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Methods for QCD Bound States

Present consensus:

“Lattice field theory is in most cases the . _
only known systematic way of non- Zoltan Fodor and Christian Hoelbling:

. . , Light Hadron Masses from Lattice QCD
perturbatively computing Green’s Rev. Mod. Phys. 84. 449 (2012)
functions in quantum field theories”

Analytic, perturbative expansions are ruled out ... prematurely?

We don’t even look: Field theory textbooks neglect bound states.

Looks
complicated...




Hadrons in Perturbative QCD?!

 PQCD is highly constrained — is it not ruled out for hadrons?

e To begin, we need to understand the principles of PQED bound states

Why are higher
order diagrams
important?

—> e (Color singlet states can have an (exactly) linear potential at G(c.")



Support for Soft Perturbative QCD

Yu. Dokshitzer:
Perturbative QCD Theory (Includes our knowledge of o)
Plenary talk at ICHEP 98, Vancouver. hep-ph/9812252

“To embark on such a quest one should believe in
legitimacy of using the language of quarks and gluons
down to small momentum scales, which implies
understanding and describing the physics of
confinement in terms of the standard QFT machinery,
that is, essentially, perturbatively.”

“OCD is about to undergo a faith transition:
we are getting ready to convince ourselves

to talk about “quarks and gluons” down to,
and into, the InfraRed.”
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Gribov's Perturbative Confinement (1991-95)

According to Gribov, confinement sets in when the Coulomb interaction
between fermions causes a rearrangement of the vacuum:

crit _ _ g ~ L
a“""(QED) =7 (1 \/;> ~ (.58 > 137

a1 (QCD) = (;TF (1 - %) ~043 2 ag(m ) ~ (.33

0"/t = 0.14 may be sufficiently small to allow

PQCD to remain viable down to Q*=0.

Paul Hoyer GSI 2015 See Yu. Dokshitzer, sect. 2.4 of hep-ph/0306287



Os running critical?
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o freezes in the infrared

Theory & Phenomenology
0'7 MR | MR | MR | LAY | MR | MR | vor T
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J. M. Cornwall;
A. C. Aguilar, D. Binosi, J. Papavassiliou,

J. Rodriguez-Quintero, PRD 80 (2009) 085018
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The OZI Rule suggests that as(0) is small

Connected diagrams: Unsuppressed, string breaking from confining potential

— AE Br

J_E .
.

<

26 MeV  83.1 %

$(1020) - KK ¢

JU 610 MeV 153 %

This indicates os(300 MeV)/t << 1
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"The J/y is the Hydrogen atom of QCD"

Binding energy Positronium
[meV]
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QM I:. The Hydrogen atom

Schrodinger equation (postulated): /\.\

Ground state Eb

1 2 2
binding energy: 2 Te & S(as)

Wave function: P(x) = Nexp(—ame.|x|) all orders of a

How does the Schrodinger equation emerge from Perturbative QED?

Why does the perturbative series in a diverge for bound states?
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PQED is very successful for atoms

Example: Hyperfine splitting in Positronium at S(a’)

Orthopositronium: j’C¢ — 1{——  Parapositronium: ¢ _— —+
AFE = E(ortho) — E(para) Av = AFE/2mh
7 a8 In2
A = meatq S - = (D4 =7
YQED T Ted {12 W(9+ > )
o S o 1367 5197 221 1 53
— | -= 7% T (a2 S 2 - 2
+7r2[ 24" T 648 T 3456 (144” +2) N 326(3)]
Ta? ’ 17 217
~—I'a+ —Ina (E In2— W) +0 (a3)} — 203.39169(41) GHz
M. Baker et al, 1402.0876
.t
+ + ... NRQED
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QED vs Data: Hyperfine splitting in Positronium
Avorn = 203.39169(41) GHz

Previous experimental  o(,3ne') QED
average

(OIS

Old method

1984 b
2013

This measurement

Fan\
Ay

] | ] ] ] ] | ] ] ] ] ] | ] ] ] |
203.386 203.388 203.39 203.392 203.394 203.396
Ayes (GHz)

Avexp =203.38865(67) GHz (1984) M. W. Ritter et al, Phys. Rev. A30 (1984) 1331

Avexp = 203.39414 .003 GHz (2013)  A. Ishida etal, PLB 734 (2014) 338 [1310.6923]
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The perturbative S-matrix

Spi= out<f{Texp [—z/

— o0

oo

it Hi(0)] | ),

The in and out states are G(a¥), non-interacting states at t = + o,

They get dressed by Hj as they propagate from the asymptotic times.

The lack of an EM field around the in and out electrons implies that
we expand around unphysical states.

This causes infrared divergencies, which are cured (order-by-order) by
adding (the missing) soft photons to the in and out states. E.g..

e-l—

: ' e
* : /
! : A
Q : + v :4'/’«/»
e ; e e ; o
s eTe” s eTe”
8 8 8
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Perturbative sum for QED atoms

Bound state poles do not appear in any single Feynman diagram

— they are generated by the divergence of the perturbative sum

P1
e —_—— > >
e+@ - —<—+:§+ E(E ' %g(g:é o
P2

R Bohr momenta

— + ... Igl ~ am
(p1 + p2)? — M?

How 1t works:

The EM field which binds the atom was neglected in the in and out states.

All ladder diagrams are of the same order in a for atomic kinematics: Igl ~ am
The ladder sum regenerates the neglected classical Coulomb field: V(r) = —o/r

and gives the Schrodinger eq. for the wave function R

Paul Hoyer GSI 2015



Born level bound states

The Born term 1s the lowest order contribution to any perturbative amplitude.

It 1s given by tree diagrams (no loops)

The Schrodinger atom is described €~ (P)

by tree diagrams, e~ scattering from A0
the classical photon field + + + ...

=

At Born level, states are bound by a classical gauge field.
k
ol
pP1 p4

Higher orders in a involve loop diagrams q

>
p2 p3
Paul Hoyer GSI 2015



Hadrons at Born level

A perturbative description of hadrons must, already at Born level,

involve a classical, confining gluon field.

Such a solution exists only for color singlet states,

and gives an exactly linear potential for mesons.

There 1s no need to sum Feynman diagrams, we may start from
H|FE,P)=F|FE, P)
which defines stationarity in time, and thus bound states.

At Born level, the gauge field in H is classical.

Paul Hoyer GSI 2015



Confinement from Classical gauge fields?

The quark models use the Schrodinger equation (Born level),
and postulate a linear confining potential.

—> Can the confinement potential be derived with a classical gluon field?

Something like this has been proposed by Dokshitzer:

“String breaking” is caused by a classical gluon field

JT

m:l

Paul Hoyer GSI 2015



Classical vs Quantum Gluons
Yuri Dokshitser (2013)

http://cp3-origins.dk/events/meetings/ws2013/ws2013talks

. luons
classical — & > quantum
q

x Classical Field X Quantum d.o.f.s (constituents)
v/ infrared singular, dw/w v infrared irrelevant, dw - w
v define the physical coupling v/ make the coupling run
v/ responsible for v/ responsible for conservation of
= DL radiative effects, = P-parity, q
L _ . ecays,
- reggeization, = (-parity, } In oroduction
= QCD/Lund string (gluers) = colour
v/ play the major réle in evolution v/ minor role

Paul Hoyer GSI 2015



Bound states as eigenstates of H

Any state can be expanded on its Fock components, e.g., for Positronium:

Pos et(ky) er - e

— = + Yo+ v o+
e (k2) e e

For non-relativistic Positronium at rest the ete— Fock state dominates:

M.P=0) = /d3w1d3:p2 Dt 1) By — o)L, ) |0)
where 1(7,x) 1s the electron field (destroys electrons, creates positrons).

Paul Hoyer GSI 2015
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QED Hamiltonian with the classical potential

Gauss’ law for the AY field of the ‘6_ (1) e™ (2132)> Fock comnonent is:

~ViA (@) = e [0%(x — @1) — % (x — 2)]

%»,‘

—  eA(z;x, 1) = “ “
|:13—w1| lx — a2 \G/ J
f\\
Taking the field energy into account,
Ea(xy,x2) = /dgm(iFuyF“”) — “
1 — @2

the QED Hamiltonian with the classical gauge field becomes

Hopp = /d% B(t, @) — iV -y +m+ Ler® A0(a)| (¢, )

Paul Hoyer GSI 2015
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Bound State Equation for Positronium
Imposingthe BSE H |[M, P =0) =M |M,P =0) with

the state |M,P = O> = /d3w1d3w2 @(t,wl)@(wl — wg)w(t,wg) ’O>
and Hopp = /dgzc V(t,x) [ —iV -y +m+ 2eny A% () |y (¢, @)

we getusing  {¢(t, x), Y1 (t, y)} = 0°(x — y)
the bound state equation for the 4x4 wave function ®(x1—x32):
iV - {7y, @)} + m [’ 0(x)] = [M - V(x)0(x)

where V(x) = — % . In the NR limit this reduces to the Schrodinger eq.,
with M = 2m+Ep.

Paul Hoyer GSI 2015
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Summary: Schrodinger eq. in QED

* A H formulation requires an equal-time definition of the bound state.

 The QED Hamiltonian with a classical photon field (Born level).
= V- {1"7,0(@)} +m [y, 0(z)] = [M - V(x) 0(z)
Method can be used in any frame: H |E, P) = E |E, P) withP #0

The frame dependence of bound states i1s non-trivial:

Wave function Lorentz contracts and £ = \/ P? + (2m + E,)?

All this can be done for QCD as well. So where 1s confinement?

4 o
Vir) — s
(r)y=-cr 5,
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A Homogeneous solution of Gauss' law z

For a state with e~ at x1 and et atxa (¢, 1)WY (¢, £2)|0)

Gauss’ law for the classical A°
ﬁeld iS (ln QED) —VQAO(t, iE) — 6[53(.’13 — .’,81) — 53(23 — wg)]

There 1s also a homogeneous

O — . —_—
solution, with » independent of x: At ) = ke - (T1 — @2)

In QED this is excluded by imposing ~ lim  A°(x) = 0

|| — 00

With % # 0O the field energy
1s independent of x

2
[VAO] — /62 (2131 — 2132)2
This homogeneous solution leads to a linear potential in D=3+1.

Paul Hoyer GSI 2015
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The linear potential

Requiring:
* A translation invariant potential: V(ie+a)=V(x)
e A universal field strength as | x | — o VA (z)] 2 =AY

suffices to specity the potential. In U(1) gauge theory:

V(Zl?l,afg) — %g[AO(t,azl) — Ao(t,mg)] = %gA2\a31 — L9

Only neutral states are allowed: g1 — —g2 = ¢

Usual perturbation theory involves charged states: electrons, quarks, gluons
Then the linear potential would break translation symmetry.

The solution is unique, up to the single parameter A

At the Born (no loop) level, a dimensionful parameter can only be
introduced through a boundary condition.

Paul Hoyer GSI 2015



The linear potential in QCD

For SU(3) there is a solution only for color singlet mesons:

VM(wl—mQ \/ CFgA |€131—2132

and for color singlet baryons:

VB(ZEL L2, $3 2\f\/ QAQ\/ $1 — C132 ($2 — 333)2 + (ms — 2131)2

Note: Vg(wl,ing,wg) = VM(wl — wZ)

The quark-diquark potential Vg agrees with quark-antiquark V.

Paul Hoyer GSI 2015
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Relativistically Bound States

M,
2Mm.,, + my

~ 50

Hadrons are ultrarelativistic states:

—> They have Fock states with many sea quarks and gluons

[proton) = ¢yua |vud) + Guuag |uud g) + Guudqg |uud qq) + . ..

Nevertheless, hadron quantum numbers @ o ‘)
reflect valence quarks only °

@ <

An example of this “paradox” is provided by the
Dirac equation: A relativistic electron bound in an external field.

 The Dirac wave function has the degrees of freedom of a single electron
e Its £ <0 components show the presence of e*e- pairs (cf. Klein paradox)

What state does the Dirac wave function actually describe?

Paul Hoyer GSI 2015 J. P. Blaizot & PH
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Determination of the Dirac state

The operator expression for the Dirac states is J. P. Blaizot and G. Ripka:

found by diagonalizing the Dirac Hamiltonian Quantum Theory of Finite Systems,
for a given external field A%(x). MIT Press, Cambridge, MA (1986)

H = /d?’a: T () =iV Ay +mA? + A (@) |y ()

0@ =Y [bprutp Ve +dl o e 7| T= [ Gng ©

P,
DA

Find the linear superpositions of b, bT and d, dt which
diagonalize the Hamiltonian for a given A%(x).

Paul Hoyer GSI 2015
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Result of the diagonalization

H = Z E,cl e, (E, > 0)

where the ¢, are linear superpositions of the » and dT operators

' ' fficients X, and Y,
— X—i— JHh. TY.]:| Coe n n
Cn Z [( Jnbj + dJ n are given by the Dirac wf.
j=(p,\)

Cn destroys and CpT creates bound states: \n} = C,, ‘Q>

n has the quantum numbers of an electron. c, |Q> — 0

The vacuum ‘Q> — Nexp{ — Zb;(Z [(X,;[L)_lYgD kd};} \O>
g,k n

Js

shows the distribution of e*e~ pairs

(N 1s a normalization constant).
Paul Hoyer GSI 2015
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Dirac state as an eigenstate of H

Analogously to Positronium, define a relativistic electron state as

Yo (t, x): Electron field operator
M) = [ vt 2P (@)|2)

O (33) c-number Dirac spinor
H(t)|M,t) = M |M,t) H(t)[Q) =
implies the Dirac equation for ®: | — iV -7’y + my? + eA®(z)| ®(x) = M D(x)

This formulation provides a QFT description of the Dirac system.
The external field A%x) is not translation invariant (no concept of frame).

With the previous formulation of Positronium we can proceed to

A relativistically bound fermion-antifermion (meson) system.

Paul Hoyer GSI 2015
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Recap of lecture on Thursday 5.3.15

Q: Can there be an analytic, first-principles approach to hadrons?
It would have to be based on Perturbation Theory.

os(Q?) appears to freeze, as(0) = 0.5 may enable PT at O = 0.
Main features (confinement, CSB) must appear at lowest order in O
Born level = Classical gauge fields.

Homogeneous solution of Gauss’ law gives linear A"

Unique solution (one parameter /\), only color singlets allowed.
Determine bound states from H |E, P) = F |E, P)

Positronium in motion (P # 0).

Determine strongly bound Dirac states: Fock states with pairs.
Extend to relativistic ff states (strongly bound, any P).

Dynamical boost covariance.

Paul Hoyer GSI 2015
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f f bound states in D=1+1

A state with two fermions of energy £ and momentum P! = P ;

/2x2 c-numbered wif.
|E, P) = /dxlda:g U(t, 1) exp | 2iP(x1 4+ x2) | ®(z1 — 22)(t, 22)|0)

With P+ |0) = 0 these are eigenstates of the translation generators:

PYE, P) = P|E, P) Bound state has momentum P (by construction)
PO E,P) = FE|E,P) Bound state equation for ®(x) from QED action:

10y {01, ®(x)} + |[—2Poy + mos, ®(z)| = |E — V()| ®(2)

where V(ZIZ‘) — %62’213’ and WO = 03, ’Yl = 1072, 7Y = 01

Here the CM momentum P is a parameter, thus £ and ¢ depend on P .
Paul Hoyer GSI 2015
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Poincaré Generators of QED:

Derived from the Poincaré invariance of the action.
In Al =0 gauge, express A in terms of fermion fields via Gauss’ law:

2 ; / 4z (2) (—in 07Dy + mr )b ()

(Hamiltonian)

62
ST [ antay s a et - oo )

I
pl — Z/diﬂlec(iﬁ)(—ial)wf(x) (Space translation)
f
01 0pl | 1 1ot 3 5 1
MY =x°P +§ dx wf[:c 10101 — 101010 — 2% Ugmf}wf

2
. Z/diﬂldyl Viop(x) (¢ +y') |2t =yt [ ¢ (y)
r.r

01 = K-
Paul Hoyer GSI 2015 (M°' = K: Boost)
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Frame dependence of bound states

Boosts are dynamical transformations: /7 1s not ivariant.

In D=1+1 the Poincare Lie algebra is, with K the boost generator, H = PV:
PP P =0 PY K| =P PY K| =iP"

States are defined at equal time 1n all frames: This 1s a frame-dependent concept.
The Hamiltonian generates time translations, hence is frame dependent.

Correspondingly, the eigenvalue condition for H has no explicit covariance:

10y {01, ®(x)} + |—5Po1 + mo3, ®(z)] = |[E — V(z)|P(x)

Being derived from a Poincaré invariant action we may expect that it
has a dynamical covariance.

Paul Hoyer GSI 2015
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Boost covariance

“Miraculously”, the state 1s indeed covariant under boosts:

(1 — id¢K)|E, P) = |E + déP, P + d¢E)

This holds only for a linear potential and ensures that F/(P) = \/ P? + M?

The P-dependence of the wave function @ can be explicitly given in terms of
an invariant distance :

o(z)=(FE-V)* - P?
(I)P(O') — Y0 ¢/25(P=0) (0)6—%%(/2 Any P

— d  tanh(———1
E_V(g &4 tahi=-gmy

where  dx =

™~ Relativistic Lorentz contraction
Paul Hoyer GSI 2015
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The boost invariant length

The “kinetic 2-momentum”is  [["(z) = (P —eA)! = (E — V(2), P)

For a linear potential the bound state equation can be expressed

in terms of o = I1° only (E, P do not appear), with
“=0=(F—-V)* - P?
The solution in terms of o is valid frame independent, but o(x) depends on P.

A continuity condition 1s imposed at x = 0.
In general, a given x maps to values of o that depend on the frame (E, P).

0(x=0) = E%?— P2 . This ensures that the

mass eigenvalues M? = E?— P? have the correct frame dependence.
Paul Hoyer GSI 2015



Explicit Lorentz covariance: Bethe-Salpeter approach

The B-S wave function ® 1s defined Lorentz covariantly (here D=3+1)

<Q‘ T{&B(x2)wa(xl)} ’P> — e—iP'(x1+x2)/2 (I)gg(xl _ $2)

where | P > is any state with total momentum P, and €2 > is the vacuum.
The B-S wave function @ transforms simply under boosts. If P* = AP then

OF (2] — ay) = S(M)DP (21 — 22) 571 (A)

Since the time difference :1:8 — I(l) is frame-dependent, the B-S wt is not
simply related to the Fock state wi’s of a Hamiltonian approach.

The “Dyson-Schwinger” approach to

QCD uses boost covariant B-S wf’s and

amplitudes. The D-S equations are

formally exact but do not close,

requiring truncations and guesses for

the analytic form of some quantities.
Paul Hoyer GSI 2015
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Properties of the Dirac wave function in D=1+1

The Dirac matrices can be 0 > 0,1 —
represented as 2x2 Pauli matrices 7= 03 T =
and the potential is V(z) = e’z

The 2-component Dirac spinor then satisfies

|~ i010: + 3€°[x| + mos] { o } - M{ i(x) }

Eliminating the lower component,

O20(0) + i 0@ + [(M = V) = () =0,

The wf oscillates at large x: gp(x — OO) ~ eXp(::i62x2/4)

Hence it cannot be normalized, and there is no condition on M!
Paul Hoyer GSI 2015
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AUGUST 1, 1932 PHYSICAL REVIEW VOLUME 41

The Dirac Electron in Simple Fields*

By MiLTON S. PLESSET
Sloane Physics Laboratory, Yale University

(Received June 6, 1932)

The relativity wave equations for the Dirac electron are transformed in a
simple manner into a symmetric canonical form. This canonical form makes readily
‘possible the investigation of the characteristics of the solutions of these relativity
equations for simple potential fields. If the potential is a polvnomial of any degree
in x, a continuous energy spectrum characterizes the solutions. If the potential is a
polynomial of any degree in 1/x, the solutions possess a continuous energy spectrum
when the energy is numerically greater than the rest-energy of the electron: values
of the energv numerically less than the rest-energv are barred. When the potential
i1s a polynomial of any degree in #, all values of the energy are allowed. For poten-
tials which are polynomials in 1/7 of degree higher than the first, the energy spec-
trum is again continuous. The quantization arising for the Coulomb potential is an
exceptional case.

E. C. Titchmarsh, Proc. London Math. Soc. (3) 11 (1961) 159 and 169; Quart.

J. Math. Oxford (2), 12 (1961), 227.
Paul Hoyer GSI 2015
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Analytic solution of the Dirac equation
In terms of the variable o= (M —V)? = M? — e*|z|M + +e*z?
For x > 0, with ¢(x) real and y(x) imaginary, define: ¢ (0) = p(0) + x(0)

(o) = [(a 4 ib)1F1< _ @7 1, 2@'0) + (b+ia)2me(M — V) /o 1F1<1 _;mz, ;, 2i0>] exp(—io)

2 2

where a and b are real constants and m = m/e 1s the dimensionless parameter.

The solution for x < 0 1s defined by parity and the continuity condition at
x =0 fixes a/b. A solution 1s found for all M: The spectrum is continuous.

In the NR limit of large m/e, the eigenvalues M = m + E) become insensitive
to a/b, and (for a+b # 0) the wave function reduces to the Schrodinger solution:

Y(o)=(14+1)(a+ b)ﬁml/Bewm2/2—m/4Ai [m1/3(|aj\ - 2Eb)} [1 L0 (m—2/3) }
In the NR limit, the continuous range of M 1s restricted to a/b = —1.

Paul Hoyer GSI 2015



Dirac wave function for m/e = 2.5 40

Comparison of the Dirac ¢(x) wt. with the Schrodinger Ai solution Q(x):

NR region
wf /
11
07s mmm  Dirac @(X)
T = = Schrddinger p(x)
0.5¢
0.25/
0.25}
0.5

V=2m

The oscillations start at V(x) = 2m, where e*e- pairs can be created.

Paul Hoyer GSI 2015
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Constant particle density for |x| — o0 ?!

U(z — 00) ~ exp(iz®/4) = UiU(z — ) ~ const.

The virtual pairs created 1n the linear potential
contribute to the Dirac wave function: Duality. Cf. v — qq

The Poincaré invariance of the two-fermion bound states
allows to explicitly evaluate string breaking and the OZI rule:

0

*/l} Vs. ¢
N

A

<

i

2

A related, more familiar phenomenon is particle creation in
a constant electric field, V(x) = ¢ x, first studied by Schwinger (1951)
Paul Hoyer GSI 2015
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String breaking: A — B+C

The linear potential induces “string breaking”
at large separations of the quarks. The
Poincar€ invariant amplitude i1s given by 01
(2m)°

the wave function overlap (at r = 0): A ;
N
vV IN¢ C

X /d51d52 e'01P0 /27102 Pr 2Ty A0 (§1)® 4 (81 + 82) DL (82)]

(B,C|A) = — 6°(Pay — P — Pg)

4

The probability 1s suppressed by 1/N. : Previous results were leading in N..
When squared, this gives a hadron loop unitarity correction.
The complete O (o)) amplitude must be unitary!

S

Paul Hoyer GSI 2015
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Schwinger pair production

The imaginary part of the one-loop action in QED determines
the rate of e*e~ pair production in a constant electric field €

2

af? X1 nmwm _
2ImL = 2 Z ) exp ( - ) J. Schwinger, Phys. Rev. 82 (1951) 664

n=1

Schwinger’s potential is V(x) = £z

In D=1+1: V(x) = £x (no absolute sign)

The static electric field can create an
ete- pair with £ = 0 (off-shell).

By tunnelling into the region [V(z)| > m
the electron and positron gain energy
from the field and go on-shell: E > m.

They are then further accelerated by the field to z = + oo,
The oscillations in the Dirac wt. reflect the linearly increasing momentum.
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Example of electron tunneling in D=1+1

The tunnelling probability: Oz = 0)* x exp | — w(m/ 6)2}
|D(x — —00)]|?
V(z) = ie’z
{\ TP
0
mle =3 |
” |
2
1
|
W
20 s w0 s
Xe T 0
V=m

Work 1 ss with J-P Blaizot
Paul Hoyer GSI 2015 OrK In progress wi 1ZO
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Solutions of the ff bound state equation

To solve the fermion-antifermion bound state equation (here m; = mz = m)

10y {01, ®(x)} + |[—3 Po1 + mos, ®(z)| = |E — V()| ®(2)

we may expand the 2x2 wave function as @ = Op+01D1+02,Dr+03D5 .
We get two coupled equations, with no explicit £ or P dependence:

210,y () = Bo(0) 200, ®(0) = [1 . 4_””‘2] 5, (0)

o

The general solution is

Oy (o) =ce " a Fi (1 —im? 2,i0) + bU(1 —im?,2,i0)]

If b # 0 the wf @ is singular at 0 = 0. Requiring b = 0 the spectrum 1s discrete.

Note: This constraint only applies for m # 0.
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Non-relativistic limit

For m/e — o with E, = M—2m fixed the Hypergeometric functions become

| 5\ 2/3 s
aoe /2 Fi(1—im?,2,i0) = () e™™ Ai [(% )" (|| —2Eb)}
m

—io )2 925 - N o 2\2/3 Te ™ o1 N1/3/00
boe RU(L = im?, 2,i0) = —(2m) p s {A1 [(Zm) (2] 2Eb)}
+iBi [(gm)l/3(|;c| - 2Eb)”
The solution 1s normalizable in the NR limit \
only if b =0.

Exponentially
increasing

— @) (m=4)

p(x) (m=2) o
Oscillations at large ex

similar to the Dirac case.

Reflect fermions accele-
rated to high momenta
\/ by the linear potential.

30 32 34

— Nearly non-relativistic case: m = 4.0¢
— Schrodinger (Airy fn.) wi. o(x).
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Solutions for small fermion mass m

The solution simplifies . :
for m/e — 0 (I)l(a) - Nsm(

o) [1 + O (mz)}

DN |

Linear “Regge trajectories” Mﬁ = nme? [1 + O (m2) } (n=0,1.2,...)

The parity is (—1)"*! : No parity doublets for m # 0 !

4 2 )
m ] B, (o) Wf’s that are regular at

Recall: 105 Do (U) [ - 0 = 0 have discrete spectrum

Chiral symmetry appears only when m = 0 exactly. The wave function is
then regular for all M, and parity doublets exist.

String breaking (hadron loops) are probably important at small m.

However, the spectrum breaks chiral symmetry even without string breaking,
for any m # 0.
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Infinite Momentum Frame (IMF) = Light Front (LF)

The wf is frame invariant in terms of ¢ = (£-V)2-P2. Since V(x) = lxl :

:EzQ(Ei\/PQ—I—a)

o AP +0o/P
For P— »at fixedo: 2 ~2(E+P)+ — ~ ,

P (M?2=0)/P
Lower solution: x o< 1/P Lorentz-contracted “valence” region.

Upper solution: x = 4P — o QOscillations (pairs move to infinite x.

P :
Perturbatively: “Z-diagrams” get infinite /é

energy (k — ) in the P — oo limit. 5
k § s %

C.f.. HIO) =0 in LF quantization. 5

p*T =0 means p? = — ®© :

Explicitly: ®p_,o(0) = 2am P7+e_w/21F1(1 —im?,2,i0)
Paul Hoyer GSI 2015
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Frame (P) dependence of the solutions ( mizmz)

Comparison of ground and excited state wave functions
for P=0 (CM frame) and for P = 5e. (m1=1.0e¢ my=1.5¢e)

Moves away in IMF (P — < limit)

D+ Py D+, \P 5

: - | AT !

2 [ I\ 1.2; , ,|

’ . 1.04 1
0.8 | ||,"\'.
0.6
0.4 m=315[ |
0.2} \ ’
M

5 10 20 25 X 30

15
(b)
Note: In the IMF limit, only the normalizable, valence part of the wf remains.
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Quark - Hadron duality

The wave functions of highly excited (large mass M) bound states are similar
to free ff pairs (for V(x) << M). This determines their normalization:

k

e - AT
J P
kP °
The same result for
— |(I)()(x:0)|2 — |(D1(x:())|2 — J'E/Z j= S, P, V. A currents

The solutions are consistent with
Bloom-Gilman duality: Plane wave
partons in bound state wave function.

Paul Hoyer GSI 2015 B-G Duality
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Bloom-Gilman Duality

W. Melnitchouk et al, Phys. Rep. 406 (2005) 127

0.4 » $ JlabHallC - Resonance contributions
ep —> eN*
build DIS scaling in

M- = My + Q7 (——1)

Scattering dynamics is built into hadron wave functions.

We must understand relativistic bound states in motion.
Paul Hoyer GSI 2015
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Plane waves in bound states

In the parton picture, high energy quarks can be treated as free constituents.
They are momentum eigenstates, described by plane waves.
How does this fit into the bound state wave functions?

Consider a highly excited state (P=0): M — «©, V(x) << M
0=M-V)? =M?-2MV —x

B(0 — 00) ~ exp(Fic/2) = eFM" exp(Fiz M/2)

Thus oscillations of wf at large 0 gives plane wave with p = £M/2

The operator expression for the state 1s in this limit:

V2T b i
M, P =0)= oM (bM/2d—M/2+b M2 M/2)| )

As 1n the parton picture, only £ > O particles appear (no b or d operators).
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Bound state scattering amplitudes

In the usual Perturbative expansion the S-matrix is defined by

Spi= out<f!{Texp [—z/

— o0

oo

dt Hl(t)] } 0 in

where the in and out states are free, O(a) asymptotic states at 1 = + o,

The ff states bound by a linear potential are O(a) and Poincaré covariant.
They can be used as in and out states, defining the perturbative expansion.

Even the O(a) amplitudes have a rich dynamics (string breaking,...).
The feasibility of the perturbative approach to hadrons discussed here

requires that the main features of hadron dynamics are described at O(a)
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EM Form Factor (D = 1+1)

Fyp(z) = (B(Pp);t = +oo[j"(2) [A(Pa);t = —00) A, B:in & out states

EM current:

3 (2) = Dl i(z) = €7 (0)e

Gauge invariance 1s verified: 0, F X B (z) =0

Poincar€ invariance is verified (numerically).

In the Bjorken limit we can calculate the parton distribution.

2

1

TRj = ¢ M%:QQ(——1>%OO
2pa - q TBj

Paul Hoyer GSI 2015




Parton distributions have a sea component

The sea component i1s prominent at low mi/e :

m/e = 0.1

xg;f (xB;)
10¢

N A

(a)

0.2

04

0.6

0.8

1.0

xgif (xB;j)

M xBj

1

12}
10§

N A N X

55

(b)

(log scale in xp))

0.001

0.01

a X
0.050.1

The red curve 1s an analytic approximation, valid in the xp; — 0 limat.

Note: Enhancement at low x is not due to P

Paul Hoyer GSI 2015
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Check List: Done and To Do

An (o) Born term of hadrons should have:

e Poincaré (boost) invariance ¢ (mesons in D=1+1)

e Gauge invariance v’ (EM form factor)

e Duality v/ (Hadron vs. Parton wfs.)

e Quarkonium phenomenology ¢ (linear potential)

e Regge trajectories v/ (Geffen & Suura)

e Chiral symmetry breaking indication (no parity doublets)
e Unitarity to be verified (hadron loops)

e Light hadron spectrum to be studied

e Hadron scattering to be studied (dual diagrams)

Then, the G(a.s") corrections should be evaluated.

Success 1s guaranteed by QCD (if we did not break its rules).
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