What can continuum QCD tell us about heavy ion collisions and the hadron spectrum?

Jan M. Pawlowski

Universität Heidelberg & ExtreMe Matter Institute

GSI, April 15th 2015

Outline

• Vacuum QCD & the hadron spectrum

Phase structure of QCD

• Spectral Functions & Transport Coefficients

quark-gluon correlations

$$\langle q(x_1)\cdots \bar{q}(x_{2n})A_{\mu}(y_1)\cdots A_{\mu}(y_m)\rangle$$

functional relations

scattering amplitude/ vertex functions

quark-gluon-hadron correlations

 $\langle q(x_1)\cdots \bar{q}(x_{2n}) A_{\mu}(y_1)\cdots A_{\mu}(y_m) h(z_1)\cdots h(z_l) \rangle$

functional relations

scattering amplitude/ vertex functions

Functional renormalisation group equations

Dyson-Schwinger equations

2PI/nPI hierarchies

Bethe-Salpeter equations

quark-gluon-hadron correlations

$$\langle q(x_1)\cdots \bar{q}(x_{2n}) A_{\mu}(y_1)\cdots A_{\mu}(y_m) h(z_1)\cdots h(z_l) \rangle$$

functional relations

scattering amplitude/ vertex functions

properties

• access to physics mechanisms

- numerically tractable no sign problem systematic error control via closed form
- Iow energy models naturally encorporated

quark-gluon-hadron correlations

$$\langle q(x_1)\cdots \bar{q}(x_{2n}) A_{\mu}(y_1)\cdots A_{\mu}(y_m) h(z_1)\cdots h(z_l) \rangle$$

functional relations

scattering amplitude/ vertex functions

properties

• access to physics mechanisms

- numerically tractable no sign problem systematic error control via closed form
- Iow energy models naturally encorporated

3

quark-gluon-hadron correlations

 $\langle q(x_1)\cdots \bar{q}(x_{2n}) A_{\mu}(y_1)\cdots A_{\mu}(y_m) h(z_1)\cdots h(z_l) \rangle$

functional relations

- numerically tractable no sign problem systematic error control via closed form
- Iow energy models naturally encorporated

`Local' expertise in functional continuum methods

J. Berges (Heidelberg) J. Braun (Darmstadt) M. Buballa (Darmstadt) C.S. Fischer (Gießen) B. Friman (GSI) M. Lutz (GSI) JMP (Heidelberg) D. Rischke (Frankfurt) B.-J. Schaefer (Gießen) L. von Smekal (Darmstadt) J. Wambach (Darmstadt) C. Wetterich (Heidelberg)

N. Christiansen A. Cyrol N. Khan N. Müller F. Rennecke

unique concentration

Young guns (PostDocs)

T. Herbst (Heidelberg)
G. Eichmann (Giessen)
W.-j. Fu (Heidelberg)
M. Mitter (Heidelberg)
S. Rechenberger (Darmstadt)
H. Sanchis-Alepuz (Gießen)
N. Strodthoff (Heidelberg)
R. Stiele (Gießen)
R. Williams (Gießen)

Functional RG for QCD

JMP, AIP Conf.Proc. 1343 (2011) Nucl.Phys. A931 (2014) 113-124

Functional RG for QCD

JMP, AIP Conf.Proc. 1343 (2011) Nucl.Phys. A931 (2014) 113-124

Functional RG for QCD

fQCD collaboration: J. Braun, A. Cyrol, L. Fister, W.-j. Fu, T.K. Herbst, M. Mitter, N. Mueller, JMP, S. Rechenberger, F. Rennecke, N. Strodthoff

TARDIS, ERGE, DoFun2.0

DoFun

Braun, Huber, Comput. Phys. Commun. 183 (2012) 1290-1320

Mitter, JMP, Strodthoff, Phys.Rev. D91 (2015) 054035

Braun, Fister, Haas, JMP, Rennecke, arXiv:1412.1045

Outline

Vacuum QCD & the hadron spectrum

• Phase structure of QCD

Spectral Functions & Transport Coefficients

Glue sector

Glue sector

Fister, JMP, arXiv:1112.5440

fQCD

Mitter, JMP, Strodthoff, PRD 91 (2015) 054035

see also Williams, arXiv:1404.2545

FRG-quenched QCD vs lattice-quenced QCD

 $N_f = 2$

Mitter, JMP, Strodthoff, PRD 91 (2015) 054035

FRG-quenched QCD vs lattice-quenced QCD

systematic error estimate: ~10% JMP

Mitter, JMP, Strodthoff, PRD 91 (2015) 054035

FRG-quenched QCD vs lattice-quenced QCD

 $N_{f} = 2$ systematic error estimate: ~10%

Mitter, JMP, Strodthoff, PRD 91 (2015) 054035

quenched QCD

four-fermi scattering amplitude at pion pole

$$\langle \bar{q}\vec{\sigma}\gamma_5 q(p) \ \bar{q}\vec{\sigma}\gamma_5 q(-p) \rangle \rightarrow \frac{\chi_{\bar{q}\pi q}\chi_{\bar{q}\pi q}}{p^2 - m_\pi^2} + \text{finite terms}$$

quenched QCD

four-fermi scattering amplitude at pion pole

quenched QCD

four-fermi scattering amplitude at pion pole

pion decay constant f_π via normalisation of $\Gamma^{(3)}_{ar{\mathbf{q}}\pi\mathbf{q}}$

aka BSE wave function

recent mini-review on DSE-BSE Sanchis-Alepuz, Williams, arXiv:1503.05896

Hadron DSE-BSE center Gießen

quenched QCD

four-fermi scattering amplitude at pion pole

pion decay constant $f_\pi~$ via normalisation of $\Gamma^{(3)}_{\bar{\mathbf{q}}\pi\mathbf{q}}$

 $f_{\pi} = \begin{array}{ll} 88 \, \mathrm{MeV} & f_{\pi} = \begin{array}{ll} 89 \, \mathrm{MeV} & \mathrm{Iattice} \ \mathrm{Aoki} \ \mathrm{et} \ \mathrm{al}, \ \mathrm{PRD} \ \mathrm{62} \ \mathrm{(2000)} \ \mathrm{094501} \end{array}$

quenched QCD

four-fermi scattering amplitude at pion pole

Outline

• Vacuum QCD & the hadron spectrum

Phase structure of QCD

Spectral Functions & Transport Coefficients

Sequential decoupling of gluon, quark, sigma, pion fluctuations

JMP, AIP Conf.Proc. 1343 (2011)

Haas, Stiele et al, PRD 87 (2013) 076004

Thermodynamics

Herbst, Mitter et al, PLB 731 (2014) 248-256

Herbst, JMP, Schaefer, PLB 696 (2011) 58-67 PRD 88 (2013) 1, 014007

FRG QCD results at finite density

Haas, Braun, JMP '09, unpublished

Herbst, JMP, Schaefer, PLB 696 (2011) 58-67 PRD 88 (2013) 1, 014007

FRG QCD results at finite density

Haas, Braun, JMP '09, unpublished

Fischer, Fister, Luecker, JMP, PLB732 (2014) 248 Fischer, Luecker, Welzbacher, PRD 90 (2014) 034022

Fister, JMP, PRD 88 (2013) 045010

Fischer, Fister, Luecker, JMP, PLB732 (2014) 248 Fischer, Luecker, Welzbacher, PRD 90 (2014) 034022

Fister, JMP, PRD 88 (2013) 045010

Phase structure at finite density for heavy quarks

Critical surface at large masses

lattice see eg: Bonati, de Forcrand, D'Elia, Philipsen, Sanfilippo, PRD 90 (2014) 7, 074030 Fischer, Luecker, JMP, PRD 91 (2015) 1, 014024

Outline

• Vacuum QCD & the hadron spectrum

• Phase structure of QCD

Spectral Functions & Transport Coefficients

This exercise proves: (i) Fitting $v_3(p_T)$ data with MC-Glauber and MC-KLN initial conditions yields the same η/s (within narrow error band); (ii) The corresponding $v_2(p_T)$ fits are quite different, and only one (more precisely: at most one!) of the models will fit the corresponding $v_2(p_T)$ data.

U. Heinz, talk at RETUNE '12

This exercise proves: (i) Fitting $v_3(p_T)$ data with MC-Glauber and MC-KLN initial conditions yields the same η/s (within narrow error band); (ii) The corresponding $v_2(p_T)$ fits are quite different, and only one (more precisely: at most one!) of the models will fit the corresponding $v_2(p_T)$ data.

computing transport coefficients

gluon spectral function at finite T

Haas, Fister, JMP, PRD 90 (2014) 9, 091501

gluon spectral function at finite T

0

5

10

ω/T

15

20

direct computation

Groucho Marx

Haas, Fister, JMP, PRD 90 (2014) 9, 091501

5

p/T

10

gluon spectral functions

pion and sigma spectral functions

gluon spectral functions

pion and sigma spectral functions

-_____ω [MeV]

gluon spectral functions

pion and sigma spectral functions

transport coefficients

Kubo relation

$$\eta = \frac{1}{20} \left. \frac{d}{d\omega} \right|_{\omega=0} \rho_{\pi\pi}(\omega, 0)$$

Haas, Fister, JMP, PRD 90 (2014) 9, 091501 Christiansen, Haas, JMP, Strodthoff, arXiv:1411.7986

QCD - estimate for viscosity over entropy ratio

Christiansen, Haas, JMP, Strodthoff, arXiv:1411.7986

QCD - estimate for viscosity over entropy ratio

Christiansen, Haas, JMP, Strodthoff, arXiv:1411.7986

 $rac{\mathbf{f}_{\pi,\mathrm{FRG}}}{\mathbf{f}_{\pi,\mathrm{lattice}}} = \mathbf{0.99}$

Phase structure and Transport

Chiral Symmetry Breaking and Confinement

Phase Structure and Transport

- Towards quantitative precision
- Baryons, high density regime & CEP, dynamics
- Hadronic properties
 - hadron spectrum & in medium modifications
 - Iow energy constants

Additional material

Confinement & symmetry breaking

Confinement & symmetry breaking

Confinement

FRG: Braun, Gies, JMP, PLB 684 (2010) 262 FRG, DSE, 2PI: Fister, JMP, PRD 88 (2013) 045010

 $T_c/\sqrt{\sigma} = 0.658 \pm 0.023$

lattice : $T_c/\sqrt{\sigma} = 0.646$

Confinement

FRG: Braun, Gies, JMP, PLB 684 (2010) 262 FRG, DSE, 2PI: Fister, JMP, PRD 88 (2013) 045010

lattice : $T_c/\sqrt{\sigma} = 0.646$

Braun, Gies, JMP '07 Marhauser, JMP '08 Fister, JMP '13

Confinement

FRG: Braun, Gies, JMP, PLB 684 (2010) 262 FRG, DSE, 2PI: Fister, JMP, PRD 88 (2013) 045010

2 flavors & chiral limit

Braun, Haas, Marhauser, JMP, PRL 106 (2011) 022002