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“Lattice  field theory is in most cases the 
only known systematic way of non-
perturbatively computing Green’s
functions in quantum  field theories”

Zoltan Fodor and Christian Hoelbling:
Light Hadron Masses from Lattice QCD
Rev. Mod. Phys. 84, 449 (2012)

Methods for QCD Bound States

Present consensus:

Analytic, perturbative expansions are ruled out … prematurely?

We don’t even look: Field theory textbooks neglect bound states.
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The rest frame (P = 0) energies of positronium (e+e−) atoms are known from Introductory Quantum Mechanics,

P 0 = 2me + Eb (2.5)

with binding energies Eb = − 1
4meα2/n2 ≃ −6.8 eV/n2 (at lowest order in α, for the principal quantum number

n = 1, 2, . . .). Hence the elastic e+e− amplitude G(e+e− → e+e−) has an infinite set of positronium poles just below
threshold (Eth

CM = 2me), and slightly below the real s = E2
CM -axis due to the finite life-times. How are these poles

generated by the Feynman diagrams describing G?

We may regard the positions of the bound state poles in s = (2me + Eb)2 as functions of Eb, i.e., of α. A Feynman
diagram of O (αn) cannot have a pole in α at any finite order n. The only way to generate a bound state pole in
G is for the perturbative expansion to diverge1! This sounds surprising at first, since we are used to trusting QED
perturbation theory. The poles exist for any α, however small. Thus some nominally higher order diagrams, such as
those in Fig. 2(b-d), must be effectively of the same order in α as the Born term (a).
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FIG. 2: Feynman diagrams contributing to elastic e+(p1)e
−(p2) scattering. The arrows indicate the fermion direction. The

momentum of the upper line is in the antifermion (e+) direction, thus p01 > 0.

The breakdown of the perturbative expansion is actually familiar from classical physics, where phenomena involving
many photons dominate. For example, the notion that opposite charges attract while like charges repel cannot be
explained by just the Born term in Fig. 2. This diagram changes sign if the positron is replaced by an electron, so its
absolute square is invariant. The product of diagrams (a) and (b), on the other hand, contributes with opposite signs
to σ(e±e− → e±e−). Thus our everyday experience of attraction and repulsion originates from quantum interference
effects.

Higher order diagrams have not only more vertices ∝ e but also more propagators, which are enhanced at low
momenta. Typical momentum exchanges in atoms are of the order of the Bohr momentum2, and electron energy
differences then follow from non-relativistic dynamics:

|q| ∼ αme q0 ∼ q2/2me ∼ 1
2α

2me (2.6)

The Born diagram of Fig. 2(a) scales with α as

G[2(a)] ∼ α/q2 ∼ α/q2 ∼ 1/α (2.7)

The box diagram 2(b) has four vertices, giving a factor e4 ∼ α2. The two photon propagators contribute 1/q2 ∼ α−2

each. The electron and positron propagators are off-shell on the order q0 ∼ k0, each propagator being of O
(
α−2

)
.

The relevant region of loop momentum is
∫
dk0 d3k ∼ α2 (α)3 ∼ α5. Altogether,

G[2(b)] ∼ α2 (α−2)2 (α−2)2 α5 ∼ 1/α ∼ G[2(a)] (2.8)

A similar analysis shows that “ladder” diagrams with any number of photon exchanges are of O
(
α−1

)
and thus of

the same order in α as the Born diagram (2.7). This allows the perturbative series to diverge for any α. Note that
the above counting requires the initial and final momenta p1, . . . p4 of the scattering to themselves satisfy the scaling
(2.6): As α → 0 the external momenta need to be correspondingly decreased. Conversely, the initial and final states
do not couple to the bound states in a “hard” scattering process where the momentum exchange |q| ≫ αme. Then
⟨P |i⟩ ∼ ⟨f |P ⟩ ≃ 0 in (2.4) and bound state contributions can be ignored. In the following we shall see more such

1 This divergence is distinct from that due to perturbative expansions being asymptotic series [1].
2 In calculations of higher order corrections to physical quantities other momentum scales must be considered as well.

+ Looks 
complicated…
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Hadrons in Perturbative QCD?!

• PQCD is highly constrained – is it not ruled out for hadrons?

• To begin, we need to understand the principles of PQED bound states 
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+
Why are higher
order diagrams

important?

• Color singlet states can have an (exactly) linear potential at O(αs0)⇒
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“QCD is about to undergo a faith transition: 
we are getting ready to convince ourselves 
to talk about “quarks and gluons” down to, 
and into, the InfraRed.”

“To embark on such a quest one should believe in 
legitimacy of using the language of quarks and gluons 
down to small momentum scales, which implies 
understanding and describing the physics of 
confinement in terms of the standard QFT machinery, 
that is, essentially, perturbatively.”

Support for Soft Perturbative QCD

Yu. Dokshitzer: 
Perturbative QCD Theory (Includes our knowledge of αs) 
Plenary talk at ICHEP 98, Vancouver. hep-ph/9812252
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Gribov’s Perturbative Confinement (1991-95)

According to Gribov, confinement sets in when the Coulomb interaction 
between fermions causes a rearrangement of the vacuum:

34

the IMF wave function �A

IMF

given in (5.45). However, the mass of the final state M
B

/ Q. Hence the variable
�
B

/ Q2, making the IMF limit (5.45) (taken at fixed �) inapplicable for B. In fact, the first two terms in (5.9)
give the leading contribution to �

B

(�
B

), but they are orthogonal to �A

IMF

in the trace Tr
⇥

�†
B

(x)�
A

(x)
⇤

of the form
factor (5.51). Thus the scaling contribution to the parton distribution arises from the leading term in �

B

combined
with the next-to-leading term in �

A

, and vice versa. In particular, the enhancement for x
Bj

! 0 in Fig. 18 does not
arise from �A

IMF

.

VI. RELATIVISTIC BOUND STATES IN D = 3 + 1

So far we considered three examples of “Born level” bound states in abelian gauge theory. In this approximation the
gauge field is determined by the classical field equations and explicit pair production is ignored (H |0i = 0).

1. QED atoms. For small ↵ the ladder diagrams (Figs. 2a, 2b, . . . ) dominate near the bound state poles of the
elastic e+e� amplitude. Their sum generates the classical �↵/r potential. The Schrödinger equation follows
from H

QED

|Ei = E |Ei, when the state |Ei is defined as in (2.66) and the classical A0 field is used in H
QED

.

2. The Dirac equation. A static point charge generates the confining potential V (x) = 1
2 |x| in D = 1+1 dimensions.

The state (3.11) is an eigenstate of H
QED

if the wave function  (x) satisfies the Dirac equation. Virtual e+e�

pairs (Fig. 12) appear for V (x) & 2m (Fig. 14), giving a constant particle density | (x)|2 at large |x|.

3. ff̄ states in D = 1 + 1. The state |E,P i of (5.1) is bound when its equal-time wave function � satisfies (5.5),
with V (x) determined by Gauss’ law. A hidden boost covariance ensures that electromagnetic form factors are
Poincaré as well as gauge invariant. There is no parity doubling as m ! 0.

In this Section we consider how this approach may be extended to QCD hadrons in D = 3 + 1 dimensions.

Gribov [35, 36] found a critical coupling in gauge theories,

↵crit(QED) = ⇡

 

1�
r

2

3

!

' 0.58 ↵crit

s

(QCD) =
⇡

C
F

 

1�
r

2

3

!

' 0.43 (6.1)

at which the Coulomb interaction between light fermions becomes strong enough to cause a rearrangement of the
perturbative vacuum. In QED ↵ ' 1/137 is well below the critical value, whereas ↵

s

(m
⌧

) ' 0.33 in QCD [37]. ↵
s

(Q)
approaches the critical value (6.1) for Q < m

⌧

.

Dokshitzer [38] has argued that confinement may be described by a classical field. In order to preserve Poincaré
invariance such a field must satisfy the QCD equations of motion. Gauss’ law fixes A0 up to a boundary condition.
We shall consider solutions with a constant, universal field strength |rA0| at large distances. A mass scale (⇤

QCD

)
can only arise from a boundary condition when loop e↵ects are neglected.

A. The abelian case

We begin by illustrating the procedure for U(1) gauge theory (even though it is not relevant for QED). In our
discussion of Positronium we recalled that stationarity of the action imposes Gauss’ law (2.60) on the Coulomb field.
The operator solution (2.61) for Â0 assumes that the field vanishes at spatial infinity. Let us consider the possibility
of including a homogeneous solution16,

Â0(t,x) =

Z

d3y

✓

x · y +
e

4⇡|x� y|

◆

 † (t,y) (6.2)

Here  is an x-independent parameter which will be determined to give a universal field strength for |x| ! 1. The
O () contribution will be considered leading compared to the perturbative O (e) term.

16 The formulation below di↵ers technically from that in [25], but the principles and results are the same.
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� 1

137

& ↵s(m
2
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αscrit/π = 0.14 may be sufficiently small to allow  

PQCD to remain viable down to Q2=0.

See Yu. Dokshitzer, sect. 2.4 of hep-ph/0306287
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9. Quantum chromodynamics 33

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  

0.1
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Figure 9.4: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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Pinch Technique

J. M. Cornwall; 
A. C. Aguilar, D. Binosi, J. Papavassiliou,  
J. Rodriguez-Quintero, PRD 80 (2009) 085018

power-law type of running [48,49], given by (see the
Appendix for details)

m2ðq2Þ ¼ m4
0

q2 þm2
0

!
ln
"
q2 þ 2m2

0

!2
QCD

#
= ln

"
2m2

0

!2
QCD

#$
3
: (4.5)

Notice that when q2 ! 0 one hasm2ð0Þ ¼ m2
0. A variety of

theoretical and phenomenological estimates place it in the
range m0 ¼ 350–700 MeV [1,3,36,50]. In Fig. 11 we plot
the behavior of m2ðq2Þ as given by Eq. (4.5), for the two
valuesm0 ¼ 500 MeV andm0 ¼ 600 MeV, which will be
used in the rest of this section.

On the left panel of Fig. 12, we show the results for
!PTðq2Þ when m0 ¼ 500 MeV in Eq. (4.5). The small
discrepancy between the three curves is mainly due to

the propagation of the tiny residual " dependence dis-
played by the quantity d̂ðq2Þ as shown in Fig. 9. One clearly
sees that the effective coupling !PTðq2Þ freezes out and
acquires a finite value in the IR, while in the UV it shows
the expected perturbative behavior. For m0 ¼ 500 MeV,
one gets !PTð0Þ % 0:6. One should also notice that the
choice of smaller values of m0 would not produce a mono-
tonically decreasing !PTðq2Þ; instead, one observes the
appearance of ‘‘bumps’’ in the IR region. Therefore if
one were to introduce the monotonic decrease as an addi-
tional requirement of !PTðq2Þ, this would provide a lower
bound for the possible values of m0. Finally, on the right
panel of Fig. 12, we show the effective coupling for the
case m0 ¼ 600 MeV. Now, the freezing occurs at the
slightly higher value of !PTð0Þ % 0:85. Evidently, the
freezing value !PTð0Þ increases as one goes to higher
values of m0.
An accurate fit for the running charges shown in Fig. 12

is provided by the following functional form

!ðq2Þ ¼
!
4#b ln

"
q2 þ hðq2; m2ðq2ÞÞ

!2
QCD

#$&1
; (4.6)

with the function hðq2; m2ðq2ÞÞ given by

hðq2; m2ðq2ÞÞ ¼ $1m
2ðq2Þ þ $2

m4ðq2Þ
q2 þm2ðq2Þ : (4.7)

Our best fits to the numerical results for !PTðq2Þ using
Eq. (4.6) above are shown in Fig. 13.
Finally, we compare numerically the two effective

charges, !PTðq2Þ and !ghðq2Þ. The results are shown in

Fig. 14, where r̂ðq2Þ is compared with d̂ðq2Þ (left panel),
and !ghðq2Þ with !PTðq2Þ (right panel). As anticipated, the
curves coincide in the deep IR and UV, and differ only
slightly in the intermediate region. To produce both curves,
we have factored out a mass of m0 ¼ 500 MeV, whose

FIG. 11 (color online). The behavior of the running mass given
by Eq. (4.5) when m0 ¼ 500 MeV (black continuous line) and
m0 ¼ 600 MeV (red dashed line). In both cases we used
!QCD ¼ 300 MeV.

FIG. 12 (color online). Left panel: The running charge obtained from (2.30) using the SDE solutions for "ðq2Þ, Dðq2Þ, and 1þ
Gðq2Þ. We use a running mass given by Eq. (4.5) with m0 ¼ 500 MeV. Right panel: The same for m0 ¼ 600 MeV.

A. C. AGUILAR et al. PHYSICAL REVIEW D 80, 085018 (2009)

085018-14

J. Messchendorp, 1306.6611

↵s(Q ! 0) ! 1

Theory & Phenomenology Popular view of confinement≠
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The OZI Rule suggests that  αs(0) is small

�(1020) ! KK̄ 83.1 %ϕ
s
s
_

u

u
_

K

K
_ ΔE

26 MeV

Br

�(1020) ! ⇡⇡⇡ ϕ π
π
π

u

u
_

s

s
_

15.3 %610 MeV

Disconnected, perturbative diagrams are suppressed

Connected diagrams: Unsuppressed, string breaking from confining potential

This indicates αs(300 MeV)/π  << 1
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Similarity of atomic and hadronic spectra

V (r) = ��

r
V (r) = c r � 4

3

�s

r
PQED: PQCD?

Adapted from presentation by J. Ritman (2005)
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Positronium Charmonium

“The J/ψ is the Hydrogen atom of QCD”
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QM I: The Hydrogen atom

h
� r2

2me
� ↵

|x|

i
�(x) = Eb �(x)

Schrödinger equation (postulated):

Ground state 
binding energy: Eb = � 1

2me ↵
2                    O(α2)

Wave function:  �(x) = N exp(�↵me |x|) all orders of α

How does the Schrödinger equation emerge from Perturbative QED?

Why does the perturbative series in α diverge for bound states?
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PQED is very successful for atoms

�E = E(ortho)� E(para) �⌫ = �E/2⇡~
Orthopositronium: JPC = 1�� Parapositronium: JPC = 0�+

M. Baker et al, 1402.0876

7

where the products imply convolutions over four-momenta similar to that in (2.19). This equation is valid provided
the kernel satisfies

K = (1 +G
T

S)�1G
T

= G
T

�G
T

S G
T

+ ... (2.22)

Thus the “propagator” S may in fact be chosen freely. The expansion of K in ↵ follows from the corresponding
expansions of S and G

T

. As a consequence of unitarity the residues of the bound state poles of G
T

factorize into a
product of wave functions similarly as in (2.17). Since the finite order kernel K in (2.21) cannot have a bound state
pole the Bethe-Salpeter wave function �P

T

(with external propagators truncated) must satisfy

�P

T

(q) ⌘
Z

d4x�P

T

(x)eiq·x =

Z

d4k

(2⇡)4
�P

T

(k)S(k)K(k, q) (2.23)

which is the all-orders equivalent4 of (2.19). With a suitable choice of the propagator S analytic expressions for the
wave functions are obtained when the lowest order kernel is used in the BSE. These solutions facilitate calculations
of higher order corrections to the binding energies [2].

The wide range of possibilities in the choice of propagator in the BSE motivated a search for an optimal approach
based on physical arguments. The perturbative expansion relies on the non-relativistic nature of atoms, v/c ' ↵ ⌧ 1.
This suggested the use of an e↵ective QED Lagrangian (NRQED) [7], which is essentially an expansion of the standard
Lagrangian in inverse powers of m

e

. At the expense of introducing more interactions the NRQED Lagrangian allows
to use non-relativistic dynamics, which is of great help in high order calculations [3]. The contribution of relativistic
momenta (p ⇠ m

e

) in positronium is only of O
�

↵5
�

⇠ 10�11, making NRQED very e�cient.

The continuous development of theoretical and experimental techniques have allowed precision tests of QED using
bound states. Thus the hyperfine splitting in positronium, i.e., the energy di↵erence �E between orthopositronium
(JPC = 1��) and parapositronium (JPC = 0�+), expressed in terms of �⌫ ⌘ �E/2⇡~, is calculated using NRQED
methods to be [8]

�⌫
QED

= m
e

↵4

⇢

7

12
� ↵

⇡

✓

8

9
+

ln 2

2

◆

+
↵2

⇡2



� 5

24
⇡2 ln↵+

1367

648
� 5197

3456
⇡2 +

✓

221

144
⇡2 +

1

2

◆

ln 2� 53

32
⇣(3)

�

�7↵3

8⇡
ln2 ↵+

↵3

⇡
ln↵

✓

17

3
ln 2� 217

90

◆

+O
�

↵3
�

�

= 203.39169(41) GHz (2.24)

Table 1: Summary of systematic errors.

Source Errors in �HFS (ppm)

Material E�ect:

o-Ps pick-o� 3.8

Gas density measurement 1.0

Thermalization of Ps 1.0

Magnetic Field:

Non-uniformity 3.0

O�set and reproducibility 1.0

NMR measurement 1.0

RF System:

RF power 0.7

QL value of RF cavity 0.3

RF frequency 1.0

Analysis:

Choice of energy window 0.6

Quadrature sum 5.4

considered in the previous experiments, fitting without taking

into account the time evolution of �HFS and �pick is performed.

The fitted Ps-HFS value with an assumption that Ps is well ther-

malized results in 203.392 1(16) GHz. Comparing it with Eq.
(15), the non-thermalized o-Ps e�ect is evaluated to be as large

as 10 ± 1 ppm in the timing window we used. This e�ect might
be larger if no timing window is applied, since it depends on the

timing window used for the analysis. In the timing window of

0–50 ns, which we do not use for the analysis, Ps-HFS is dra-

matically changing because Ps is not well thermalized and Ps

velocity is still rapidly changing.

Systematic errors are summarized in Table 1. The largest

contribution is an uncertainty of o-Ps pick-o� rate (�pick(n,�)).
It is estimated by taking the error of the fitting of the o-Ps decay

curve. The uncertainty of the gas density is computed from the

uncertainties of the gas pressure and temperature, resulting in

1.0 ppm uncertainty. The uncertainty of Ps thermalization e�ect

comes from the uncertainties of �m and E0. The second largest
contribution is an uncertainty of the static magnetic field. Dis-

tribution of the static magnetic field is measured by the NMR

magnetometer with the same setup as Ps-HFS measurement for

twice (before and after the measurement). The results of the

two measurements are consistent with each other and the non-

uniformity is weighted by the RF magnetic field strength and

distribution of Ps formation position, which results in 1.5ppm

RMS inhomogeneity. The strength of the static magnetic field

is measured outside of the RF cavity during the run. An o�set

value at this point is measured during the measurement of the

magnetic field distribution, and its uncertainty including repro-

ducibility is 0.5 ppm. The precision of magnetic field measure-

ment is 0.5 ppm, which comes from the polarity-dependence

of the NMR probe. These uncertainties are doubled because

�HFS is approximately proportional to the square of the static

magnetic field strength. The uncertainty of RF power meter re-

sults in 0.7 ppm systematic error. The QL value of the cavity

is measured before and after each run, and the uncertainty is

 (GHz)HFS∆

203.386 203.388 203.39 203.392 203.394 203.396

Old method

a

b

This measurement

Previous experimental
                  average

) QED-1
αln3

αO(

Figure 5: Summary of �HFS measurements from past experiments and this

work. The circles with error bars are the experimental data (a�[4], b�[5]),
the hatched band is the average of the previous experiments (a and b), and the

black band is the QED calculation [6, 7, 8].

estimated by the di�erence between them. The uncertainty of
microwave frequency causes 1.0 ppm systematic error. Anal-

ysis with energy window of 511 keV ± 1.5 s.d.(� 26 keV) has
been performed, and the result has changed by 0.6 ppm. This

change is taken into account as a systematic error.

The systematic errors discussed above are regarded as in-

dependent, and the total systematic error is calculated to be

their quadrature sum. When the non-thermalized Ps e�ect is

included, our final result with the systematic errors is

�HFS = 203.394 1±0.001 6(stat.)±0.001 1(sys.) GHz.(16)
A summary plot of �HFS measurements is shown in Fig. 5. Our
result favors the QED calculation within 1.2 s.d., although it

disfavors the previous experimental average by 2.7 s.d.

6. Conclusion

A new precision measurement of Ps-HFS free from possible

common uncertainties from Ps thermalization e�ect was per-
formed to check the Ps-HFS discrepancy. The e�ect of non-

thermalized o-Ps was evaluated to be as large as 10 ± 1 ppm
in a timing window we used. This e�ect might be larger than
10 ppm if no timing window is applied, since it depends on

timing window. Including this e�ect, our new experimental

value results in �HFS = 203.394 1 ± 0.001 6(stat., 8.0 ppm) ±
0.001 1(sys., 5.4 ppm)GHz. It favors theO(�3 ln��1) QED cal-
culation within 1.2 s.d., although it disfavors the previous mea-

surements by 2.7 s.d.
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FIG. 4: Data on positronium hyperfine splitting
compared to theory. Two previous results (a [9],
b [10]) compared to a new measurement [11] and
QED [8] (black band). Figure from [11].

The appearance of ln↵ in (2.24) demonstrates that bound state
perturbation theory indeed di↵ers from the usual expansions of
scattering amplitudes. Such factors arise from apparent infrared
divergences which are regulated by the neutrality of positronium
at the scale of the Bohr radius (↵m

e

)�1.

The combined result of the two most precise measurements
of the hyperfine splitting in positronium [9, 10] is �⌫

EXP

=
203.38865(67) GHz, which is more than 3� from the QED value
(2.24). Very recently a new measurement [11] gave �⌫

EXP

=
203.3941 ± .0016 ± .0011 GHz, which is closer to the theoretical
value. The present situation is illustrated in Fig. 4.

Bound state poles in the photon propagator a↵ect also standard
perturbative calculations. The positronium contribution to the
anomalous magnetic moment of the electron was recently evalu-
ated [12]. It was found to be of the same order as state-of-the-art
five-loop calculations – and several times bigger than the weak
corrections.

The successes of QED have inspired the use of analogous methods for the other interactions. In particular, Bethe-
Salpeter and Dyson-Schwinger equations have been extensively applied in QCD (see [13] and references therein).

4 In (2.19) a factor P

0 � E

q+ � E

q� was extracted from the wave function  (q).

... + + ...

2

tions. The nonannihilation and one-photon annihilation
parts constitute about 47% and 32% of the second-order
nonlogarithmic correction, respectively. Thus the one-
photon annihilation contribution to the coefficient D pre-
sumably gives a significant fraction of the total nonloga-
rithmic third-order correction.

In the following, we briefly outline our method of
calculation. Perturbation theory of the positronium
bound state has to be developed about the nonrelativis-
tic Coulomb approximation rather than free electron and
positron states. This can be done within the nonrel-
ativistic effective field theory [29], which is a system-
atic way to separate the multiple scales characteristic
to the bound-state problem. The bound-state dynam-
ics involves three different scales: the hard scale of elec-
tron mass me, the soft scale of the bound-state three-
momentum αme, and the bound-state energy α2me. In-
tegrating out the hard and soft degrees of freedom results
in the potential nonrelativistic QED (pNRQED) [30], an
effective Schrödinger theory of a nonrelativistic electron-
positron pair interacting with ultrasoft photons, which
is a relevant framework for the calculation of the QED
corrections to the positronium spectrum. We use dimen-
sional regularization to deal with spurious divergences
which appear in the process of scale separation. System-
atic use of dimensional regularization [19, 31, 32] based
on the asymptotic expansion approach [33, 34] is instru-
mental for the high-order analysis as it provides “built
in” matching of the effective theory calculations to full
QED.

The positronium HFS is given by the difference be-
tween the binding energy of the ortho and parapositron-
ium states ∆ν = Eo − Ep. The leading order result can
be written as ∆νLO =

([

1
3

]

sct
+
[

1
4

]

ann

)

α4me, where
nonannihilation (scattering) and one-photon annihilation
contributions are given separately. By spin/parity con-
servation only the orthopositronium state is affected by
the one-photon annihilation. The corresponding correc-
tion to the binding energy Eo can be obtained by study-
ing the threshold behavior of the vacuum polarization
function Π(q2)

(

qµqν − gµνq
2
)

Π(q2) = i

∫

ddx eiqx ⟨0|T jµ(x)jν(0)|0⟩.

(6)
where jµ is the electromagnetic current, q2 = (2me + E)2

and E is the energy counted from the threshold. Only
one-particle irreducible contributions are retained on the
right-hand side of Eq. (6) and the on-shell renormaliza-
tion of the QED coupling constant requires Π(0) = 0.
The vacuum polarization function has bound-state poles
at approximately Coulomb energies EC

n = −α2me/(4n2)
with spin (orbital) angular momentum S = 1 (l = 0).
Near the orthopositronium ground-state energy Eo =

(a) (b)

FIG. 1. Three-loop Feynman diagrams contributing to (a) Ro

and (b) Po.

EC
1 +O(α4) it reads

lim
E→E′

o

Π(q2) =
α

4π

Ro

E/E′
o − 1− iε

, (7)

where E′
o stands for Eo without the total one-photon an-

nihilation contribution. The pole position differs from
the physical orthopositronium mass since the vacuum
polarization function is defined as the one-particle irre-
ducible contribution to the current correlator (6). By
subtracting the pole one gets the regular part of the vac-
uum polarization function at E = E′

o

Po = lim
E→E′

o

(

e2Π(q2)−
α2Ro

E/E′
o − 1− iε

)

. (8)

Within the quantum-mechanical perturbation theory of
pNRQED it is straightforward to derive the following ex-
pression for the one-photon annihilation contribution to
the HFS

∆1−γ
annν = ∆1−γ

annEo =
α4me

4

Ro

1 + Po
. (9)

The factor Ro in this equation has a natural interpre-
tation: annihilation is a local process which probes the
positronium wave function at the origin and the residue
of Eq. (7) defines this quantity in full QED beyond non-
relativistic quantum mechanics. On the other hand the
factor 1/(1+Po) results from the Dyson resummation of
the vacuum polarization corrections to the off-shell pho-
ton propagator in the annihilation amplitude. Eq. (9)
can be computed order by order in perturbation theory

∆1−γ
annν =

α4me

4

[

1 +
∑

n=1

(α

π

)n

h(n)

]

, (10)

where the coefficients h(n) are determined by the series
Ro = 1 +

∑

n=1

(

α
π

)n
r(n) and Po =

∑

n=1

(

α
π

)n
p(n) so

that h(1) = r(1) − p(1) and so on. For the calculation
of the third order corrections to the HFS we need all
coefficients r(n) and p(n) up to n = 3. Typical three-
loop Feynman diagrams contributing to Ro and Po are
presented in Fig. 1.
The first-order coefficients get only a one-loop hard

contribution r(1) = −4 and p(1) = 8/9, which yields
h(1) = −44/9. In the second order the soft scale starts

+

Example: Hyperfine splitting in Positronium at O(α7)

NRQED
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12QED vs Data: Hyperfine splitting in Positronium

ΔνEXP = 203.38865(67) GHz  (1984) 

ΔνEXP = 203.3941± .003 GHz (2013)

ΔνQED = 203.39169(41) GHz

7

where the products imply convolutions over four-momenta similar to that in (2.19). This equation is valid provided
the kernel satisfies

K = (1 +G
T

S)�1G
T

= G
T

�G
T

S G
T

+ ... (2.22)

Thus the “propagator” S may in fact be chosen freely. The expansion of K in ↵ follows from the corresponding
expansions of S and G

T

. As a consequence of unitarity the residues of the bound state poles of G
T

factorize into a
product of wave functions similarly as in (2.17). Since the finite order kernel K in (2.21) cannot have a bound state
pole the Bethe-Salpeter wave function �P

T

(with external propagators truncated) must satisfy

�P

T

(q) ⌘
Z

d4x�P

T

(x)eiq·x =

Z

d4k

(2⇡)4
�P

T

(k)S(k)K(k, q) (2.23)

which is the all-orders equivalent4 of (2.19). With a suitable choice of the propagator S analytic expressions for the
wave functions are obtained when the lowest order kernel is used in the BSE. These solutions facilitate calculations
of higher order corrections to the binding energies [2].

The wide range of possibilities in the choice of propagator in the BSE motivated a search for an optimal approach
based on physical arguments. The perturbative expansion relies on the non-relativistic nature of atoms, v/c ' ↵ ⌧ 1.
This suggested the use of an e↵ective QED Lagrangian (NRQED) [7], which is essentially an expansion of the standard
Lagrangian in inverse powers of m

e

. At the expense of introducing more interactions the NRQED Lagrangian allows
to use non-relativistic dynamics, which is of great help in high order calculations [3]. The contribution of relativistic
momenta (p ⇠ m

e

) in positronium is only of O
�

↵5
�

⇠ 10�11, making NRQED very e�cient.

The continuous development of theoretical and experimental techniques have allowed precision tests of QED using
bound states. Thus the hyperfine splitting in positronium, i.e., the energy di↵erence �E between orthopositronium
(JPC = 1��) and parapositronium (JPC = 0�+), expressed in terms of �⌫ ⌘ �E/2⇡~, is calculated using NRQED
methods to be [8]
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Table 1: Summary of systematic errors.

Source Errors in �HFS (ppm)

Material E�ect:

o-Ps pick-o� 3.8

Gas density measurement 1.0

Thermalization of Ps 1.0

Magnetic Field:

Non-uniformity 3.0

O�set and reproducibility 1.0

NMR measurement 1.0

RF System:

RF power 0.7

QL value of RF cavity 0.3

RF frequency 1.0

Analysis:

Choice of energy window 0.6

Quadrature sum 5.4

considered in the previous experiments, fitting without taking

into account the time evolution of �HFS and �pick is performed.

The fitted Ps-HFS value with an assumption that Ps is well ther-

malized results in 203.392 1(16) GHz. Comparing it with Eq.
(15), the non-thermalized o-Ps e�ect is evaluated to be as large

as 10 ± 1 ppm in the timing window we used. This e�ect might
be larger if no timing window is applied, since it depends on the

timing window used for the analysis. In the timing window of

0–50 ns, which we do not use for the analysis, Ps-HFS is dra-

matically changing because Ps is not well thermalized and Ps

velocity is still rapidly changing.

Systematic errors are summarized in Table 1. The largest

contribution is an uncertainty of o-Ps pick-o� rate (�pick(n,�)).
It is estimated by taking the error of the fitting of the o-Ps decay

curve. The uncertainty of the gas density is computed from the

uncertainties of the gas pressure and temperature, resulting in

1.0 ppm uncertainty. The uncertainty of Ps thermalization e�ect

comes from the uncertainties of �m and E0. The second largest
contribution is an uncertainty of the static magnetic field. Dis-

tribution of the static magnetic field is measured by the NMR

magnetometer with the same setup as Ps-HFS measurement for

twice (before and after the measurement). The results of the

two measurements are consistent with each other and the non-

uniformity is weighted by the RF magnetic field strength and

distribution of Ps formation position, which results in 1.5ppm

RMS inhomogeneity. The strength of the static magnetic field

is measured outside of the RF cavity during the run. An o�set

value at this point is measured during the measurement of the

magnetic field distribution, and its uncertainty including repro-

ducibility is 0.5 ppm. The precision of magnetic field measure-

ment is 0.5 ppm, which comes from the polarity-dependence

of the NMR probe. These uncertainties are doubled because

�HFS is approximately proportional to the square of the static

magnetic field strength. The uncertainty of RF power meter re-

sults in 0.7 ppm systematic error. The QL value of the cavity

is measured before and after each run, and the uncertainty is

 (GHz)HFS∆

203.386 203.388 203.39 203.392 203.394 203.396

Old method

a

b

This measurement

Previous experimental
                  average

) QED-1
αln3

αO(

Figure 5: Summary of �HFS measurements from past experiments and this

work. The circles with error bars are the experimental data (a�[4], b�[5]),
the hatched band is the average of the previous experiments (a and b), and the

black band is the QED calculation [6, 7, 8].

estimated by the di�erence between them. The uncertainty of
microwave frequency causes 1.0 ppm systematic error. Anal-

ysis with energy window of 511 keV ± 1.5 s.d.(� 26 keV) has
been performed, and the result has changed by 0.6 ppm. This

change is taken into account as a systematic error.

The systematic errors discussed above are regarded as in-

dependent, and the total systematic error is calculated to be

their quadrature sum. When the non-thermalized Ps e�ect is

included, our final result with the systematic errors is

�HFS = 203.394 1±0.001 6(stat.)±0.001 1(sys.) GHz.(16)
A summary plot of �HFS measurements is shown in Fig. 5. Our
result favors the QED calculation within 1.2 s.d., although it

disfavors the previous experimental average by 2.7 s.d.

6. Conclusion

A new precision measurement of Ps-HFS free from possible

common uncertainties from Ps thermalization e�ect was per-
formed to check the Ps-HFS discrepancy. The e�ect of non-

thermalized o-Ps was evaluated to be as large as 10 ± 1 ppm
in a timing window we used. This e�ect might be larger than
10 ppm if no timing window is applied, since it depends on

timing window. Including this e�ect, our new experimental

value results in �HFS = 203.394 1 ± 0.001 6(stat., 8.0 ppm) ±
0.001 1(sys., 5.4 ppm)GHz. It favors theO(�3 ln��1) QED cal-
culation within 1.2 s.d., although it disfavors the previous mea-

surements by 2.7 s.d.
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 The perturbative S-matrix

The in and out states are O(α0), non-interacting states at t = ± ∞.
They get dressed by HI as they propagate from the asymptotic times.

The lack of an EM field around the in and out electrons implies that
we expand around unphysical states.
This causes infrared divergencies, which are cured (order-by-order) by 
adding (the missing) soft photons to the in and out states. E.g.:

γ*
e+

e–

e+

e–
+

γ*
e+

e–

e+

e–
γ

Sfi = out

hf |
⇢
Texp

h
� i

Z 1

�1
dtHI(t)

i�
|ii

in

Q
Λ

�⇤ ! e+e� �⇤ ! e+e��
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Perturbative sum for QED atoms

Bound state poles do not appear in any single Feynman diagram

 – they are generated by the divergence of the perturbative sum

+ + + ...++ + + ...+ + + + ...+=

p1

p2

e–

=
R

(p1 + p2)2 �M2
+ . . .

e+
γ

How it works:

Bohr momenta
|q| ~ αm

q

The EM field which binds the atom was neglected in the in and out states.

All ladder diagrams are of the same order in α for atomic kinematics: |q| ~ αm

The ladder sum regenerates the neglected classical Coulomb field: V(r) = –α/r

and gives the Schrödinger eq. for the wave function R
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Born level bound states

The Born term is the lowest order contribution to any perturbative amplitude.
It is given by tree diagrams (no loops) 

The Schrödinger atom is described 
by tree diagrams, e– scattering from 
the classical photon field + + + …

e–(p)

A0

✖ ✖ ✖ ✖ ✖ ✖

4

The rest frame (P = 0) energies of positronium (e+e−) atoms are known from Introductory Quantum Mechanics,

P 0 = 2me + Eb (2.5)

with binding energies Eb = − 1
4meα2/n2 ≃ −6.8 eV/n2 (at lowest order in α, for the principal quantum number

n = 1, 2, . . .). Hence the elastic e+e− amplitude G(e+e− → e+e−) has an infinite set of positronium poles just below
threshold (Eth

CM = 2me), and slightly below the real s = E2
CM -axis due to the finite life-times. How are these poles

generated by the Feynman diagrams describing G?

We may regard the positions of the bound state poles in s = (2me + Eb)2 as functions of Eb, i.e., of α. A Feynman
diagram of O (αn) cannot have a pole in α at any finite order n. The only way to generate a bound state pole in
G is for the perturbative expansion to diverge1! This sounds surprising at first, since we are used to trusting QED
perturbation theory. The poles exist for any α, however small. Thus some nominally higher order diagrams, such as
those in Fig. 2(b-d), must be effectively of the same order in α as the Born term (a).

p1

p2

k k–q

p1–k

p2+k p3

p4p1

p2

q

p4

p3

+

(a) (b)

k k–q

p1 p4

p2 p3

p1–k

p3–k

+
p1

p2

q

p4

p3

+ ...

k

+

(c) (d)

e+

e–

FIG. 2: Feynman diagrams contributing to elastic e+(p1)e
−(p2) scattering. The arrows indicate the fermion direction. The

momentum of the upper line is in the antifermion (e+) direction, thus p01 > 0.

The breakdown of the perturbative expansion is actually familiar from classical physics, where phenomena involving
many photons dominate. For example, the notion that opposite charges attract while like charges repel cannot be
explained by just the Born term in Fig. 2. This diagram changes sign if the positron is replaced by an electron, so its
absolute square is invariant. The product of diagrams (a) and (b), on the other hand, contributes with opposite signs
to σ(e±e− → e±e−). Thus our everyday experience of attraction and repulsion originates from quantum interference
effects.

Higher order diagrams have not only more vertices ∝ e but also more propagators, which are enhanced at low
momenta. Typical momentum exchanges in atoms are of the order of the Bohr momentum2, and electron energy
differences then follow from non-relativistic dynamics:

|q| ∼ αme q0 ∼ q2/2me ∼ 1
2α

2me (2.6)

The Born diagram of Fig. 2(a) scales with α as

G[2(a)] ∼ α/q2 ∼ α/q2 ∼ 1/α (2.7)

The box diagram 2(b) has four vertices, giving a factor e4 ∼ α2. The two photon propagators contribute 1/q2 ∼ α−2

each. The electron and positron propagators are off-shell on the order q0 ∼ k0, each propagator being of O
(
α−2

)
.

The relevant region of loop momentum is
∫
dk0 d3k ∼ α2 (α)3 ∼ α5. Altogether,

G[2(b)] ∼ α2 (α−2)2 (α−2)2 α5 ∼ 1/α ∼ G[2(a)] (2.8)

A similar analysis shows that “ladder” diagrams with any number of photon exchanges are of O
(
α−1

)
and thus of

the same order in α as the Born diagram (2.7). This allows the perturbative series to diverge for any α. Note that
the above counting requires the initial and final momenta p1, . . . p4 of the scattering to themselves satisfy the scaling
(2.6): As α → 0 the external momenta need to be correspondingly decreased. Conversely, the initial and final states
do not couple to the bound states in a “hard” scattering process where the momentum exchange |q| ≫ αme. Then
⟨P |i⟩ ∼ ⟨f |P ⟩ ≃ 0 in (2.4) and bound state contributions can be ignored. In the following we shall see more such

1 This divergence is distinct from that due to perturbative expansions being asymptotic series [1].
2 In calculations of higher order corrections to physical quantities other momentum scales must be considered as well.

Higher orders in α involve loop diagrams

⇒

At Born level, states are bound by a classical gauge field.
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A perturbative description of hadrons must, already at Born level, 
involve a classical, confining gluon field.

Hadrons at Born level

Such a solution exists only for color singlet states, 
and gives an exactly linear potential for mesons.

There is no need to sum Feynman diagrams, we may start from

H |E,P i = E |E,P i

which defines stationarity in time, and thus bound states.

At Born level, the gauge field in H is classical.



Paul Hoyer GSI 2015

17

Confinement from Classical gauge fields?

The quark models use the Schrödinger equation (Born level),
and postulate a linear confining potential.

Can the confinement potential be derived with a classical gluon field? ⇒

Something like this has been proposed by Dokshitzer:

“String breaking” is caused by a classical gluon field

π

π

π

π

q

q–

γ*



Paul Hoyer GSI 2015

18

Classical vs Quantum Gluons

http://cp3-origins.dk/events/meetings/ws2013/ws2013talks
Yuri Dokshitser (2013)

classical gluons
It is instructive to see how the LBK wisdom shows up in the QCD parton dynamics

gluons
classical quantum

1 + x2

1� x

1 + x4 + (1� x)4

x(1� x)



Paul Hoyer GSI 2015

19

Bound states as eigenstates of H

Any state can be expanded on its Fock components, e.g., for Positronium:

e+(k1)Pos

e–(k2)

e+

e–
γ

e+

e–e+
e–= + + + ...ψ ψ ψ

For non-relativistic Positronium at rest the e+e– Fock state dominates:

|M,P = 0i =
Z

d3x1d
3
x2  ̄(t,x1)�(x1 � x2) (t,x2) |0i

where ψ(t,x) is the electron field (destroys electrons, creates positrons). 
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�r2A0(x) = e
⇥
�3(x� x1)� �3(x� x2)

⇤

QED Hamiltonian with the classical potential

Gauss’ law for the A0 field of the                                Fock component is:

eA0(x;x1,x2) =
�

|x� x1|
� �

|x� x2|⇒

Taking the field energy into account,

EA(x1,x2) =

Z
d3x( 14Fµ�F

µ�) =
�

|x1 � x2|

the QED Hamiltonian with the classical gauge field becomes

HQED =

Z
d3x  ̄(t,x)

⇥
� ir · � +m+ 1

2e�
0A0(x)

⇤
 (t,x)

x1

x2

��e�(x1) e
+(x2)

↵
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Bound State Equation for Positronium

|M,P = 0i =
Z

d3x1d
3
x2  ̄(t,x1)�(x1 � x2) (t,x2) |0i

H |M,P = 0i = M |M,P = 0i

ir ·
�
�0

�,�(x)
 
+m

⇥
�0,�(x)

⇤
=
⇥
M � V (x)

⇤
�(x)

Imposing the BSE with

the state

HQED =

Z
d3x  ̄(t,x)

⇥
� ir · � +m+ 1

2e�
0A0(x)

⇤
 (t,x)

�
 (t,x), †(t,y)

 
= �3(x� y)

the bound state equation for the 4×4 wave function Φ(x1–x2):

where V (x) = � ↵

|x| .  In the NR limit this reduces to the Schrödinger eq.,
   with M = 2m+Eb.

and

we get using
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Summary: Schrödinger eq. in QED

• A H formulation requires an equal-time definition of the bound state.

• The QED Hamiltonian with a classical photon field (Born level).

ir ·
�
�0

�,�(x)
 
+m

⇥
�0,�(x)

⇤
=
⇥
M � V (x)

⇤
�(x)

Method can be used in any frame: H |E,P i = E |E,P i

⇒

with P ≠ 0

The frame dependence of bound states is non-trivial: 
Wave function Lorentz contracts and E =

q
P 2 + (2m+ Eb)2

All this can be done for QCD as well. So where is confinement?

V (r) = c r � 4

3

�s

r
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For a state with e– at x1 and e+ at x2

Gauss’ law for the classical A0 
field is (in QED)

There is also a homogeneous 
solution, with κ independent of x:

 ̄(t, x1) (t, x2)|0i

�r2A0(t,x) = e
⇥
�3(x� x1)� �3(x� x2)

⇤

A0(t,x) = x · (x1 � x2)

⇥
rA0

⇤2
= 2 (x1 � x2)

2With κ ≠ 0 the field energy
is independent of x

In QED this is excluded by imposing

This homogeneous solution leads to a linear potential in D=3+1.

lim
|x|!1

A0(x) = 0
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Requiring:

• A translation invariant potential: 

• A universal field strength as | x | → ∞

V (x+ a) = V (x)
⇥
rA0(x)

⇤2
= ⇤4

suffices to specify the potential. In U(1) gauge theory: 

V (x1,x2) ⌘ 1
2g

⇥
A0(t,x1)�A0(t,x2)

⇤
= 1

2g⇤
2|x1 � x2|

Only neutral states are allowed: g1 = �g2 ⌘ g

Usual perturbation theory involves charged states: electrons, quarks, gluons

The solution is unique, up to the single parameter Λ

At the Born (no loop) level, a dimensionful parameter can only be
introduced through a boundary condition.

Then the linear potential would break translation symmetry.
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and for color singlet baryons:

VM(x1 � x2) =
1
2

p
CF g⇤2|x1 � x2|

VB(x1,x2,x3) =
1

2
p
2

p
CF g⇤2

p
(x1 � x2)2 + (x2 � x3)2 + (x3 � x1)2

For SU(3) there is a solution only for color singlet mesons:

Note: VB(x1,x2,x2) = VM(x1 � x2)

The quark-diquark potential VB agrees with quark-antiquark VM.
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Relativistically Bound States

Hadrons are ultrarelativistic states:
Mp

2mu +md
' 50

They have Fock states with many sea quarks and gluons⇒
|protoni = �uud |uudi+ �uudg |uud gi+ �uudqq̄ |uud qq̄i+ . . .

Nevertheless, hadron quantum numbers
reflect valence quarks only ⇔

?
An example of this “paradox” is provided by the 
Dirac equation: A relativistic electron bound in an external field.

What state does the Dirac wave function actually describe?

• The Dirac wave function has the degrees of freedom of a single electron
• Its E < 0 components show the presence of e+e– pairs (cf. Klein paradox)

J. P. Blaizot & PH
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J. P. Blaizot and G. Ripka: 
Quantum Theory of Finite Systems, 
MIT Press, Cambridge, MA (1986)

The operator expression for the Dirac states is 
found by diagonalizing the Dirac Hamiltonian
for a given external field A0(x).

Determination of the Dirac state

H =

⇤
d3x⇥†(x)

�
� i� · �0� +m�0 + eA0(x)

⇥
⇥(x)

⇥(x) =
�

p,�

⇥
bp,�u(p,�)e

ip·x + d†p,�v(p,�)e
�ip·x

⇤ �

p,�

�
⇥

d3p

(2�)32Ep

�

�

Find the linear superpositions of b, b✝ and d, d✝ which
diagonalize the Hamiltonian for a given A0(x).
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Result of the diagonalization

H =
�

n

Enc
†
ncn (En > 0)

cn =
�

j=(p,�)

⇥
(X†)jnbj + d†jY

j
n

⇤
where the cn are linear superpositions of the b and d✝ operators

Coefficients Xn and Yn 
are given by the Dirac wf.

cn destroys and cn✝ creates bound states:
n has the quantum numbers of an electron.

|n� = c†n |��
cn |�� = 0

The vacuum 

shows the distribution of e+e– pairs 
(N is a normalization constant).

|�⇥ = N exp
⌃
�
⇧

j,k

b†j

⇤⇧

n

�
(X†

n)
�1Y T

n

⇥⌅

j,k
d†k

⌥
|0⇥
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Dirac state as an eigenstate of H

Analogously to Positronium, define a relativistic electron state as

|M, ti =
Z

d3x †
↵(t,x)�↵(x) |⌦i

 ↵(t,x):  Electron field operator

�↵(x):  c-number Dirac spinor

H(t) |M, ti = M |M, ti H(t) |⌦i = 0

implies the Dirac equation for Φ:
⇥
� ir · �0

� +m�0 + eA0(x)
⇤
�(x) = M�(x)

This formulation provides a QFT description of the Dirac system.

The external field A0(x) is not translation invariant (no concept of frame).

With the previous formulation of Positronium we can proceed to 

A relativistically bound fermion-antifermion (meson) system.
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• Q: Can there be an analytic, first-principles approach to hadrons?

• It would have to be based on Perturbation Theory.

• αs(Q2) appears to freeze, αs(0) ≈ 0.5 may enable PT at Q = 0.

• Main features (confinement, CSB) must appear at lowest order in αs

• Born level = Classical gauge fields.

• Homogeneous solution of Gauss’ law gives linear A0

• Unique solution (one parameter Λ), only color singlets allowed.

• Determine bound states from 

• Positronium in motion (P ≠ 0).

• Determine strongly bound Dirac states: Fock states with pairs.

• Extend to relativistic ff states (strongly bound, any P).

• Dynamical boost covariance.

H |E,P i = E |E,P i
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A state with two fermions of energy E and momentum P1 = P :

f f bound states in D=1+1
-

|E,P ⇥ =
Z

dx1dx2 �̄(t, x1) exp
⇥
1
2 iP (x1 + x2)

⇤
�(x1 � x2)�(t, x2)|0⇥

P̂ 1|E,P � = P |E,P � Bound state has momentum P  (by construction)

P̂ 0|E,P � = E|E,P � Bound state equation for Φ(x) from QED action:

V (x) = 1
2e2|x|where and �0 = �3, �1 = i�2, �0�1 = �1

i⇥
x

{�1,�(x)}+
⇥
� 1

2P�1 +m�3,�(x)
⇤
=

⇥
E � V (x)

⇤
�(x)

Here the CM momentum P is a parameter, thus E and Φ depend on P .

   With                       these are eigenstates of the translation generators:

field operators

2x2 c-numbered wf.

P̂µ |0i = 0



Paul Hoyer GSI 2015

32Poincaré Generators of QED2

P 1 =
X

f

Z
dx1�†

f (x)(�i⇥1)�f (x)

P 0 =
X

f

Z
dx1⇥†(x)(�i�0�1⇤1 +m�0)⇥(x)

�e2

4

X

f,f 0

Z
dx1dy1�†

f�f (x
0, x1)|x1 � y1|�†

f 0�f 0(x0, y1)

(Hamiltonian)

(Space translation)

M01 = x0P 1 +
1

2

Z
dx1 ⇥†

f

h
x1i�1

⇥
⇤ 1 � i�1

�
⇤ 1x

1 � 2x1�3mf

i
⇥f

(M 01 ≣ K: Boost)

+
e2

8

X

f,f 0

Z
dx1dy1 �†

f�f (x)
�
x1 + y1

� ��x1 � y1
���†

f 0�f 0(y)

Derived from the Poincaré invariance of the action.
In A1 = 0 gauge, express A0 in terms of fermion fields via Gauss’ law:
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Boosts are dynamical transformations: H is not invariant.

In D=1+1 the Poincare Lie algebra is, with K the boost generator, H = P0:

⇥
P 0, P 1

⇤
= 0

⇥
P 0,K

⇤
= iP 1

⇥
P 1,K

⇤
= iP 0

States are defined at equal time in all frames: This is a frame-dependent concept.
The Hamiltonian generates time translations, hence is frame dependent.

Correspondingly, the eigenvalue condition for H has no explicit covariance:

i⇥
x

{�1,�(x)}+
⇥
� 1

2P�1 +m�3,�(x)
⇤
=

⇥
E � V (x)

⇤
�(x)

Being derived from a Poincaré invariant action we may expect that it
has a dynamical covariance.
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“Miraculously”, the state is indeed covariant under boosts:

This holds only for a linear potential and ensures that E(P ) =
p

P 2 +M2

The P-dependence of  the wave function Φ can be explicitly given in terms of
an invariant distance :

where and tanh � = � P

E � V

Boost covariance

dx = � d�

E � V (x)

�P (�) = e�0�1⇣/2�(P=0)(�)e��0�1⇣/2

�(x) ⌘ (E � V )2 � P

2

Relativistic Lorentz contraction

Any P

(1� id⇠K) |E,P i = |E + d⇠P, P + d⇠Ei
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The boost invariant length

The “kinetic 2-momentum” is

A continuity condition is imposed at x = 0. 
In general, a given x maps to values of σ that depend on the frame (E, P).
σ(x=0) = E2 – P2 . This ensures that the 
mass eigenvalues  M2 =  E2 – P2 have the correct frame dependence.

For a linear potential the bound state equation can be expressed

in terms of                    only (E, P do not appear), with� = ⇧2

⇧µ(x) ⌘ (P � eA)µ = (E � V (x), P )

The solution in terms of σ is valid frame independent, but σ(x) depends on P.

⇧2 ⌘ � = (E � V )2 � P 2
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The B-S wave function Φ is defined Lorentz covariantly (here D=3+1)

Since the time difference                    is frame-dependent, the B-S wf is not 
simply related to the Fock state wf’s of a Hamiltonian approach.

6

The same procedure will show that a ladder L
n

with n > 1 rungs is obtained from the one with n� 1 rungs as

L
n

= L
n�1SL1 (2.15)

Summing over n we find

L ⌘
1
X

n=1

L
n

= L1 + LS L1 (2.16)

with a convolution on the rhs. as in (2.13). This is a Dyson-Schwinger equation for L with lowest-order propagator
S (2.14) and kernel L1 (2.9). Note that we did not need to specify the frame, the equation is valid for any e+e�

momentum P = p1 + p2.

P
P+q

P–q
 (P0 – Eq+ – Eq–)

½

½

ΨP ΨP(q)

FIG. 3: A factor P

0 � E

q+ � E

q� is included in the definition

of the wave function, with E

q± =
q

( 12P ± q)2 +m

2.

If the ladder sum L has a pole at P 0 =
p

P

2 +M2,
with M the rest mass of the bound state, the residue
will factorize as shown in Fig. 1 and Eq. (2.4),

L =
 

P

 P

P 0 � E
P

+ . . . (2.17)

Canceling common factors on the two sides of (2.16)
and expressing the wave function as indicated in Fig. 3 we find the Bethe-Salpeter Equation (BSE)

 P =  P S L1 (2.18)

Denoting the propagator (2.14) S(k) ⌘ S( 12P � k, 1
2P + k), the kernel (2.9) K(k, q) ⌘ L1(

1
2P � k, 1

2P + k !
1
2P � q, 1

2P + q) and extracting (for later convenience) a factor P 0 � E
q+ � E

q� from the wave function  P (q) we
have more explicitly,

 P (q)(P 0 � E
q+ � E

q�) =
X

�int

Z

d4k

(2⇡)4
 P (k)(P 0 � E

k+ � E
k�)S(k)K(k, q) (2.19)

C. Remarks on Positronium at higher orders

In the previous subsection we derived the Bethe-Salpeter equation (2.19) at lowest order in ↵. Much work has been
devoted to obtaining more accurate predictions of QED bound states. These calculations are considerably more
involved and will not be detailed in these lectures. However, I shall briefly describe the progress that has been made,
and refer to the reviews [2] and [3] for a more complete account and references.

In 1951 Salpeter and Bethe [4] showed that (2.19) is formally exact provided one includes all corrections to the
electron and positron propagators in S and to the kernel K. The corresponding Bethe-Salpeter wave function of a

positronium state |P i of 4-momentum P = (
p

M2 + P

2,P ) can be defined to all orders in coordinate space through
the time-ordered matrix element

h⌦| T
�

 ̄
�

(x2) ↵

(x1)
 

|P i ⌘ e�iP ·(x1+x2)/2 �P

↵�

(x1 � x2) (2.20)

where  (x) is the electron field operator (in the Heisenberg picture) and |⌦i is the vacuum state. The plane wave
dependence on x1 + x2 is specified by space-time translation invariance since the bound state has momentum P .

It turned out to be di�cult in practice to calculate higher order corrections to bound state energies from the BSE
(2.19). The Lorentz covariant wave function (2.20) cannot be expressed in closed form even when only the lowest
order kernel (single photon exchange) is used3. However, because the equation involves two functions S and K, there
is a freedom in choosing either one, without a↵ecting the validity of the equation [6]. This is seen as follows.

LetG
T

be the Green function for a 2 ! 2 scattering process with the external propagators truncated. The perturbative
expansion of G

T

in ↵ may be calculated using the standard Feynman rules. We then declare a Dyson-Schwinger type
equation by

G
T

= K +G
T

S K (2.21)

3 For a recent discussion of the solutions of the BSE see [5].

x

0
2 � x

0
1

9

E. Positronium in motion

The derivation of the bound state equation (2.19) in Section II B was based on summing Feynman diagrams. The
Lorentz covariance of these diagrams allows to consider the frame dependence of atomic wave functions. The following
discussion is based on the work by Matti Järvinen [15], and is instructive for understanding how bound states transform
under Lorentz boosts. It is frequently assumed that bound states Lorentz contract similarly to measuring sticks in
classical relativity, and so high-momentum protons and nuclei are depicted as ovals. Only partial indications [16] were
available before 2004 of how equal-time atomic wave functions actually transform. On the other hand, wave functions
defined on the light front (at equal t+ z) are boost invariant [17].

1. Classical Lorentz contraction

Let us start by recalling how Lorentz contraction arises in classical relativity, through a length measurement by two
observers who are in relative motion. Each observer defines the length of a rod as the distance between its endpoints
at an instant of time. The contraction arises because the concept of simultaneity is frame dependent. We may assume
that Observer A is at rest with the rod and that the frame of Observer B is reached by a boost ⇣ in the x-direction.
If the endpoints of the rod are at (0, 0) and (t, L

A

) in the rest frame they transform under the boost as

(0, 0) ! (0, 0)

(t, L
A

) ! (t cosh ⇣ + L
A

sinh ⇣, t sinh ⇣ + L
A

cosh ⇣) (2.32)

Observer A measures the length of the rod at rest to be L
A

, independently of the time t of his measurement. Observer
B makes his measurement at time zero on his clock, i.e., when

t cosh ⇣ + L
A

sinh ⇣ = 0 (2.33)

He thus finds the contracted length

L
B

= t sinh ⇣ + L
A

cosh ⇣ =
L
A

cosh ⇣
(2.34)

2. Equal-time wave functions

In atoms the ends of the rod correspond to the positions x1 and x2 of the electron and positron in the wave function
(2.20). To study Lorentz contraction we need to consider equal-time wave functions, x0

1 = x0
2 in all frames. Such wave

functions have a non-trivial, dynamic frame dependence. In a Lorentz boost x ! x0 = ⇤x the fermion field operator
transforms as

 (x) ! U(⇤) (x)U†(⇤) = S�1(⇤) (⇤x)  ̄(x) !  ̄(⇤x)S(⇤) (2.35)

where S(⇤) is the 4⇥ 4 matrix which transforms the Dirac matrices as S�1(⇤)�µS(⇤) = ⇤µ

⌫

�⌫ . Using this in (2.20)
we find the Bethe-Salpeter wave function in a frame where the bound state momentum is ⇤P = (P 00,P 0),

�P

0
(x0

1 � x0
2) = S(⇤)�P (x1 � x2)S

�1(⇤) (2.36)

When ⇤ is a boost this relates wave functions defined at unequal times of the constituents (x0
1 6= x0

2 in at least one of
the frames). Hence this transformation is not relevant for the issue of Lorentz contraction.

In a Hamiltonian framework one usually quantizes the fields at equal time, with (anti-)commutation relations

�

 †
↵

(t,x), 
�

(t,y)
 

= �
↵�

�3(x� y) (2.37)

Correspondingly, the Fock expansion

|P i =
Z

d3x1 d
3
x2 �

P

e

+
e

�(x1,x2)
�

�e+e�,P
↵

+

Z

d(· · · )�P
e

+
e

�
�

(· · · )
�

�e+e��,P
↵

+ . . . (2.38)

where | P > is any state with total momentum P, and |Ω > is the vacuum. 
The B-S wave function Φ transforms simply under boosts. If P´ = ΛP then

The “Dyson-Schwinger” approach to 
QCD uses boost covariant B-S wf’s and 
amplitudes. The D-S equations are 
formally exact but do not close, 
requiring truncations and guesses for 
the analytic form of some quantities.

Strong QCD and Dyson-Schwinger Equations 17

Σ
=

D

γ
ΓS

Figure 2.1. In QCD this gap equation describes the manner by which a quark’s acquires
a momentum-dependent self-energy, Σ(p), via interaction with its own gluon field. This
diagram represents a nonlinear integral equation because S(p) = 1/[iγ ·p+m+Σ(p)]. The
kernel of that integral equation is composed from the dressed-gluon propagator, Dµν (k),
and the dressed-quark-gluon vertex, Γν(ℓ, p), both of which satisfy integral equations of
their own. (The quark is represented by the solid line, the gluon by the spring-like line
and the quark-gluon vertex by the open circle.)

predictions for real-world experiments. One of the merits in this is that assumptions
about the infrared form of n-point functions can be tested, verified and improved, or
rejected in favour of more promising alternatives. In this mode the DSEs provide a bridge
between experiment and theory, and thereby a means by which to use nonperturbative
phenomena to chart or at least constrain the infrared behaviour of QCD’s β-function.

Let’s return to the dressed-quark propagator, which is given by the solution of QCD’s
gap equation, Fig. 2.1:

S(p)−1 = iγ · p +m+ Σ(p) , (2.5)

Σ(p) =

∫

d4ℓ
(2π)4

g2 Dµν(p− ℓ) γµ
λa

2
1

iγ · ℓA(ℓ2) +B(ℓ2)
Γa
ν(ℓ, p). (2.6)

The most general Poincaré covariant solution of this gap equation involves two scalar
functions. There are three common, equivalent expressions:

S(p) =
1

iγ · pA(p2) +B(p2)
=

Z(p2)
iγ · p+M(p2)

= −iγ · pσV (p2) + σS(p
2) . (2.7)

In the second form, Z(p2) is called the wave-function renormalisation and M(p2) is the
dressed-quark mass function.

Given that a weak coupling expansion of the DSEs produces every diagram in pertur-
bation theory, one can use Eq. (2.6), and its analogues for the dressed-gluon propagator
and dressed-quark gluon vertex, to obtain

Bpert(p
2) = m

[

1 +
α
π
ln

[ m2

p2

]

+ . . .
]

, (2.8)

where the ellipsis denotes terms of higher order in α that involve (ln[m2/p2])2 and
(ln ln[m2/p2]), etc. However, at arbitrarily large finite order in perturbation theory it is
always true that

lim
m→0

Bpert(p
2) ≡ 0. (2.9)

(N.B. In contrast to QED, a chiral limit is nonperturbatively defined in QCD owing to
asymptotic freedom.) Equation (2.9) means that if one starts with a chirally symmetric
theory, then in perturbation theory one also finishes with a chirally symmetric theory:
the fermion DSE cannot generate a mass-gap if there is no bare-mass seed in the first
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Properties of the Dirac wave function in D=1+1

The Dirac matrices can be 
represented as 2x2 Pauli matrices

and the potential is

⇥
� i�1⌅x + 1

2e
2|x|+m�3

⇤  ⇤(x)
⇥(x)

�
= M


⇤(x)
⇥(x)

�

�0 = �3 �0�1 = �1

The 2-component Dirac spinor then satisfies

Eliminating the lower component, 

@

2
x

'(x) +
"(x)

2(M � V +m)
@

x

'(x) +
⇥
(M � V )2 �m

2
⇤
'(x) = 0,

V (x) = 1
2e

2|x|

The wf oscillates at large x:

Hence it cannot be normalized, and there is no condition on M!

'(x ! 1) ⇠ exp(±ie

2
x

2
/4)
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The Dirac Electron in Simple Fields*

By MILTON S. PLESSET

Sloane. Physics Laboratory, Yale University

(Received June 6, 1932)

The relativity wave equations for the Dirac electron are transformed in a

simple manner into a symmetric canonical form. This canonical form makes readily

possible the investigation of the characteristics of the solutions of these relativity

equations for simple potential fields. If' the potential is a polynomial of any degree

in x, a continuous energy spectrum characterizes the solutions. If the potential is a

polynomial of any degree in 1/x, the solutions possess a continuous energy spectrum

when the energy is numerically greater than the rest-energy of the electron; values

of the energy numerically less than the rest-energy are barred. When the potential

is a polynomial of any degree in r, all values of the energy are allowed. For poten-
tials which are polynomials in 1/r of degree higher than the first, the energy spec-

trum is again continuous. The quantization arising for the Coulomb potential is an

exceptional case.

'N HIS treatment of the reflection of the relativity electron at a potential
-- jump Klein' found a paradoxical behavior of the Dirac electron associ-

ated with the possibility of the existence of states of negative kinetic energy.

He showed by an ingenious treatment that the reflection coefficient for elec-

trons incident upon a discontinuous potential jump of height P varied with

P from the value zero for P =0 to the value unity for P = W—mc' (W being

the energy of the incident electrons). For this last value of P the momentum
P associated with the transmitted beam had the value zero, and as I' was
increased beyond t/t' —nsc' this momentum became imaginary and the reHec-

tion coefficient remained unity until I' attained the value t/t/'+mc'. The re-

sults thus far are exactly what would be expected. If I' is increased further

one enters the domain of negative kinetic energy wherein the group velocity

and the momentum in the transmitted beam are oppositely directed; also the

reflection coefficient falls off from the value unity and approaches the value

(W—cp)/(W+cp) as P is indefinitely increased. Thus by a transition to a

state of negative kinetic energy the Dirac electron has apparently an appreci-

able probability of penetrating a barrier of infinite height. Bohr suggested
that this peculiar result might be due to a jump in potential of the order of
mc' over a region of the order of the Compton wa've-length k/mc. It is within
a region of the order of h/mc ths. t the internal structure of the Dirac electron

and the accompanying "trembling" phenomenon' manifests itself. This

supposition of Bohr was verified by Sauter' who treated the problem of the

* The results of this paper were presented at the Washington meeting of the American

Physical Society (April, 1932).
' O. Klein, Zeits. f. Physik 53, 157 (1929).
' E. Schrodinger, Preuss. Akad. Wiss. Berlin, Ber. 24, 418 (1930).
3 F. Sauter, Zeits. f. Physik 69, 742 (1931).
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of the distribution at low xBj is attributed to ff̄ pairs, indicating again
the inclusive nature of the wave functions obtained with retarded boundary
conditions.
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Analytic solution of the Dirac equation

In terms of the variable � = (M � V )2 = M

2 � e

2|x|M + 1
4e

4
x

2

For x > 0, with 𝜑(x) real and χ(x) imaginary, define:

 (�) =


(a+ ib)1F1

⇣
� im2

2

,
1

2

, 2i�
⌘
+ (b+ ia)2m "(M � V )

p
� 1F1

⇣
1� im2

2

,
3

2

, 2i�
⌘�

exp(�i�)

 (�) ⌘ '(�) + �(�)

where a and b are real constants and m ≣ m/e is the dimensionless parameter.
The solution for x < 0 is defined by parity and the continuity condition at
x = 0 fixes a/b. A solution is found for all M: The spectrum is continuous.

In the NR limit of large m/e, the eigenvalues M = m + Eb become insensitive 
to a/b, and (for a+b ≠ 0) the wave function reduces to the Schrödinger solution:

 (�) = (1 + i)(a+ b)
p
⇡m

1/3
e

⇡m2/2�i⇡/4Ai
⇥
m

1/3(|x|� 2Eb)
⇤h
1 +O

⇣
m

�2/3
⌘ i

In the NR limit, the continuous range of M is restricted to a/b = –1.
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40Dirac wave function for m/e = 2.5

Comparison of the Dirac 𝜑(x) wf. with the Schrödinger Ai solution ρ(x):  

V=2m
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x

ex
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Dirac φ(x)
Schrödinger ρ(x)  Φ

1
(x)   f f

  ρ(x)   Schrödinger

(a) (b)

_

Wf
NR region

The oscillations start at V(x) = 2m, where e+e– pairs can be created.
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The Poincaré invariance of the two-fermion bound states 
allows to explicitly evaluate string breaking and the OZI rule:

Constant particle density for |x| → ∞ ?!

 (x ! 1) ⇠ exp(±ix

2
/4)  † (x ! 1) ⇠ const.

⇒

39

(ii) It has been known since 1932 [28] that the normalization integral
R

d3x| (x)|2 of the Dirac wave function diverges
for all polynomial potentials V (|x|) and that the energy spectrum is continuous17. There is little awareness and
understanding of this property of the Dirac bound states (see [30] for a recent discussion). With retarded boundary
conditions  † is the number operator of positive and negative energy fermions, and its expectation value in the
Dirac state is | (x)|2. Fig. 14 supports the interpretation of | (x)|2 as an inclusive particle density.

δ1

δ2
A

B

C

FIG. 19: The dual diagram for meson
splitting A ! B + C, given by (7.1).
The qq̄ pair is created at distance �1

from the quark and �2 from the anti-
quark of meson A.

The ff̄ bound states that we studied in Section V also need to be built on
a vacuum that is an eigenstate of the Hamiltonian. This suggests an analogy
to the in and out states used as asymptotic states of the perturbative S-
matrix, which are eigenstates of the free Hamiltonian H0. States defined at
asymptotic times are on-shell and thus independent of the i" prescription in
their propagator. The ff̄ states discussed here may be used as asymptotic
states of the S-matrix, as in the electromagnetic form factor (5.48).

The time development from t = ±1 to the (finite) scattering time is deter-
mined by the full Hamiltonian. The asymptotic states therefore develop into
eigenstates of H by the time of scattering. In addition to contributions from
higher orders in ↵

s

, the bound states can split and merge as illustrated in
the dual meson diagram of Fig. 19. The amplitude hB,C|Ai can be evaluated
directly from the definition (6.12) of the meson states, using anticommutation
relations for the quark fields according to Fig. 19. Suppressing Dirac and color
indices,

hB,C|Ai =
1p
N

C

Z

h

Y

k=A,B,C

dxk

1dx
k

2

i

ei(x
A
1 +x

A
2 )·PA/2�i(xB

1 +x

B
2 )·PB/2�i(xC

1 +x

C
2 )·PC/2

⇥ h0|
⇥

 †(xB

2 )�
†
B

�0 (xB

1 )
⇤⇥

 †(xC

2 )�
†
C

�0 (xC

1 )
⇤⇥

 †(xA

1 )�
0(xA

1 )�A

 (xA

2 )
⇤

|0i

= � (2⇡)3p
N

C

�3(P
A

� P

B

� P

C

)

Z

d�1d�2 e
i�1·PC/2�i�2·PB/2Tr

⇥

�0�†
B

(�1)�A

(�1 + �2)�
†
C

(�2)
⇤

(7.1)

If the A ! B + C amplitude is combined with B + C ! A we get a hadron loop correction to the propagation of A.
The loop also induces mixing between hadrons, A ! B + C ! D. Thus the orthogonal basis of wave functions �(x)
which satisfy the bound state equation (6.10) needs to be rediagonalized when hadron loop corrections are considered.
Similarly to the Dirac wave functions (see remark (ii) above) the original basis functions are not normalizable, as
their norm �†(x)�(x) approaches a constant at large |x|. The mixing will likely redistribute the large |x| components
of low-lying states onto higher-lying states (which then decay into on-shell pairs, much like the pions produced in
phenomenological string breaking). The states of the rediagonalized basis may thus become normalizable. The
importance of the loop corrections for physical quantities depends on how sensitive measurables are to the large |x|
components of the wave functions. In D = 1+ 1 both the parton distributions and duality relations were determined
by low values of x, and should therefore be fairly insensitive to the mixing e↵ects.

There is an essential di↵erence between the Dirac wave functions and the ff̄ solutions of (6.10). The ff̄ wave functions
�(x) are (in the rest frame) generally singular at M = V (|x|) [42]. Regular (locally normalizable) solutions exist
only for discrete bound state masses. The Dirac wave functions have no singularities, implying a continuous mass
spectrum [28, 29].

The bound state equation (6.10) appears to have a hidden boost invariance, which ensures the correct frame depen-

dence for the energy eigenvalues, E =
p

M2 + P

2. We investigated this in some detail in D = 1 + 1 dimensions,
where the P -dependence of the wave function is given by (5.16). In D = 3+ 1 a similar relation holds when x||P , in
which case the bound state equation can be cast in the covariant form (6.32). Whether the frame dependence of the
wave function can be expressed analytically for general x is an open question.

The Poincaré covariance makes it possible to consider dynamical processes involving bound states. We studied
electromagnetic form factors and parton-hadron duality in D = 1+ 1. Many more processes are of interest, including
hadron-hadron scattering. The outcome of such studies, including the loop corrections mentioned above, will determine
whether considering the O

�

g0
�

homogeneous solution (6.11) of Gauss’ law is physically viable.

17 The sole exception is the V (r) ⇠ 1/r potential in D = 3 + 1 dimensions, which is often found in textbooks.
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vs.

The virtual pairs created in the linear potential
contribute to the Dirac wave function: Duality. Cf.  �⇤ ! qq̄

A related, more familiar phenomenon is particle creation in
a constant electric field, V(x) = c x, first studied by Schwinger (1951)
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String breaking: A → B+C

39

(ii) It has been known since 1932 [28] that the normalization integral
R

d3x| (x)|2 of the Dirac wave function diverges
for all polynomial potentials V (|x|) and that the energy spectrum is continuous17. There is little awareness and
understanding of this property of the Dirac bound states (see [30] for a recent discussion). With retarded boundary
conditions  † is the number operator of positive and negative energy fermions, and its expectation value in the
Dirac state is | (x)|2. Fig. 14 supports the interpretation of | (x)|2 as an inclusive particle density.

δ1

δ2
A

B

C

FIG. 19: The dual diagram for meson
splitting A ! B + C, given by (7.1).
The qq̄ pair is created at distance �1

from the quark and �2 from the anti-
quark of meson A.

The ff̄ bound states that we studied in Section V also need to be built on
a vacuum that is an eigenstate of the Hamiltonian. This suggests an analogy
to the in and out states used as asymptotic states of the perturbative S-
matrix, which are eigenstates of the free Hamiltonian H0. States defined at
asymptotic times are on-shell and thus independent of the i" prescription in
their propagator. The ff̄ states discussed here may be used as asymptotic
states of the S-matrix, as in the electromagnetic form factor (5.48).

The time development from t = ±1 to the (finite) scattering time is deter-
mined by the full Hamiltonian. The asymptotic states therefore develop into
eigenstates of H by the time of scattering. In addition to contributions from
higher orders in ↵

s

, the bound states can split and merge as illustrated in
the dual meson diagram of Fig. 19. The amplitude hB,C|Ai can be evaluated
directly from the definition (6.12) of the meson states, using anticommutation
relations for the quark fields according to Fig. 19. Suppressing Dirac and color
indices,

hB,C|Ai =
1p
N
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A
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(7.1)

If the A ! B + C amplitude is combined with B + C ! A we get a hadron loop correction to the propagation of A.
The loop also induces mixing between hadrons, A ! B + C ! D. Thus the orthogonal basis of wave functions �(x)
which satisfy the bound state equation (6.10) needs to be rediagonalized when hadron loop corrections are considered.
Similarly to the Dirac wave functions (see remark (ii) above) the original basis functions are not normalizable, as
their norm �†(x)�(x) approaches a constant at large |x|. The mixing will likely redistribute the large |x| components
of low-lying states onto higher-lying states (which then decay into on-shell pairs, much like the pions produced in
phenomenological string breaking). The states of the rediagonalized basis may thus become normalizable. The
importance of the loop corrections for physical quantities depends on how sensitive measurables are to the large |x|
components of the wave functions. In D = 1+ 1 both the parton distributions and duality relations were determined
by low values of x, and should therefore be fairly insensitive to the mixing e↵ects.

There is an essential di↵erence between the Dirac wave functions and the ff̄ solutions of (6.10). The ff̄ wave functions
�(x) are (in the rest frame) generally singular at M = V (|x|) [42]. Regular (locally normalizable) solutions exist
only for discrete bound state masses. The Dirac wave functions have no singularities, implying a continuous mass
spectrum [28, 29].

The bound state equation (6.10) appears to have a hidden boost invariance, which ensures the correct frame depen-

dence for the energy eigenvalues, E =
p

M2 + P

2. We investigated this in some detail in D = 1 + 1 dimensions,
where the P -dependence of the wave function is given by (5.16). In D = 3+ 1 a similar relation holds when x||P , in
which case the bound state equation can be cast in the covariant form (6.32). Whether the frame dependence of the
wave function can be expressed analytically for general x is an open question.

The Poincaré covariance makes it possible to consider dynamical processes involving bound states. We studied
electromagnetic form factors and parton-hadron duality in D = 1+ 1. Many more processes are of interest, including
hadron-hadron scattering. The outcome of such studies, including the loop corrections mentioned above, will determine
whether considering the O

�

g0
�

homogeneous solution (6.11) of Gauss’ law is physically viable.

17 The sole exception is the V (r) ⇠ 1/r potential in D = 3 + 1 dimensions, which is often found in textbooks.

 The linear potential induces “string breaking”
   at large separations of the quarks. The 
   Poincaré invariant amplitude is given by
   the wave function overlap (at t = 0):

The probability is suppressed by 1/Nc : Previous results were leading in Nc.
When squared, this gives a hadron loop unitarity correction.
The complete              amplitude must be unitary! 

hB,C|Ai = � (2⇡)3p
NC

�3(PA � PB � PC)

⇥
Z

d�1d�2 e
i�1·PC/2�i�2·PB/2Tr

⇥
�0�†

B(�1)�A(�1 + �2)�
†
C(�2)

⇤
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43Schwinger pair production

The imaginary part of the one-loop action in QED determines
the rate of e+e– pair production in a constant electric field E

J. Schwinger, Phys. Rev. 82 (1951) 6642ImL =

↵E2

⇡2

1X

n=1

1

n2
exp

⇣
� n⇡m2

eE

⌘

V = 0e+
e–

V = m

V = –m

⇒E

Schwinger’s potential is V(x) =  E z

The static electric field can create an
e+e– pair with E = 0 (off-shell).
By tunnelling into the region |V(z)| > m
the electron and positron gain energy 
from the field and go on-shell:  E > m.

In D=1+1: V(x) =  E x    (no absolute sign)

They are then further accelerated by the field to z = ± ∞.
The oscillations in the Dirac wf. reflect the linearly increasing momentum.
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44Example of electron tunneling in D=1+1

The tunnelling probability:
|�(x = 0)|2

|�(x ! �1)|2 / exp

⇥
� ⇡(m/e)

2
⇤

x e 0

m/e = 3

V (x) = 1
2e

2
x

V = m
Work in progress with J-P Blaizot

|Φ|2
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Solutions of the ff bound state equation

we may expand the 2x2 wave function as  Φ = Φ0+σ1Φ1+σ2Φ2+σ3Φ3 .

We get two coupled equations, with no explicit E or P dependence:

�2i@��1(�) = �0(�) �2i@��0(�) =


1� 4m2

�

�
�1(�)

The general solution is

�1(�) = � e�i�/2
⇥
a 1F1(1� im2, 2, i�) + b U(1� im2, 2, i�)

⇤

If b ≠ 0 the wf Φ is singular at σ = 0. Requiring b = 0 the spectrum is discrete.
Note: This constraint only applies for m ≠ 0. 

i⇥
x

{�1,�(x)}+
⇥
� 1

2P�1 +m�3,�(x)
⇤
=

⇥
E � V (x)

⇤
�(x)

To solve the fermion-antifermion bound state equation (here m1 = m2 = m)
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46Non-relativistic limit
For m/e → ∞ with Eb = M–2m fixed the Hypergeometric functions become 

a�e

�i�/2
1F1(1� im

2
, 2, i�) =

✓
2

m

◆2/3

e

⇡m2

Ai
h�

1
2m

�1/3
(|x|� 2Eb)

i

Exponentially
increasing

The solution is normalizable in the NR limit 
only if b = 0.

Oscillations at large ex
similar to the Dirac case.
Reflect fermions accele-
rated to high momenta
by the linear potential.

b�e

�i�/2
U(1� im

2
, 2, i�) = �(2m2)2/3

⇡ e

�⇡m2

�(1� im

2)

n
Ai

h
( 12m)1/3(|x|� 2Eb)

i

+iBi
h

( 12m)1/3(|x|� 2Eb)
io

Nearly non-relativistic case: m = 4.0e
Schrödinger (Airy fn.) wf. ρ(x).
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Solutions for small fermion mass m
The solution simplifies 
for m/e → 0 �1(�) = N sin( 12�)

⇥
1 +O �

m2
� ⇤

M2
n = n⇡e2

⇥
1 +O �

m2
� ⇤

The parity is (–1)n+1 :  No parity doublets for m ≠ 0 !

�2i@��0(�) =


1� 4m2

�

�
�1(�)Recall: Wf’s that are regular at 

σ = 0 have discrete spectrum

Chiral symmetry appears only when m = 0 exactly. The wave function is
then regular for all M, and parity doublets exist.

String breaking (hadron loops) are probably important at small m.
However, the spectrum breaks chiral symmetry even without string breaking, 
for any m ≠ 0.

(n = 0,1,2,…)Linear “Regge trajectories”
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Infinite Momentum Frame (IMF) ≈ Light Front (LF)

The wf is frame invariant in terms of  σ = (E–V)2-P2. Since V(x) = ½|x| :

30

when the wave function is expressed in terms of the separation x between the fermions. Corresponding to each �
there are two values of x,

x = 2
⇣

E ±
p

P 2 + �
⌘

(5.42)

The wave functions are defined for x � 0 by the bound state equation (5.5) and for x  0 by their parity (5.33).
Continuity at x = 0 is imposed through (5.34), which by (5.35) determines the bound state mass M through the zeros
of �1 or its derivative at � = �0 = M2.

In the rest frame (5.42) reads

x = 2(M ±
p
�) (P = 0) (5.43)

so � = �0 corresponds to x = 0 and x = 4M . As � decreases (� < �0) the two solutions approach each other and
meet for � = 0 at x = 2M . This accounts for the mirror symmetry of the wave function in Fig. 15 for 0  x  4M .
For � > �0 only the upper sign in (5.42) gives x > 0. This solution corresponds to the large x region with oscillations
in Fig. 15.
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FIG. 17: (a) The density |�0|2 + |�1|2 as a function of the dis-
tance x between the constituents for the ground state (M =
3.15, solid red line) and for an excited state (M = 5.11, dashed
blue line). The constituent masses are m1 = 1.0 and m2 = 1.5.
(b) The densities in (a) plotted in the case of nonvanishing
center-of-mass momentum, P = 5.0. The densities are sym-
metric under x ! �x and normalized to unity at x = 0.

At large P , in the Infinite Momentum Frame (IMF),
the relation (5.42) becomes (for |�| ⌧ P )

x ' 2(E ± P )± �

P
'

(

4P + �/P

(M2 � �)/P
(P ! 1)

(5.44)
As � decreases from �0 the lower sign gives a Lorentz-
contracted wave function, as expected for an equal-
time state. The upper sign gives an asymptotically
large x ' 4P . The separation of these two parts of
the wave function with increasing P is illustrated in
Fig. 17.

Figs. 15 and 17 indicate that the oscillations at large
x reflect pair production, which in time-ordered per-
turbation theory occurs via Z-diagrams such as in
Fig. 12a. With increasing CM momentum P the energy required to create the pair increases due to the boost of
its momentum. This qualitatively explains why V (x) / P in the region of pair fluctuations. The large separations
x are allowed by the uncertainty principle due to the time dilation of the virtual pair life-time, and are required for
Lorentz covariance.

In the P ! 1 limit the term / /⇧
†
= (E � V )�0 + P�1 in (5.9) gives the leading contribution to � when � is fixed.

Retaining only the Lorentz contracting part of the wave function (x / 1/P , the lower solution in (5.44)) the IMF
wave function is

�
IMF

(�) = 2amP�+e�i�/2
1F1(1� im2, 2, i�) (�+ = �0 + �1) (5.45)

where � ' M2 � P |x|. In the � ! 1 limit �
IMF

is suppressed by 1/� compared to the limit (5.39) of the complete
solution. Hence the oscillations at large x are suppressed and the normalization integral

R

dx |�
IMF

|2 is finite. The
P ! 1 (IMF) and |x| ! 1 limits do not commute.

6. Gauge covariance

The state (5.1) involves fermion fields at points separated in space (x1 and x2) which are not connected by a gauge field
exponential (Wilson line). In order for the state to be invariant under gauge transformations we need to transform
the wave function �(x1�x2) accordingly. Here we only consider time-independent gauge transformations, to preserve
our formulation of bound states defined at equal time.

In a space dependent gauge transformation

 (t = 0, x) ! U(x) (t = 0, x)  ̄(t = 0, x) !  ̄(t = 0, x)U †(x) (5.46)

where U(x) is a phase in a U(1) gauge theory and a 3 ⇥ 3 color matrix in QCD. In the new gauge the state (5.1) is
described by the wave function

�
U

(x1, x2) ⌘ U †(x1)�(x1 � x2)U(x2) (5.47)

Standard atomic wave functions in QED have the same gauge dependence.

For P → ∞ at fixed σ: 
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when the wave function is expressed in terms of the separation x between the fermions. Corresponding to each �
there are two values of x,

x = 2
⇣

E ±
p

P 2 + �
⌘

(5.42)

The wave functions are defined for x � 0 by the bound state equation (5.5) and for x  0 by their parity (5.33).
Continuity at x = 0 is imposed through (5.34), which by (5.35) determines the bound state mass M through the zeros
of �1 or its derivative at � = �0 = M2.

In the rest frame (5.42) reads

x = 2(M ±
p
�) (P = 0) (5.43)

so � = �0 corresponds to x = 0 and x = 4M . As � decreases (� < �0) the two solutions approach each other and
meet for � = 0 at x = 2M . This accounts for the mirror symmetry of the wave function in Fig. 15 for 0  x  4M .
For � > �0 only the upper sign in (5.42) gives x > 0. This solution corresponds to the large x region with oscillations
in Fig. 15.
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FIG. 17: (a) The density |�0|2 + |�1|2 as a function of the dis-
tance x between the constituents for the ground state (M =
3.15, solid red line) and for an excited state (M = 5.11, dashed
blue line). The constituent masses are m1 = 1.0 and m2 = 1.5.
(b) The densities in (a) plotted in the case of nonvanishing
center-of-mass momentum, P = 5.0. The densities are sym-
metric under x ! �x and normalized to unity at x = 0.

At large P , in the Infinite Momentum Frame (IMF),
the relation (5.42) becomes (for |�| ⌧ P )

x ' 2(E ± P )± �

P
'

(

4P + �/P

(M2 � �)/P
(P ! 1)

(5.44)
As � decreases from �0 the lower sign gives a Lorentz-
contracted wave function, as expected for an equal-
time state. The upper sign gives an asymptotically
large x ' 4P . The separation of these two parts of
the wave function with increasing P is illustrated in
Fig. 17.

Figs. 15 and 17 indicate that the oscillations at large
x reflect pair production, which in time-ordered per-
turbation theory occurs via Z-diagrams such as in
Fig. 12a. With increasing CM momentum P the energy required to create the pair increases due to the boost of
its momentum. This qualitatively explains why V (x) / P in the region of pair fluctuations. The large separations
x are allowed by the uncertainty principle due to the time dilation of the virtual pair life-time, and are required for
Lorentz covariance.

In the P ! 1 limit the term / /⇧
†
= (E � V )�0 + P�1 in (5.9) gives the leading contribution to � when � is fixed.

Retaining only the Lorentz contracting part of the wave function (x / 1/P , the lower solution in (5.44)) the IMF
wave function is

�
IMF

(�) = 2amP�+e�i�/2
1F1(1� im2, 2, i�) (�+ = �0 + �1) (5.45)

where � ' M2 � P |x|. In the � ! 1 limit �
IMF

is suppressed by 1/� compared to the limit (5.39) of the complete
solution. Hence the oscillations at large x are suppressed and the normalization integral

R

dx |�
IMF

|2 is finite. The
P ! 1 (IMF) and |x| ! 1 limits do not commute.

6. Gauge covariance

The state (5.1) involves fermion fields at points separated in space (x1 and x2) which are not connected by a gauge field
exponential (Wilson line). In order for the state to be invariant under gauge transformations we need to transform
the wave function �(x1�x2) accordingly. Here we only consider time-independent gauge transformations, to preserve
our formulation of bound states defined at equal time.

In a space dependent gauge transformation

 (t = 0, x) ! U(x) (t = 0, x)  ̄(t = 0, x) !  ̄(t = 0, x)U †(x) (5.46)

where U(x) is a phase in a U(1) gauge theory and a 3 ⇥ 3 color matrix in QCD. In the new gauge the state (5.1) is
described by the wave function

�
U

(x1, x2) ⌘ U †(x1)�(x1 � x2)U(x2) (5.47)

Standard atomic wave functions in QED have the same gauge dependence.

Lower solution: x ∝ 1/P         Lorentz-contracted “valence” region.

Upper solution: x ≈ 4P → ∞  Oscillations (pairs move to infinite x.

18

where the loop momentum k could be ignored compared to M since the loop integral converges. The same result is
obtained for the crossed ladder diagram in Fig. 11(b). The denominators (p

M

+k)2�M2+i" and (p
M

�k+q)2�M2+i"
contribute, respectively,

1
�

M + k0 �
p

M2 + k

2 + i"
��

M + k0 +
p

M2 + k

2 � i"
�

' 1

2M

1

k0 + i"

1
�

M � k0 + q0 �
p

M2 + (k � q)2 + i"
��

M � k0 + q0 +
p

M2 + (k � q)2 � i"
�

' 1

2M

1

�k0 + i"
(3.7)

The other factors of the two diagrams in Fig. 11 are identical, so we may add these terms, giving �2⇡i�(k0)/2M .
The sum of the diagrams is thus

T2 = 2M ū(p� q)

Z

d3k

(2⇡)3

h

(�ie�0)(ieZ)
i

k

2 i
/p� /k +m

(p� k)2 �m2 + i"
(�ie�0)(ieZ)

i

(k � q)2

i

u(p) (3.8)

The expression (3.5) for single photon exchange and that of (3.8) for two-photon exchange describe scattering from a
time-independent external charge �eZ. The analysis can be generalized to any number of photon exchanges, provided
all crossed photon diagrams are included: n! diagrams must be added for n-photon exchange. The result (with the
factor 2M and the spinors ū(p� q) and u(p) removed) is of the form

/V
Z

+ /V
Z

S /V
Z

+ . . . = /V
Z

1

1� S /V
Z

= /V
Z

S�1 1

S�1 � /V
Z

(3.9)

where the products involve 3-momentum convolutions, S is the free Dirac propagator and /V
Z

= �0V
Z

is given by the
external potential (3.2) (in momentum space). Bound state poles can occur when

S�1 � �0V
Z

= 0 (3.10)

which implies the Dirac equation (3.3) for states that are stationary in time.

Just as for positronium, bound state poles in the scattering amplitude arise not from any single Feynman diagram
but from the divergence of their sum. With each additional photon exchange there are more photons which cross each
other. A standard Bethe-Salpeter approach (cf. (2.19)) is based on iterating a kernel K. In a kernel of O (↵n) one
photon can cross at most n� 1 others. This means that the Dirac equation, which requires any number of crossings,
cannot be obtained from the usual Bethe-Salpeter equation with a kernel of finite order.

(a) (b)

FIG. 12: (a) Time-ordered version of Fig. 11(b) (time is running
from left to right). The dashed line indicates an intermediate
time with an additional e+e� pair. If the dashed line is viewed
as a unitarity cut the diagram represents the product of two
scatterings with pair creation/annihilation. (b) Squaring the
pair production amplitude in (a) gives a loop diagram.

Coulomb photon exchanges are instantaneous in time.
When a crossed photon diagram like Fig. 11(b) is time-
ordered it turns into the diagram of Fig. 12(a). At the
intermediate time indicated by the dashed line there is
an extra e+e� pair. Higher order diagrams contribute
several pairs, so a relativistic bound state must have
Fock components with any number of pairs. Thus the
Dirac wave function should not be thought of as a sin-
gle particle wave function, as known already from the
Klein paradox [24]. Even though  (x) has the de-
grees of freedom of a single particle it describes the
spectrum of a relativistic state with many constituents.
This is similar to hadrons, whose quantum numbers are
found to be given by their valence quarks, even though
hadrons have a sea of qq̄ pairs.

Ladder diagrams like those in Fig. 11 which build the Dirac states are distinguished by being of leading order in ↵Z.
Loop corrections on the electron and photon propagators are O (↵) and neglected. However, a loop correction on the
target line (Fig. 12(b)) is of leading order in ↵Z. It factorizes from the electron scattering dynamics since a photon
exchange between the loop and the electron would be of O (↵). Such target corrections nevertheless a↵ect the Dirac
wave function via interference e↵ects. If the amplitude on the left side of the dashed line in Fig. 12(a) is squared it
gives both diagram (a) and the loop diagram (b): Once an e+e� pair is created the state has two electrons which are
indistinguishable and interfere.

As shown by Weinberg [22], regardless of its interpretation the Dirac wave function should be normalized to unity
when the normalization integral converges. In section III C we shall see that the normalization integral does not
converge in D = 1 + 1 dimensions, where the QED2 potential is linear. The norm of the wave function tends to a
constant at large distances from the source, reflecting abundant pair fluctuations in the strong potential.

Perturbatively: “Z-diagrams” get infinite
energy (k → ∞) in the P → ∞ limit.

C.f.:   H|0⟩ = 0 in LF quantization.
          p+ = 0 means pz → – ∞

P

k

Explicitly: �P!1(�) = 2amP�+e�i�/2
1F1(1� im2, 2, i�)
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Frame (P) dependence of the solutions ( m1≠m2)

(m1=1.0e        m2=1.5e)
Comparison of ground and excited state wave functions
for P=0 (CM frame) and for P = 5e.

  Moves away in IMF (P → ∞ limit)

Note: In the IMF limit, only the normalizable, valence part of the wf remains.
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Quark - Hadron duality 

n0 z ≈
P

k–P

k

The wave functions of highly excited (large mass M) bound states are similar 
to free ff pairs (for V(x) << M). This determines their normalization:

|Φ0(x=0)|2 = |Φ1(x=0)|2 = π/2⇒

The solutions are consistent with 
Bloom-Gilman duality: Plane wave 
partons in bound state wave function.

Δ, S11xBN

γ* Q2

B-G Duality

P

The same result for 
j = S, P, V, A currents

j
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W. Melnitchouk et al, Phys. Rep. 406 (2005) 127

Resonance contributions 
ep → eN*

build DIS scaling in 
ep → eX

Bloom-Gilman Duality

Q2 ≈ 4.5

ξ≈xB

Q2 ≈ 0.5
Jlab Hall C

Δ, S11xBN

γ* Q2

Scattering dynamics is built into hadron wave functions.
We must understand relativistic bound states in motion.

m

2
N⇤ = m

2
N +Q

2

✓
1

xB
� 1

◆
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Plane waves in bound states 

In the parton picture, high energy quarks can be treated as free constituents.
They are momentum eigenstates, described by plane waves.
How does this fit into the bound state wave functions?

Consider a highly excited state (P=0):   M → ∞,  V(x) << M

σ = (M-V)2  ≈ M2 – 2MV  →∞ 

�(� ! 1) ⇠ exp(±i�/2)

Thus oscillations of wf at large σ gives plane wave with p = ±M/2

= e

±iM2

exp(⌥ixM/2)

The operator expression for the state is in this limit:

|M,P = 0i =
p
2⇡

2M

�
b†M/2d

†
�M/2 + b†�M/2d

†
M/2 |⌦i

As in the parton picture, only E > 0 particles appear (no b or d operators).

)



Paul Hoyer GSI 2015

53

Sfi = out

hf |
⇢
Texp

h
� i

Z 1

�1
dtHI(t)

i�
|ii

in

where the in and out states are free, O(α0) asymptotic states at t = ± ∞.

Bound state scattering amplitudes

In the usual Perturbative expansion the S-matrix is defined by

The ff states bound by a linear potential are O(α0) and Poincaré covariant. 
They can be used as in and out states, defining the perturbative expansion.

Even the O(α0) amplitudes have a rich dynamics (string breaking,…).
The feasibility of the perturbative approach to hadrons discussed here
requires that the main features of hadron dynamics are described at O(α0)
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31

D. Form factor and parton distribution

1. Electromagnetic form factor

The Poincaré covariance of the bound states (5.1) allows to include them as in and out states of scattering processes.
Let us consider the electromagnetic form factor15

Fµ

AB

(z) = hB(P
B

); t = +1|jµ(z) |A(P
A

); t = �1i = ei(PB�PA)·zhB(P
B

); t = 0|jµ(0) |A(P
A

); t = 0i (5.48)

where the electromagnetic current

jµ(z) =  ̄(z)�µ (z) = eiP̂ ·zjµ(0)e�iP̂ ·z (5.49)

was shifted to the origin using translation invariance. We also translated the states |Ai and hB| to the common time
t = 0, ignoring an irrelevant overall phase.

Using the equal-time anticommutation relations between the fields gives, with jµ |0i = 0,

Fµ

AB

(z) = ei(PB�PA)·z
Z

dx1dx2dy1dy2e
i(x1+x2)P

1
A/2�i(y1+y2)P

1
B/2

⇥ h0| †(0, y2)�
†
B

(y1 � y2)�
0 (0, y1)

⇥

 ̄(0, 0)�µ (0, 0)
⇤

 ̄(0, x1)�A

(x1 � x2) (0, x2) |0i (5.50)

= ei(PB�PA)·z
Z 1

�1
dx ei(P

1
B�P

1
A)x/2

n

Tr
⇥

�†
B

(x)�µ�0�
A

(x)
⇤

� ⌘
A

⌘
B

Tr
⇥

�
B

(x)�0�µ�†
A

(x)
⇤

o

(5.51)

In the second term of (5.51) we used the parity relation �(�x) = ⌘�⇤(x) which follows from (5.33).

The invariance of Fµ

AB

(z) under gauge transformations follows by using the property (5.47) of the wave functions in
(5.51). Consequently we must have

G
AB

(z) ⌘ @
µ

Fµ

AB

(z) = 0 (5.52)

This implies that the form factor in D = 1 + 1 can be expressed as

Fµ

AB

(q) ⌘
Z

d2zFµ

AB

(z)e�iq·z = (2⇡)2�2(P
B

� P
A

� q)"µ⌫q
⌫

F
AB

(Q2) (5.53)

where Q2 = �q2 and "µ⌫ is the anti-symmetric tensor with "01 = 1. Solving this for F
AB

(Q2) with µ = 0, using
Eq. (5.51) for the left-hand side and the expression (5.9) for � we obtain

F
AB

(Q2) = �4i
1� ⌘

A

⌘
B

q1

Z 1

0
dx sin

⇣q1x

2

⌘h

�⇤
0B(x)�0A(x) + �⇤

1B(x)�1A(x)
⇣

1 +
4m2

�
A

�
B

⇧̃
A

·⇧
B

⌘i

(5.54)

where ⇧̃ = (E � V,�P 1). According to the asymptotic behavior (5.39) of the wave functions the leading term for
x ! 1 in the square bracket of (5.54) is / cos

⇥

1
2 (�B � �

A

)
⇤

= cos
⇥

1
2 (M

2
B

�M2
A

)� 1
2x(EB

�E
A

)
⇤

. The integral may
thus be regulated similarly to plane waves, and F

AB

(Q2) is well defined.

2. Gauge invariance of the form factor

It is instructive to verify the consequence (5.52) of gauge invariance explicitly. The contribution of the first trace in
(5.51) to G is

G
(1)
AB

(0) = i

Z

dx ei(P
1
B�P

1
A)x/2 Tr

⇥

�†
B

(x)(/P
B

� /P
A

)�0�
A

(x)
⇤

. (5.55)

15 In the following P = (E,P

1) denotes the 2-momentum.

EM Form Factor (D = 1+1)
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D. Form factor and parton distribution

1. Electromagnetic form factor

The Poincaré covariance of the bound states (5.1) allows to include them as in and out states of scattering processes.
Let us consider the electromagnetic form factor15

Fµ

AB

(z) = hB(P
B

); t = +1|jµ(z) |A(P
A

); t = �1i = ei(PB�PA)·zhB(P
B

); t = 0|jµ(0) |A(P
A

); t = 0i (5.48)

where the electromagnetic current

jµ(z) =  ̄(z)�µ (z) = eiP̂ ·zjµ(0)e�iP̂ ·z (5.49)

was shifted to the origin using translation invariance. We also translated the states |Ai and hB| to the common time
t = 0, ignoring an irrelevant overall phase.

Using the equal-time anticommutation relations between the fields gives, with jµ |0i = 0,

Fµ

AB

(z) = ei(PB�PA)·z
Z
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⇥
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⇤
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= ei(PB�PA)·z
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dx ei(P
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B�P
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⇥
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In the second term of (5.51) we used the parity relation �(�x) = ⌘�⇤(x) which follows from (5.33).

The invariance of Fµ

AB

(z) under gauge transformations follows by using the property (5.47) of the wave functions in
(5.51). Consequently we must have

G
AB

(z) ⌘ @
µ

Fµ

AB

(z) = 0 (5.52)

This implies that the form factor in D = 1 + 1 can be expressed as

Fµ

AB

(q) ⌘
Z

d2zFµ

AB

(z)e�iq·z = (2⇡)2�2(P
B

� P
A

� q)"µ⌫q
⌫

F
AB

(Q2) (5.53)

where Q2 = �q2 and "µ⌫ is the anti-symmetric tensor with "01 = 1. Solving this for F
AB

(Q2) with µ = 0, using
Eq. (5.51) for the left-hand side and the expression (5.9) for � we obtain

F
AB

(Q2) = �4i
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⌘
B
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2
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(5.54)

where ⇧̃ = (E � V,�P 1). According to the asymptotic behavior (5.39) of the wave functions the leading term for
x ! 1 in the square bracket of (5.54) is / cos

⇥

1
2 (�B � �
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)
⇤

= cos
⇥
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)� 1
2x(EB

�E
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. The integral may
thus be regulated similarly to plane waves, and F

AB

(Q2) is well defined.

2. Gauge invariance of the form factor

It is instructive to verify the consequence (5.52) of gauge invariance explicitly. The contribution of the first trace in
(5.51) to G is

G
(1)
AB

(0) = i

Z

dx ei(P
1
B�P

1
A)x/2 Tr

⇥

�†
B

(x)(/P
B

� /P
A

)�0�
A

(x)
⇤

. (5.55)

15 In the following P = (E,P

1) denotes the 2-momentum.
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D. Form factor and parton distribution

1. Electromagnetic form factor

The Poincaré covariance of the bound states (5.1) allows to include them as in and out states of scattering processes.
Let us consider the electromagnetic form factor15

Fµ

AB

(z) = hB(P
B

); t = +1|jµ(z) |A(P
A

); t = �1i = ei(PB�PA)·zhB(P
B

); t = 0|jµ(0) |A(P
A

); t = 0i (5.48)

where the electromagnetic current

jµ(z) =  ̄(z)�µ (z) = eiP̂ ·zjµ(0)e�iP̂ ·z (5.49)

was shifted to the origin using translation invariance. We also translated the states |Ai and hB| to the common time
t = 0, ignoring an irrelevant overall phase.

Using the equal-time anticommutation relations between the fields gives, with jµ |0i = 0,

Fµ

AB

(z) = ei(PB�PA)·z
Z

dx1dx2dy1dy2e
i(x1+x2)P

1
A/2�i(y1+y2)P

1
B/2

⇥ h0| †(0, y2)�
†
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(y1 � y2)�
0 (0, y1)

⇥

 ̄(0, 0)�µ (0, 0)
⇤

 ̄(0, x1)�A

(x1 � x2) (0, x2) |0i (5.50)

= ei(PB�PA)·z
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⇥
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In the second term of (5.51) we used the parity relation �(�x) = ⌘�⇤(x) which follows from (5.33).

The invariance of Fµ

AB

(z) under gauge transformations follows by using the property (5.47) of the wave functions in
(5.51). Consequently we must have

G
AB

(z) ⌘ @
µ

Fµ

AB

(z) = 0 (5.52)

This implies that the form factor in D = 1 + 1 can be expressed as

Fµ

AB

(q) ⌘
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d2zFµ

AB

(z)e�iq·z = (2⇡)2�2(P
B
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A
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⌫

F
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where Q2 = �q2 and "µ⌫ is the anti-symmetric tensor with "01 = 1. Solving this for F
AB

(Q2) with µ = 0, using
Eq. (5.51) for the left-hand side and the expression (5.9) for � we obtain
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where ⇧̃ = (E � V,�P 1). According to the asymptotic behavior (5.39) of the wave functions the leading term for
x ! 1 in the square bracket of (5.54) is / cos

⇥

1
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)
⇤

= cos
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�M2
A

)� 1
2x(EB

�E
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. The integral may
thus be regulated similarly to plane waves, and F

AB

(Q2) is well defined.

2. Gauge invariance of the form factor

It is instructive to verify the consequence (5.52) of gauge invariance explicitly. The contribution of the first trace in
(5.51) to G is

G
(1)
AB

(0) = i

Z

dx ei(P
1
B�P

1
A)x/2 Tr

⇥

�†
B

(x)(/P
B

� /P
A

)�0�
A

(x)
⇤

. (5.55)

15 In the following P = (E,P

1) denotes the 2-momentum.

Gauge invariance is verified:

A, B: in & out states

qγ*

A B

e e

FAB

Poincaré invariance is verified (numerically).

In the Bjorken limit we can calculate the parton distribution.

xBj =
Q

2

2pA · q
M

2
B = Q

2

✓
1

xBj
� 1

◆
! 1
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55Parton distributions have a sea component

The sea component is prominent at low m/e :

0.2 0.4 0.6 0.8 1.0
xBj

2

4

6

8

10
xBjf xBj( )

xBj
2
4
6
8
10
12
14
xBjf xBj( )

0.10.050.010.001

(a) (b)

The red curve is an analytic approximation, valid in the xBj  → 0 limit.

m/e = 0.1

(log scale in xBj)

Note: Enhancement at low x is not due to �IMF
A (valence wf.)
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 Check List: Done and To Do

An O(αs0) Born term of hadrons should have:

• Poincaré (boost) invariance
• Gauge invariance
• Duality
• Quarkonium phenomenology
• Regge trajectories
• Chiral symmetry breaking
• Unitarity
• Light hadron spectrum
• Hadron scattering

Then, the O(αsn) corrections should be evaluated.

Success is guaranteed by QCD (if we did not break its rules).

✔ (mesons in D=1+1)
✔ (EM form factor)
✔ (Hadron vs. Parton wfs.)
✔ (linear potential)
✔ (Geffen & Suura)
indication (no parity doublets)
to be verified (hadron loops)
to be studied
to be studied (dual diagrams)


