T=Tc and µ=0  same as at T=0 and ρ ~ 2.5 ρ0

If T=0 phase transition happens above  2.5 ρ0   → dP
dt <0

Note: virtually ALL models predicting a QCD critical point have 
dP
dt
>0

Steinheimer et al,  
Phys.Rev. C89 (2014) 034901



Liquid-gas vs QCD
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Liquid Gas: 
T=0: Liquid co-exists with vacuum

QCD: 
T=0: Liquid co-exists with  

nuclear matter

Steinheimer et al,  
Phys.Rev. C89 (2014) 034901



Lattice to the rescue?
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Slope of pressure 
along pseudo-critical line

Lattice data from Wuppertal/Budapest: Sign depends on definition of  
pseudo-critical line



Liquid-gas vs QCD
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T

P(T)co-exist > 0!!!

T

P(T)co-exist = 0

Droplets are stable in vacuum No stable droplets in vacuum

(SB)gas>(SB)liquid (SB)hadron− gas<(SB)QGP− liquid

µ µ

dP
dt <0

dP
dt
>0

Liquid-Gas “QCD”



Most models are of liquid-gas type
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Most models are of liquid-gas type
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Going DOWN in energy

Models

Lattice

Strategy:
explore: RHIC low energy run

quantify: CBM@FAIR

Not clear how useful the are



Guidance from Theory 
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Guidance from Theory 
The critical Point

21



Back to Lattice
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+ Cross over transition at zero net baryon density

Wuppertal/Budapest

µ=0 only



The Lattice EOS
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What we always see.... What it really means....

“Tc” ~ 160 MeV



Derivatives
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Tc Tc

1st order 5th order

3th order0th order



How to measure derivatives
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At µ = 0:

Cumulants of Energy measure the temperature derivatives of the EOS

Z = tr e�Ê/T+µ/TN̂B

h(�E)2i = hE2i � hEi2 =

✓
� @

@1/T

◆2

ln(Z) =

✓
� @

@1/T

◆
hEi

h(�E)ni =
✓
� @

@1/T

◆n�1

hEi

hEi = 1

Z
tr Ê e�Ê/T+µ/TN̂B = � @

@1/T
ln(Z)



Fluctuations/Cumulants
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Tc
Tc

2nd order 6th order

4th order
1st order



Another way
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T

µ

a ~ curvature of critical line

Baryon number cumulants give same info.  
Less problem with flow etc.  
Needs higher order cumulants (derivatives)  
at µ ~ 0

@2
µF (T, µ)µ=0 =

a

T
@TF (T, 0)

@2
µF (T, µ)µ=0 = 3

a3

T

�
T@2

T � @T
�
F (T, 0)

F = F (r), r =
p

T 2 + aµ2



STAR net-proton cumulants 
(Phys.Rev.Lett. 112 (2014) 032302)
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Things to consider

● Fluctuations of conserved charges ?! 
● Higher cumulants probe the tails. Statistics! 
● The detector “fluctuates” !  
● Net-protons different from net-baryons 

− Isospin fluctuations 

● Beware of the “Poissonizer” 
● Auto-correlations 
● “Stopping” Fluctuations

29



The “Poissonizer”
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NA49: 32 protons per unit  
rapidity at top SPS energies!!! 
STAR “sees” 8 

N.B. This also affects comparison of Lattice with data to e.g. extract 
freeze out parameters

K4/K2=5
STAR  

acceptance 
(protons)

Fraction of BARYONS 
observed

K4/K2=1

K4/K2=-1

K4/K2=-5



31/Users/vkoch/Documents/talks/2014_Trento/talk.odp 37

Correlations: Lattice vs Data

⟨(δN )2⟩
⟨N ⟩

=1+⟨N ⟩∫Δ/2

Δ/2
C ( y 1, y 2)dy 1 dy2

⟨n( y1)( n( y2)−δ( y1− y2) )⟩=⟨n( y1)⟩⟨n( y2)⟩ (1+C ( y1 , y2))

⟨(δN )2⟩
⟨N ⟩

Δ
σ

“Charge conservation”

“Lattice result”

C ( y1, y2)∼exp(
−( y1− y2)

2

2σ2
)

Dh Dependence @ ALICE  
ALICE

PRL 2013

t

z

Dh

rapidity window

Same information as
� 2 particle corr.:
� Balance function

Alice Charge Flucts



Auto Correlations

32

Luo et al, arXiv:1303.2332

Strong correlation between multiplicity determination and proton cumulants 
due to baryon resonances 

Need to determine multiplicity far away in rapidity from cumulants

Y

Δ

pπ



“Stopping” Fluctuations
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At low energy most of the baryon number (isospin) is brought in from  
the colliding nuclei.   
Need to control the fluctuations to due baryon stopping 

Y

DN/dY

Y

DN/dY

These fluctuations may also be biased by multiplicity selection.



Dynamics, event selection ... 
(or why a symmetric detectors are good)

34

Fluctuations are sensitive to dynamics (mixing of projectile and  
target material?) 

Event selection/trigger affects fluctuations → large Acceptance! 
Need backward and forward multiplicity detectors! 
Need Backward and forward particle ID (protons) ! 

Konchakovski et al, nucl-th/0511083 

All

Backward

Forward (like data)



Co-existence region
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T

ρ

Spinodal 
Region

System should spent long time 
in spinodal region

Spinodal instability: 
Mechanical instability

Exponential growth of clumping 

Non-equilibrium phenomenon!

@p

@✏
< 0
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Phase-transition dynamics: Density clumping

With phase transition: Without phase transition: Density enhancement:

Evolution of density moments

Insert the modified pressure into existing 
ideal finite-density fluid dynamics code

Use UrQMD for pre-equilibrium stage 
to obtain fluctuating initial conditions

Simulate central Pb+Pb collisions at ≈3 GeV/A beam kinetic energy on fixed target, 
using an Equation of State either with a phase transition or without (Maxwell partner):

Phase  
transition 

Phase coexistence:  surface tension Introduce a gradient term:

Phase separation: instabilities
=>

J. Steinheimer & J. Randrup,  
 PRL 109, 212301(2012) 
 PRC 87, 054903 (2013) ELab=3 GeV
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Phase trajectories
(J. Randrup et al )

 SIS 100 territory 

10 AGeV!!!!!



Consider two Equations of State

38

Steinheimer et al,  
Phys.Rev. C89 (2014) 034901
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PQM (“liquid-gas”) “QCD” 
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Time evolution

Higher pressure leads to faster evolution of “QCD” EoS.

Oscillation of nearly 
stable droplets for  
“liquid-gas” EoS

Steinheimer et al,  
Phys.Rev. C89 (2014) 034901



Cluster a.k.a. nuclei

Even if total baryon number does 
not fluctuate the baryon density does

Therefore measure production of NUCLEI: d, 3He, 4He, 7Li....

d ~ !B
2 3He ~ !B

3 7 Li ∼ ρB
7

Extracts higher moments of the baryon density at freeze out

Nice Idea, but...  
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“Cluster” formation

Clumping in coordinate space is compensated by dilution in  
momentum space  → tiny effect

“QCD” EoS

(SB)hadron− gas<(SB)QGP− liquid

Steinheimer et al,  
Phys.Rev. C89 (2014) 034901



Other Fishing Ponds

• Flow 
• Dileptons 
• exotica such as Chiral Magnetic effect

43



Flow

44

Elliptic flow: 
● Little change from top RHIC/LHC energy! 
● Quark number scaling still works 
● Stopping of baryon number and isospin 
   splits v2 between particles and antiparticles 
● Directed flow (v1) 
  Minimum in directed flow.  But tiny effect



Directed Flow (v1)
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STAR Data

Introduction Hybrid model Elliptic flow Triangular flow Directed flow Summary

Directed flow (hybrid)
Hybrid results with ✏crit = 4✏

0

and impact parameter b = 4.6� 9.4 fm
compared with STAR results in (10-40)% centrality.
No difference between first-order phase transition and a cross-over.

J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher and H. Stöcker, PRC 89, 054913 (2014)
L. Adamczyk et al. [STAR Collaboration], PRL 112, 162301 (2014)
C. Alt et al. [NA49 Collaboration], PRC 68, 034903 (2003)
H. Liu et al. [E895 Collaboration], PRL 84, 5488 (2000)
For comparison with PHSD transport, see:
V. P. Konchakovski, W. Cassing, Y. . B. Ivanov and V. D. Toneev, PRC 90, 014903 (2014)

J. Auvinen (Duke University) Hybrid model energy scan Sep 27, 2014 21 / 23

Calulation J. Auvinen et al

TINY effect! First make sure that v1 in models is ~ 0
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CME & Charge Dipole 

14

A dipole charge distribution along out-of-plane direction

J. Liao, BES II workshop, Berkeley, Sept 2014
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The STAR measurement
(which everybody discusses)
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The STAR measurement
(a closer look)

P
y
(out-of-plane)

P
x
(in-plane)

+

Concentrate on same sign pairs for the moment

+ 〈cos12−R.P 〉++=〈cos12〉++

R.P.=0Set

P
y
(out-of-plane)

P
x
(in-plane)

++

〈cos12−2R.P.〉++0

for both configurations

How to distinguish?

cos /2/2

cos0
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The STAR measurement
(which not so many discuss)

P
y
(out-of-plane)

P
x
(in-plane)

+

+

P
y
(out-of-plane)

P
x
(in-plane)

++

Data favor in-plane back-to-back correlation

〈cos1−2〉Add to the mix

〈cos 1−2〉++0

〈cos1−2〉++0

same sign

opp. sign.

〈cos12−2R.P.〉++0



The bottom line….

50
HCBM, Budapest, 2010 32

Summary, Part 2

P
y
(out-of-plane)

P
x
(in-plane)

++

P
y
(out-of-plane)

P
x
(in-plane)

++
Local Parity violations 
Predicts THIS

STAR measures THAT 



2014-09-25  | Jaap Onderwaater | The ALICE Collaboration | GSI | Hot Quarks 2014 |         8

Centrality and 
beam energy dependence

Expected for CME:

● Same sign < 0

● Opposite sign = (-1)*same sign

Data:

● Same sign  < 0 

● Opposite sign ~ 0                       
signal possibly inhibited by medium

● Signal grows from central to 
peripheral

● Significant difference between 
same and opposite sign 
correlations at RHIC and LHC 
down sqrt(sNN) ~ 10 GeV

ALICE  PRL. 110 (2013) 012301

Derived from:
STAR
PRL. 113 (2014) 
052302
PRL. 103 (2009) 
2A51601

Energy dependence…..

51

…of an un-understood observable…..

J. Onderwaater, Hot Quarks 2014



Time for systematic approach 
(BES Workshop, LBL, Sept 2014)

● Need good simulations for BES similar to top RHIC hydro 
● ISSUES: 

● Stopping / baryon transport 
● Equation of state 
● Fluctuations (hydrodynamical, critical, instabilities) 
● Anomaly dynamics

52

Physically well motivated parameters are better than 
unphysical models 



Things to do

● Factorize the problem! 
− Critical fluctuations, anomaly dynamics are “perturbations” 
− Dynamical framework controlled by “bulk” observables 

● Stopping/baryon transport 
− Start from present RHIC/LHC codes and slowly increase µ (39 

GeV).  
● EOS known from LQCD 
● Concentrate on initial state, baryon transport, heat conductivity etc 

● Equation of state 
− Lattice 
− Nuclear Matter 
− Minimize ignorance, parametrize the rest

53



Summary

• Phase diagram well known for small µ (Lattice) 
- No sign of phase transition there 

• Little guidance from theory for large µ 
- most models predict phase co-existence between QM and 

vacuum 
• BES I shows some interesting results 

- need to systematic modeling 
•stopping 
•EOS (in necessary parametrized) 
•start at high energies and work ourselves down 
•need spectra and rapidity distributions/correlations 
•…..

54

And with a little luck……….



We will catch the thing

55
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BACKUP



57

The Dilepton production
landscape

Mass2

Momentum

0
Time-like
dilepton production

Space-like
e-e' scattering

(1 GeV)2

1 GeV

Chiral
restoration

QCD
CP

“Perturbative” QCD

Chiral and hadron
dynamics

QGP radiation
Drell Yan, c-cbar 
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VIRTUAL PHOTON RADIATION FROM HOT AND DENSE 

QCD MATTER
T

m
B

Model: Ralf Rapp

STAR: QM2014,

NA60: EPJC 59 (2009) 607,

CERES: Phys. Lett. B 666 (2006) 425,

HADES: Phys.Rev.C84 (2011) 014902

Highly interesting results from RHIC, SPS, 

SIS18

 lepton pairs as true messengers 

of the dense phase

T. Galatyuk, QM14
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Low Mass region is understood:     Baryon resonances plus
broadening through mixing

200GeV200GeV

62.4GeV62.4GeV

39GeV39GeV

27GeV27GeV

19.6GeV19.6GeV

STAR Preliminary

H. van Hees, BNL 14

Low mass
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Low Mass region is understood:     Baryon resonances plus
broadening through mixing

200GeV200GeV

62.4GeV62.4GeV

39GeV39GeV

27GeV27GeV

19.6GeV19.6GeV

STAR Preliminary

H. van Hees, BNL 14

Low mass
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Intermediate Mass

Intermediate mass sensitive to “QGP” 
radiation. NA60: T

eff
~ 200 MeV

What to expect at lower energies?

Should we see any radiation if no QGP?   YES!

Will we see simply a lower temperature? (Hopefully !)



“Charge” fluctuations
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y

dN /dy

}
Δ Yaccept

Δ Ycoll

Conditions for “charge” fluctuations:   
1)Δ Ycorrrelation  <<  Δ Yaccept    (catch the physics) 
1)Δ Ytotal   >>  Δ Yaccept  >>  Δ Ycoll  (keep the physics)

ΔYcorrelation



“Charge” fluctuations at SPS and 
below
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y

dN /dy

}
Δ Yaccept

Δ Ycoll

Conditions for “charge” fluctuations:   
1)Δ Ycorrrelation  <<  Δ Yaccept    (catch the physics) 
1)Δ Ytotal   >>  Δ Yaccept  >>  Δ Ycoll  (keep the physics)

ΔYcorrelation



“Charge” fluctuations at SPS and 
below
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y

dN /dy

}
Δ Yaccept

Δ Ycoll

Conditions for “charge” fluctuations:   
1)Δ Ycorrrelation  <<  Δ Yaccept    (catch the physics) 
1)Δ Ytotal   >>  Δ Yaccept  >>  Δ Ycoll  (keep the physics)

ΔYcorrelation



“Avoid” conservation Laws
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Define:

D = 0 for ALL values of p, B, …  
          in ABSENCE of any correlations

A.Bzdak,VK,V.Skokov arXiv:1203.4529 

No physics

Rm,n =
Cm

Cn

D = R5,1 �R3,1


1� 3

4
(1 + �)(3� �)

�

� =
p
1 + 8R3,1
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PQM (“liquid-gas”) “QCD” 

Flow
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Flow

Coordinate space Momentum space

Coordinate space asymmetries  
sensitive to nearly stable droplet 
formation in “liquid gas” EoS   

Small pressure of liquid:  
weak mapping into momentum space 
for liquid-gas   
Hardly any effect of instabilities 
in case of “QCD” EoS

Steinheimer et al,  
Phys.Rev. C89 (2014) 034901


