Clusters, Correlations and Quarks: a High-Energy Perspective on Nuclei

John Arrington Argonne National Lab

Nuclear and Quark Matter Seminar GSI, February 4, 2015

A nucleus is different things to different people

At each scale, the simplest description involves different constituents and interactions

A nucleus is different things to different people

Field Picture of Nucleus

Low Energy Nuclear Physics

Medium Energy Nuclear **Physics (and most** neutrino scattering) High Energy Physics (& RHIC)

Chemistry/Atomic Physics Small, heavy, static (uninteresting) **Protons + neutrons, complicated** shell structure, angular momentum,.... **Protons + neutrons (typically non**interacting)

Bag of quasi-free quarks

Under certain conditions, there can be 'cross-talk' between these very different energy/distance scales

Nuclear structure impacting measurements at atomic scales (neV)

- Extreme sensitivity to short distances
 - Muonic hydrogen: proton radius measurement
- Extremely high precision measurements
 - Isotope shifts, e.g. ⁶He, ⁸He charge radii

Charge radii and nuclear structure

ATTA (Atom Trap Trace Analysis)

–Trap rare ⁶He, ⁸He isotopes (produced at ATLAS(ANL) or GANIL)

-Measure isotopic shift in $S \rightarrow P$ transition

Variation of the charge radius with isotope can be understood in terms of nuclear structure

L.B. Wang, et al., PRL93, 142501 (2004) [⁶He] P. Mueller, et al., PRL99, 252501 (2007) [⁸He]

Under certain conditions, there can be 'cross-talk' between these very different energy/distance scales

Nuclear structure impacting measurements at atomic scales (neV)

- Extreme sensitivity to short distances
 - Muonic hydrogen: proton radius measurement
- Extremely high precision measurements
 - Isotope shifts, e.g. ⁶He, ⁸He charge radii

Does nuclear structure impact hadronic (quark-level) substructure ?

- Extremely high energy scales in nuclei
 - Energy density [RHIC, LHC]
 - Introducing large **external** energy scale
 - Quark-Gluon Plasma = Nucleus ??
 - Matter density [Heavy nuclei, neutron star?]

How dense are nuclei?

- Proton RMS charge radius: R_p 0.85 fm
- Corresponds to uniform sphere, R = 1.15 fm, density = 0.16 fm⁻³
- Ideal packing of hard sphere: max = 0.12 fm⁻³
 - Well below peak densities in nuclei
 - Need 100% packing fraction for dense nuclei
 - Can internal structure be unchangeo 0.20 0.16 0.12 $\rho(r)~(fm^{-3})$ 0.08 0.04 0.00 2.8 om GFMC Councesy on B. Wiringa

High-momentum nucleons (Short-Range Correlations)

N-N interaction Hard interaction at short range

Two key experiments

JLab E03-103 JA and D. Gaskell, spokespersons

- Scatter from HIGH-MOMENTUM QUARKS in nucl
 - EMC effect Density dependence of quark pdf

JLab E02-019 JA, D. Day, B. Filippone, A. Lung

- Scatter from HIGH-MOMENTUM NUCLEONS in nuclei
 - Probe high-momentum nucleons in nuclei

Isolating high-momentum, high-density components

THESE EXPERIMENTS ARE REMARKABLY STRAIGHTFORWARD

ELASTIC ELECTRON-PROTON SCATTERING

Scattering from stationary proton is simple billiard-ball scattering: x=1

Isolating high-momentum, high-density components

THESE EXPERIMENTS ARE REMARKABLY STRAIGHTFORWARD

ELASTIC AND "QUASI-ELASTIC" ELECTRON SCATTERING

- Scattering from stationary proton is simple billiard-ball scattering: x=1
- Deviation from stationary-proton yields proton initial momentum
- Relatively high-energy probe to reach large initial momentum scales
- Very high $Q^2 \rightarrow$ DIS: probe **quark distributions** in the same way

x = quark's "longitudinal momentum fraction"

Bjorken-x

Quark distributions in nuclei: EMC effect

Deeply-inelastic scattering (DIS) measures structure function $F_2(x)$

- x = quark longitudinal momentum fraction
- $F_2(x)$ related to parton momentum distributions (pdfs) $F_2(x)$ $e_i^2 q_i(x)$ i=up, down,

Nuclear binding << energy scales of probe, proton/neutron excitations

Expected $F_2^A(\mathbf{x}) \approx Z F_2^p(\mathbf{x}) + N F_2^n(\mathbf{x})$

J. J. Aubert, et al., PLB 123, 275 (1983)

EMC effect: A-dependence

SLAC E139

- Most precise large-x data
- Nuclei from A=4 to 197

Conclusions

- Universal xdependence
- Magnitude varies
 - Scales with A (~A^{-1/3})
 - Scales with density

J. Gomez, et al., PRD49, 4349 (1994)

Models of the EMC effect

Nuclear Medium modifies internal nucleon structure

- Dynamical rescaling
- Nucleon 'swelling'
- Multiquark clusters (6q, 9q 'bags')

or

Nuclear structure is modified due to nuclear/hadronic effects

- More detailed binding calculations
 - Fermi motion + binding
 - N-N correlations
- Nuclear pions

Many ways to model the suppression of high-x quarks, but little to differentiate between these explanations

Importance of light nuclei

Test mass vs. density dependence

⁴He is low mass, higher density
⁹Be is higher mass, low density
³He is low mass, low density (no data)

Importance of light nuclei

JLab E03-103 Results

Consistent shape for all nuclei (curves show shape from SLAC fit)

If shape (x-dependence) is same for all nuclei, the slope (0.35<x<0.7) can be used to study dependence on A

Nuclear structure $\leftarrow \rightarrow$ Quark effects?

- New EMC effect data suggest importance of 'local density'
 - Suggests connection to detailed nuclear structure, clustering effects
 - Impact of clustering can be seen from neV shifts in electron energy level to GeV/TeV probes of nuclear quark distributions
 - New and intriguing information, but still no microscopic explanation

Can we study these high-density structures directly?

- Short-range correlation (SRC) measurements are meant to probe such high-density configurations
 - The experiments **measure** high momentum nucleons
 - Aim is to study contribution of high density configuration

two nucleons

r [fm]

0

~1 fm

Collective behavior vs. two-body physics

Collective behavior vs. two-body physics

Inclusive scattering at large x

e-p elastic scattering: x = 1

Quasielastic scattering *x*

1

Motion of nucleon in the nucleus broadens the peak

Low energy transfer region (x>1) suppresses inelastic backgrounds

Inclusive scattering at large x

Inclusive scattering at large x

SRC evidence: A/D ratios

Ratio of cross sections shows a (Q²-independent) plateau above $x \approx 1.5$, as expected in SRC picture

High momentum tails should yield constant ratio if SRC-dominated

N. Fomin, et al., PRL 108 (2012) 092052

SRC evidence: A/D ratios

Ratio of cross sections shows a (Q²-independent) plateau above $x \approx 1.5$, as expected in SRC picture

A/D Ratio	
³Не	2.14±0.04
⁴He	3.66±0.07
Ве	4.00±0.08
С	4.88±0.10
Cu	5.37±0.11
Au	5.34±0.11

Experimental observations:

- \blacktriangleright Clear evidence for 2N-SRC at x>1.5
- Map out strength vs A: 20-25% for A>12
- Suggestion of 3N-SRC plateau?

SRC evidence: A/D ratios

Ratio of cross sections shows a (Q²-independent) plateau above $x \approx 1.5$, as expected in SRC picture

Experimental observations:

- \blacktriangleright Clear evidence for 2N-SRC at x>1.5
- Map out strength vs A: 20-25% for A>12
- Suggestion of 3N-SRC plateau?

Connection to EMC effect?

⁴ He
*
⁹ Be

Credit: P. Mueller

EMC effect: Importance of two-body effects?

Brief detour: Isospin dependence of SRCs

Inclusive ratios:

- •Shows SRC-dominance for high momentum
- Determines relative SRC contributions
- •Can't separate scattering from proton and neutron

Two-nucleon knockout: ¹²C(e,e'pN), ⁴He(e,e'pN), A(e,e'pp)

Reconstruct *initial high momentum proton*Look for *fast spectator nucleon* from SRC <u>in opposite</u> <u>direction</u>

•Find spectator ~100% of the time, neutron >90% of the time

Brief detour: Isospin dependence of the EMC effect

- Always assumed that EMC effect is <u>identical for proton and</u> <u>neutron</u>
- Becoming hard to believe, at least for non-isoscalar nuclei
 - EMC/SRC connection + SRC n-p dominance suggests enhanced EMC effect in minority nucleons
 - ⁴⁸Ca, ²⁰⁸Pb expected to have significant neutron skin: neutrons preferentially sit near the surface, in low density regions
 - Recent calculations show difference for u-, d-quark, as result of scalar and vector mean-field potentials in asymmetric nuclear matter
 [I. Cloet, et al, PRL 109, 182301 (2012); PRL 102, 252301 (2009)]
- Key measurement: parity-violating DIS from ⁴⁸Ca (SoLID collab at JLab)
 - ²H PVDIS: search for beyond standard model physics
 - ¹H PVDIS: clean separation of u(x)/d(x) at large x in the proton
 - ⁴⁸Ca: flavor dependence of EMC effect

Short-distance behavior and the EMC effect

Short-distance behavior and the EMC effect

Isospin dependence of SRCs implies slightly different correlation: Small, dense configurations for all NN pairs, high momentum only for np pairs JA, A. Daniel, D. Day, N. Fomin, D. Gaskell, P. Solvignon, PRC 86 (2012) 065204

Data favors local density interpretation, but very much an open output of the second s

Where do we go from here?

1) Additional nuclei to study cluster structure, EMC-SRC correlation

EMC and SRCs with JLab 12 GeV Upgrade

EMC effect at 12 GeV [E10-008: JA, A. Daniel, D. Gaskell]

Full ³H, ³He program (4 expts) in 2016 (Hall A) Initial set of light/medium nuclei in 2017 (Hall C)

³H, ³He DIS: EMC effect and d(x)/u(x) SRC Isospin dependence: ³H vs ³He Charge radius difference: ³He - ³H

Where do we go from here?

1) Additional nuclei to study cluster structure, EMC-SRC correlation

2) Two-body physics driving SRCs makes deuteron the most 'natural' place to study impact of extremely high density configurations

- Isolate SRCs and probe their quark distributions
EMC and SRCs with JLab 12 GeV Upgrade

Quark distributions of SRC: "Super-fast" quarks

6q bag is 'shorthand' for any model where overlapping nucleons allows free sharing of quark momentum

First Look from 6 GeV: N. Fomin, et al., PRL 105 (2010) 212502 Suggests quark distributions can be extracted for x>1

Where do we go from here?

1) Additional nuclei to study cluster structure, EMC-SRC correlation

2) Two-body physics driving SRCs makes deuteron the most 'natural' place to study impact of extremely high density configurations

- Isolate SRCs and probe their quark distributions
 - Kinematically isolate SRCs, probe at very high scales [DIS on SRCs]
- "Tag" scattering from slow (on-shell) or fast (off-shell) nucleon in ²H
 - JLab: Measure form factors of slow and fast protons

I won't discuss tagged measurements – instead, want to try and reconcile these observations with what we know about protons and neutrons

tons surements for um spectator

In-Medium Nucleon Structure Functions [E11-107: O. Hen, L.B. Weinstein, S. Gilad, S.A. Wood]

- DIS scattering from nucleon in deuterium
- Tag high-momentum struck nucleons by detecting backward "spectator" nucleon in Large-Angle

In-Medium Nucleon Form Factors [E11-002: E. Brash, G. M. Huber, R. Ransom, S. Strauch]

- Compare proton knockout from dense and thin nuclei: ⁴He(e,e'p)³H and ²H(e,e'p)n
- Modern, rigorous
 ²H(e,e'p)n calculations
 show reaction-dynamics
 effects and FSI will
 change the ratio at most
 8%
- QMC model predicts 30% deviation from free nucleon at large virtuality

S. Jeschonnek and J.W. Van Orden, Phys. Rev. C 81, 014008 (2010) and Phys. Rev. C 78, 014007 (2008); M.M. Sargsian, Phys. Rev. C82, 014612 (2010)

How dense are nuclei?

- Proton RMS charge radius: R_p 0.85 fm
- Corresponds to uniform sphere, R = 1.15 fm, density = 0.16 fm⁻³
- Ideal packing of hard sphere: max = 0.12 fm⁻³
 - Well below peak densities in nuclei
 - Need 100% packing fraction for dense nuclei
 - Can internal structure be unchanged

A Simple, Popular, View of the Proton

The Proton

The Neutron

- The proton consists of two up (or *u*) quarks and one down (or *d*) quark.
 - A u-quark has charge +2/3
 - A d-quark has charge –1/3
- The neutron consists of two down, one up
 - Hence it has charge 0
- The u and d quarks mass is ≈1/3 the proton's
 - Explains why m(n) = m(p) to ~0.1%
- But, very hard to explain zoo of hadrons
 - M ≈ 140, 490, 550, 780 MeV
 - M ≈ 1120, 1190, 1230 MeV
 - with 300 MeV quarks Slides adapted from Tom LeCompte

Constituents are not enough

The fundamental constituents of matter (or at least most of them)

The constituents of the first movement of Beethoven's 5th Symphony

Constituents are not enough

The constituents (and frequency of appearance) of the first movement of Beethoven's 5th Symphony Fundamental constituents of matter

Energy is Stored in Fields

- We know energy is stored in electric & magnetic fields
 Energy density ~ E² + B²
- Energy is also stored in the 'gluon field' in a proton
 - There is an analogous E² + B² that one can write down
 - Nothing unusual about the idea of energy stored there

•	What's unusual	is the amount.

	Energy stored in the field		
Molecule	~10 ⁻¹⁰ (4 eV / 60 a.m.u.) [NaCl, O ₂]		
Atom	~10 ⁻⁸ (13.6 eV / 938 MeV)		
(Relative to M_{electron})	~10 ⁻⁵ (13.6 eV / 511keV)		
Nucleus	~1% (10 MeV / nucleon)		

Energy is Stored in Fields

- We know energy is stored in electric & magnetic fields
 Energy density ~ E² + B²
- Energy is also stored in the 'gluon field' in a proton
 - There is an analogous E² + B² that one can write down
 - Nothing unusual about the idea of energy stored there

•	What's u	nucual i	s the a	mount

	Energy stored in the field
Molecule	~10 ⁻¹⁰ (4 eV / 60 a.m.u.) [NaCl, O ₂]
Atom	~10 ⁻⁸ (13.6 eV / 938 MeV)
(Relative to M_{electron})	~10 ⁻⁵ (13.6 eV / 511keV)
Nucleus	~1% (10 MeV / nucleon)
Proton (hadron)	??? ~10 MeV (u+u+d), 938 MeV total 99% is in the field; increases mass!

A Better, More Complicated Picture of the Proton

The Proton

- 99% of the proton's mass/energy is due to this self-generating 'gluon field'
- The two u-quarks and single d-quark
 - Provide the 'identity' of the hadron through electromagnetic properties(*quantum numbers*)
 - Act as *boundary conditions* on the field (more than generators of the field)
- Similarity of the proton and neutron masses is because the <u>gluon dynamics</u> are the same

Hadron as a dynamic; self-interacting quarks gluon field localized around quarks whose quantum numbers identify the hadron

Analogy to gravity

Just as gravity can be viewed as mass distorting spacetime, one can picture a hadron as quarks distorting the quantum vacuum

DSE and Lattice QCD show localized generation of a chiral condensate in hadrons. Lowest Fock state is 3q core with R_{core} 0.6 fm vs. R_{proton} 0.9 fm

More natural scale for NN potential

Identity of proton localized in central 1/3 of it's volume; the large overlap in nuclei is mainly limited to this surrounding universal gluon field

Analogy to gravity

Just as gravity can be viewed as mass distorting spacetime, one can picture a hadron as quarks distorting the quantum vacuum

DSE and Lattice QCD show localized generation of a chiral condensate in hadrons. Lowest Fock state is 3q core with R_{core} 0.6 fm vs. R_{proton} 0.9 fm

More natural scale for NN potential

Identity of proton localized in central 1/3 of it's volume; the large overlap in nuclei is mainly limited to this surrounding universal gluon field

GPDs: Imaging gluons at an EIC

Exclusive vector meson production:

Resolution ~ 1/Q or $1/M_Q$

Gluon imaging from simulation:

Only possible at the EIC: From the valence quark region deep into the gluon / sea quark region

Where are the gluons?

- Bag model:
 - Bag radius provides as single size scale for both quarks and gluons/sea
- Constituent quark model:
 - Gluons and sea quarks
 "bound" inside massive quarks
 - Sea parton distribution similar to valence quark distribution
- Flux tube picture:
 - Shown in quenched LQCD
 - gluons localized in center

Boosted

 $R_{glue} \ge R_{quark}$

R_{glue} < **R**_{guark}

Where are the gluons?

- Bag model:
 - Bag radius provides as single size scale for both quarks and gluons/sea
- Constituent quark model:
 - Gluons and sea quarks
 "bound" inside massive quarks
 - Sea parton distribution similar to valence quark distribution
- Flux tube picture:
 - Shown in quenched LQCD
 - Gluons localized in center
- 3q core (0.6 fm), gluon field (0.9fm)
 - Quark core is ~1/3 of volume
 - Overlap in nuclei is mainly

Boosted

Nucleon

Summary

SRCs are an important component to nuclear structure

- ~20% of nucleons in SRC, mainly np pairs
 - Room for small additional contributions (3N-SRCs, 6q bags) 18%
- Impact A scattering, neutron stars, symmetry energy

These dense, energetic configurations appear to drive in n-n in p-p the EMC effect, modifying proton's internal structure bedi et al., Science 320, 1476 (2008)

80%

1%

JLab 12 GeV and EIC can use tagging to probe structure of nucleons inside these high-density configurations

- Probe internal structure of SRCs
- Isolate nearly free nucleons (e.g. effective free neutron target)
- Isolate extremely high-momentum, highly-off shell nucleons

Drell-Yan and -A scattering (FNAL), PVDIS, and EIC can examine flavor dependence and isolate nuclear effects for sea, valence, and glue

Nuclear densities and quark structure?

Average nuclear density

Are nucleons unaffected by this overlap?

Do they deform as they are squeezed together?

Do the quarks exchange or interact?

Super-fast quarks

Current data at highest Q² (JLab E02-019) already show partonic-like scaling behavior at x>1

In-Medium Nucleon Structure Functions [E11-107: O. Hen, L.B. Weinstein, S. Gilad, S.A. Wood]

- DIS scattering from nucleon in deuterium
- Tag high-momentum struck nucleons by detecting backward "spectator" nucleon in Large-Angle

In-Medium Nucleon Form Factors [E11-002: E. Brash, G. M. Huber, R. Ransom, S. Strauch]

- Compare proton knockout from dense and thin nuclei: ⁴He(e,e'p)³H and ²H(e,e'p)n
- Modern, rigorous
 ²H(e,e'p)n calculations
 show reaction-dynamics
 effects and FSI will
 change the ratio at most
 8%
- QMC model predicts 30% deviation from free nucleon at large virtuality

S. Jeschonnek and J.W. Van Orden, Phys. Rev. C 81, 014008 (2010) and Phys. Rev. C 78, 014007 (2008); M.M. Sargsian, Phys. Rev. C82, 014612 (2010)

Imaging quarks and gluons

Where are the gluons? [uniform sphere]

Constituents are not enough

The constituents (and frequency of appearance) of the first movement of Beethoven's 5th Symphony Fundamental constituents of matter

64

Quasielastic A(e,e'p) scattering

PWIA approximation for proton knockout

- Reconstruct initial proton binding energy (E_m), momentum (p_m)

Quasielastic A(e,e'p) scattering

PWIA approximation for proton knockout

- Reconstruct initial proton binding energy (E_m), momentum (p_m)
- Proton E_m,p_m distribution modeled as sum of independent shell contributions (arbitrary normalization)

High momentum tails in A(e,e'p)

JLab E89-004: ³He(e,e'p)d

Measured far into high momentum tail: Cross section is ~5-10x expectation

High momentum pair can come from initial state short-range correlations

OR

Final State Interactions (FSI) and Meson Exchange Contributions

Average density, or average overlap?

wo-body densities: Pieper and Wire

A Better, More Complicated Picture of the Proton

^e 2005 Welsch & Partner, Tübingen scientific multimedia The <u>Plum Pudding Proton</u>

- 99% of the proton's mass/energy is due to this self-generating 'gluon field'
- The two u-quarks and single d-quark
 - Provide the 'identity' of the hadron through electromagnetic properties(*quantum numbers*)
 - Act as *boundary conditions* on the field (more than generators of the field)
- Similarity of the proton and neutron masses is because the <u>gluon dynamics</u> are the same

Has almost nothing to do with the quarks Hadron as a dynamic, selfinteracting gluon field localized around quarks whose quantum numbers identify the hadron

Importance of light nuclei

⁴He is low mass, higher density ⁹Be is higher mass, low density ³He is low mass, low density (no data)

Constrain ²H – free nucleon difference

Overlap of Scales

Neglecting size, structure, and dynamics of the nucleus is a very useful starting point in atomic physics, but it's not perfect

ATTA (Atom Trap Trace Analysis)

- Trap rare (⁶He, ⁸He) Helium isotopes (produced at ATLAS(ANL) or GANIL)
- Measure isotopic shift in $S \rightarrow P$ transition

P. Mueller, et al., NIM B204, 536 (2003)