Probing cold dense quark matter with astrophysical multi-messenger observations

Kai Schwenzer

University of Tübingen

K. Kokkotas & K. S., arXiv:1510.0705, M. Alford & K. S., APJ 781 (2014) 26, PRL 113 (2014) 251102 & MNRAS 446 (2015) 3631

QCD Phase diagram

What's inside of a compact star?

• The interior of a compact star is dense enough that it could contain various novel forms of matter ...

> M. Alford, et. al., Rev. Mod. Phys. 80 (2008) 1455

figure by D. Page

- We know the underlying theory of matter (QCD) but we simply cannot solve it at high density, yet
 - Iearn from astrophysical signals
- No signal we can detect (so far) escapes the opaque interior
- All signals we see come from the surface or even the magnetosphere

Many possibilities for dense interior ...

- Classic view: neutron matter
- QCD predicts deconfinement at (very) high density
- Many (>> 10) novel forms of matter are possible, because of:
 - many hadrons
 - many quark degrees of freedom, i.e.
 condensation patterns

... these have very different properties!

figure by D. Page

Dense matter

Properties of dense quark matter

- Dense quark matter is a cold and strongly degenerate Fermi system were at only excitations close to the Fermi surface are accessible
- Attraction in $\overline{3}$ -channel can lead to quark pairing at high density:

Color-superconductivity ... with gaps in single particle spectra

- The ground state of dense matter is in addition to the strong dynamics determined by constraints of chemical equilibrium $(d+u\leftrightarrow u+s, \frac{d\rightarrow u+e^-+\bar{\nu}}{u+e^-\rightarrow d+\nu})$ and charge neutrality: $\mu_e = \mu_d \mu_u$, $\mu_d = \mu_s$, $\frac{2n_u}{3} \frac{n_d}{3} \frac{n_s}{3} n_e = 0$
- Wealth of possible condensation patterns (depends on "mismatch" μ_e):
 - fully gapped phases (e.g. color-flavor locking at asymptotic μ)
 - partially gapped phases (e.g. 2SC, CSL, ...)
 - inhomogenous and anisotropic condensates (e.g. LOFF)
 - higher order condensates? ("Cooper quartets") Alford, Schwenzer & Windisch, in preparation
 - ungapped quark matter

 μ_e

There is more than the equation of state ...

J. Lattimer, Ann. Rev. Nucl. Part. Sci. 62 (2012) 485

... but solutions are very similar for different forms of dense matter

- Compact stars are (fortunately) not static:
 Dynamic material properties (emissivities, viscosities, transport properties) probe the low energy degrees of freedom of matter
 - fermionic vs. bosonic, strongly vs. weakly interacting, ...
 - ✓ power counting in small parameters T/μ , α_s/α_{em} , ...
 - material properties are drastically different for many phases!

Dissipation in dense matter

• Shear viscosity from particle scattering (strong/EM interaction)

candidate phase	dominant processes	shear viscosity	reference
(ungapped) nuclear matter	$\begin{array}{c} e+e \rightarrow e+e \\ n+n \rightarrow n+n \end{array}$	$\eta \sim (T/\mu)^{-5/3} \& (T/\mu)^{-2}$	Shternin, <i>et.al.</i> , PRD 78 (2008) 063006
hyperonic matter	$\begin{array}{c} e+e \rightarrow e+e \\ n+n \rightarrow n+n \end{array}$	$\eta \sim (T/\mu)^{-5/3} \& (T/\mu)^{-2}$	"
superfluid nuclear matter	$e + e \rightarrow e + e$	$\eta \sim (T/\mu)^{-3}$	Manuel, <i>et.al.</i> , PRD 84 (2011) 123007
ungapped quark matter	$q + q \rightarrow q + q$	$\eta \sim (T/\mu)^{-5/3}$	Heiselberg, <i>et.al.</i> , PRD 48 (1993) 2916
CFL quark matter	$H \rightarrow H + H$	$\eta \sim (T/\mu)^4$	Manuel, <i>et. al.</i> , JHEP 09 (2005) 76; Andersson, <i>et. al.</i> , PRD 82 (2010) 023007

• Bulk viscosity from particle transformation (weak interaction)

candidate phase	dominant processes	bulk viscosity: low T	reference
(ungapped) nuclear matter	$\begin{array}{l} n(+n) \rightarrow p(+n) + e + \bar{\nu} \\ p(+n) \rightarrow n(+n) + e + \nu \end{array}$	$\zeta \sim (T/\mu)^6$ or $(T/\mu)^4$	Sawyer, PLB 233 (1989) 412; Haensel, <i>et.al.</i> , PRD 45 (1992) 4708
hyperonic matter	$n+n \rightarrow p+\Sigma^{-}, \ldots$	$\zeta \sim (T/\mu)^2$	Haensel, <i>et. al.</i> , A&A 381 (2002) 1080
superfluid nuclear matter	$e+l \leftrightarrow \mu+l+\nu+\bar{\nu}$	$\zeta \sim (T/\mu)^7$	Alford, et.al., PRC 82 (2010) 055805
ungapped quark matter	$d + u \leftrightarrow s + u$	$\zeta \sim (T/\mu)^2$	Madsen, PRD 46 (1992) 3290
CFL quark matter	$K_0 \to H + H$	$\zeta \sim e^{-c(\mu/T)}$	Alford, et.al., PRC 75 (2007) 055209

Alternative forms of matter show dramatically different damping, since $T/\mu \sim O(10^{-4})$

Compact stars as labs for dense matter

"Seeing into a compact star"

 Electromagnetic radiation originates from the surface connection to the interior very indirect

advanced LIGO

(2015)

- Yet, one can use similar methods we use to learn about the interior of the earth or the sun: "Seismology"
- When non-axisymmetric oscillations are not damped away they emit gravitational waves, spinning a star down ...
 - ✓ direct detection via gravitational wave detectors
 - ✓ indirect detection via spin data of pulsar: many fast spinning sources observed!

... links macroscopic observables to microphysics of dense matter

R-mode oscillations

R-mode: Eigenmode of a rotating star which is unstable against gravitational wave emission N. Andersson, Astrophys. J. 502 (1998) 708, K. Kokkotas, LRR 2 (1999) 2, N. Andersson, K, Kokkotas, IJMP D10 (2001) 384

Large amplitude rmodes could cause a quick spindown

L. Lindblom, et. al., PRL 80 (1998) 4843, B. J. Owen, et. al., Phys. Rev. D 58 (1998) 084020

- But r-mode growth has to be stopped by some non-linear damping mechanism, e.g.:
 - non-linear hydro effects large $\alpha_{sat} = O(1)$ L. Lindblom, et. al., PRL 86 (2001) 1152, W. Kastaun, Phys.Rev. D84 (2011) 124036
 - non-linear viscous damping M. Alford, S. Mahmoodifar and K.S., PRD 85 (2012) 044051
 - mode-coupling moderate $\alpha_{sat} = O(10^{-5})$ P. Arras, et. al., Astrophys. J. 591 (2003) 1129, R. Bondarescu, et. al., Astrophys. J. 778 (2013) 9
 - vortex-fluxtube cutting

B. Haskell, K. Glampedakis and N. Andersson, MNRAS 441 (2014) 1662

Visualization by M. Beilicke

velocity oscillation: $\delta \vec{v} = \alpha R \Omega \left(\frac{r}{R}\right)^l \vec{Y}_{ll}^B e^{i\omega t}$

Multi-messenger data

In electromagnetic observations many fast ("millisecond") pulsars are observed - they can be grouped into two classes:

 Thermal X-ray data: ms x-ray pulsars in (low mass) binaries (LMXBs) currently accrete from a companion which allows a temperature measurement (10+ sources)

 T 's involve modeling and are somewhat uncertain e.g. Haskell, et. al., MNRAS 424 (2012) 93

- Timing data: ms radio and high energy pulsars (200+ sources) are very old and don't accrete any more, but feature extremely stable timing data Manchester, et. al., astro-ph/0412641
 - one of the most precise data sets in physics!
- (Future) Gravitational waves:
 - ★ only direct way to probe the star's interior
 - ✓ GW astronomy could even detect "hidden sources"

1846-0258

f < 0

F2

-6.400e-31

-9.139e-32

1.243e-20

6.100e-21

3.752e-21

1.919e-21

2.725e-21

FØ

19.802444 -1.878e-10

-3.862e-10

-6.694e-11

-6.664e - 11

30.225437

62.026190

R-mode instability & Static instability boundaries

Dissipation at an interface in multi-component compact stars

- Ekman layer damping from shear rubbing of a fluid core along a solid crust Lindblom, et. al., PRD 62 (2000) 084030
 - Damping time: $\tau_v = \frac{1}{2\Omega} \frac{2^{m+3/2}(m+1)!}{m(2m+1)!!\mathcal{I}_m} \sqrt{\frac{2\Omega R_c^2 \rho_c}{\eta_c}} \int_0^{R_c} \frac{\rho}{\rho_c} \left(\frac{r}{R_c}\right)^{2m+2} \frac{dr}{R_c}$
 - Only big if there is a sharp, i.e. cm-size, transition ...
 ... in reality there is a broad transition over >100 m!
 (core -> pasta phases -> inner crust -> outer curst)
- Phase conversion dissipation between fluids in different phases with 1.order transition (e.g. quark/hadronic matter) Alford, Han & Schwenzer, arXiv:1404.5279
 - $n \leftrightarrow q$ requires strangeness changes
 - Interface slowed by weak reactions & diffusion
 - Only non-vanishing at finite amplitude, but then very strong: Provides r-mode saturation mechanism in a hybrid star with $\alpha_{sat} < O(10^{-10})$

"Effective Theory of pulsars"

 Observable macroscopic properties depend only on quantities that are integrated over the entire star:

 $I = \tilde{I}MR^2 \quad (\text{MOMENT OF INERTIA})$

$$\begin{split} P_{G} &= \frac{32\pi(m-1)^{2m}(m+2)^{2m+2}}{((2m+1)!!)^{2}(m+1)^{2m+2}} \tilde{J_{m}}^{2} GM^{2}R^{2m+2}\alpha^{2}\Omega^{2m+4} & (\text{POWER RADIATED IN} \\ \text{GRAVITATIONAL WAVES}) \\ P_{S} &= -\frac{(m-1)(2m+1)\tilde{S}_{m}\Lambda_{\text{QCD}}^{3+\sigma}R^{3}\alpha^{2}\Omega^{2}}{T^{\sigma}} & (\text{DISSIPATED POWER} \\ P_{B} &= -\frac{16m}{(2m+3)(m+1)^{5}\kappa^{2}} \frac{\Lambda_{QCD}^{9-\delta}\tilde{V}_{m}R^{8}\alpha^{2}\Omega^{4}T^{\delta}}{\Lambda_{EW}^{4}\tilde{J_{m}}} & (\text{DISSIPATED POWER} \\ DUE TO SHEAR / BULK \\ \text{VISCOSITY}) \\ L_{\nu} &= 4\pi R^{3}\Lambda_{EW}^{4}\Lambda_{QCD}^{1-\theta}\tilde{L}T^{\theta} & (\text{NEUTRINO LUMINOSITY}) \end{split}$$

"Effective Theory of pulsars"

• Observable macroscopic properties depend only on quantities that are integrated over the entire star:

$$\begin{split} I &= IMR^2 & \tilde{I} \equiv \frac{8\pi}{3MR^2} \int_0^R dr \, r^4 \rho \\ P_G &= \frac{32\pi (m-1)^{2m} (m+2)^{2m+2}}{((2m+1)!!)^2 (m+1)^{2m+2}} \tilde{J_m}^2 GM^2 R^{2m+2} \alpha^2 \Omega^{2m+4} & \tilde{J_m} \equiv \frac{1}{MR^{2m}} \int_0^R dr \, r^{2m+2} \rho \\ P_S &= -(m-1) \, (2m+1) \, \tilde{S_m} \frac{\Lambda_{\rm QCD}^{3+\sigma} R^3 \alpha^2 \Omega^2}{T^{\sigma}} & \text{with} & \tilde{S}_m \equiv \frac{1}{R^{2m+1} \Lambda_{\rm QCD}^{3+\sigma}} \int_{R_i}^{R_o} dr \, r^{2m} \tilde{\eta} \\ P_B &= -\frac{16m}{(2m+3)(m+1)^5 \kappa^2} \tilde{V_m} \frac{\Lambda_{\rm QCD}^{9-\delta} R^8 \alpha^2 \Omega^4 T^{\delta}}{\Lambda_{EW}^4 \tilde{J_m}} & \tilde{V_m} \equiv \frac{\Lambda_{EW}^4}{R^3 \Lambda_{\rm QCD}^{9-\delta}} \int_{R_i}^{R_o} dr \, r^2 A^2 C^2 \tilde{\Gamma} \, (\delta \Sigma_m)^2 \\ L_\nu &= 4\pi R^3 \Lambda_{EW}^4 \Lambda_{QCD}^{1-\theta} \tilde{L} T^{\theta} & \tilde{L} \equiv \frac{1}{R^3 \Lambda_{EW}^4 \Lambda_{OCD}^{1-\theta}} \int_{R_i}^{R_o} dr \, r^2 \tilde{\epsilon} \end{split}$$

D

- Pulsar evolution for r-mode amplitude α , angular velocity Ω and temperature T are obtained from global conservation laws B. J. Owen, et. al., Phys. Rev. D 58 (1998) 084020
- * Universal hierarchy of evolution time scales: $\tau_{\alpha} \ll \tau_T \ll \tau_{\Omega}$ M. Alford & K. S., APJ 781 (2014) 26
- ◆ Semi-analytic results for the complete r-mode evolution ...
 e.g. final frequency
 for a neutron star: $f_{f}^{(NS)} \approx 61.4 \, \text{Hz} \frac{\tilde{J}_{23}^{(3)} \tilde{L}_{184}^{(5)}}{\tilde{J}_{92}^{(2)} \alpha_{\text{sat}}^{(5)}} \left(\frac{1.4 \, M_{\odot}}{M}\right)^{\frac{29}{92}} \left(\frac{11.5 \, \text{km}}{R}\right)^{\frac{87}{184}}$

Extremely insensitive to microscopic details ... but not to the form of dense matter!

Static instability regions vs. x-ray data

- R-modes are unstable at large frequencies if the damping is not sufficient
- Boundary given by $P_G = P_D|_{\alpha \to 0}$
- Requires temperature measurements which are only available for a few low mass x-ray binaries
- Two scenarios to explain the data:
 "no r-mode": completely damped
 "saturated r-mode": unstable,
 but saturated at small α_{sat}

II α_{sat} BORING TRIVIAL CASE analytic result: $\Omega_{ib}(T) = \left(\hat{D}T^{\delta}\lambda^{\Delta}/\hat{G}\right)^{1/(8-\psi)}$

- Many sources are clearly within the instability region for neutron stars with standard damping (saturated r-mode scenario required)
- (Incl. interactions) quark matter fully damps mode (no r-mode scenario)

R-mode evolution & Dynamic instability boundaries

Evolution of young pulsars

• Observed young pulsars spin with very low frequencies, but newly formed pulsars should spin with huge frequencies C. D. Ott, et. al., APJS, 164 (2006) 130

- They cool until r-modes become unstable and saturate at a finite amplitude
- R-modes heat the source and the GW emission spins it down along a steady state curve where heating balances cooling
- Afterwards they leave the instability region, r-modes decay and these sources cool and spindown

Evolution of recycled pulsars

- Pulsars can be spun up to high frequencies (so far 716 Hz) by accretion in low mass x-ray binaries (LMXBs): "Recycling", which heats them strongly
- When accretion stops, they cool quickly until either ...
 - 1. they leave the instability region (low frequencies)
 - r-mode heating balances cooling (high frequencies)
 - very slow spindown along steady state curve

"Saturated r-mode scenario"

... without enhanced damping, fast spinning stars cannot escape the instability region

Pulsar evolution with enhanced damping

- Enhanced damping can lead to a stability window where the mode is stable up to large Ω
- When accretion stops, source
 - 1. cools into the instability region and ...
 - 2. is pushed out of it again by strong r-mode heating
- Decaying oscillation around the instability boundary N. Andersson, D. Jones and K. Kokkotas, MNRAS 337 (2002) 1224
 - dynamic steady state and slow spindown along the boundary Reisenegger and Bonacic, PRL 91 (2003) 201103

Effective dynamic saturation mechanism without amplitude-dependent dissipation

• Spindown solution allows to connect to timing data of radio pulsars ...

Spindown (heating=cooling) curves depend strongly on saturation amplitude ... data implies that $\alpha_{sat} \leq O(10^{-8})$ but proposed saturation mechanisms can only saturate at $\alpha_{sat} \gtrsim O(10^{-6})$ S. Mahmoodifar and T. Strohmayer, APJ 773 (2013) 140

We only measure the total spindown rate which can stem from various mechanisms, so that the sources could be outside of the instability region ...

• However, to cool out of the instability region would even require $\alpha_{sat} \leq O(10^{-10})$

Spindown data is restrictive despite our ignorance what fraction is due to r-modes!

R-mode instability regions vs. thermal x-ray & radio timing data

M. Alford & K. S., PRL 113 (2014) 251102 & NPA 931 (2014) 740

Dynamic Instability boundaries in timing parameter space:

$$\Omega_{ib}(\dot{\Omega}) = \left(\hat{D}^{\theta}I^{\delta}|\dot{\Omega}|^{\delta} / \left(3^{\delta}\hat{G}^{\theta}\hat{L}^{\delta}\right)\right)^{1/((8-\psi)\theta-\delta)}$$

Interacting quark matter consistent with both x-ray and radio data (no r-mode scenario)

"R-mode temperatures"

 The connection between the spindown curves allows to determine the R-mode temperature of a star with saturated r-mode oscillations (saturated r-mode scenario) for given timing data

$$T_{rm} = \left(I\Omega\dot{\Omega} / \left(3\hat{L} \right) \right)^{1/\theta}$$

- Independent of the saturation mechanism ...
 but depends on the cooling
- Temperatures only upper bounds since the observed spindown rate can also stem from electromagnetic radiation
- Measurements of temperatures (or bounds) of fast nearby radio pulsars would allow us to test if saturated rmodes can be present
 - falsifiable scenario!

If radio pulsars spin down by r-mode emission, they would be warm enough to observe thermal x-rays

Constraints on dense quark matter

- When quark matter with enhanced damping is present a star spins down along the boundary of the instability region
- Due to other potential mechanisms the observed spindown rate has to be larger than the part due to r-modes which yields the general bound on the star parameters: $\frac{\tilde{V}^3 \tilde{I} R^2}{\tilde{J}^6 \tilde{L} M^5} \geq \frac{2^{54} 7^3 \pi^{14}}{3^{14} 5^6} \frac{\Lambda_{EW}^8 G^3}{\Lambda_{QCD}^{18}} \frac{f_0^{11}}{|\dot{f}_0|}$

... completely general but not very focussed

• A self bound strange star (and to some extend also the core of a hybrid star) has approximately constant density, which yields a direct bound on the material parameters: $\frac{A^6C^6\tilde{\Gamma}^3}{\tilde{\epsilon}} \gtrsim \frac{2^{41}\pi^8}{3^35^57^3} \frac{G^3M^5}{R^2} \frac{f_0^{11}}{|\dot{f}_0|}$

where:
$$A \equiv \frac{\partial \varepsilon}{\partial p}$$
, $C \equiv n_B \frac{\partial \mu_K}{\partial n_B}$, $\Gamma \equiv -\tilde{\Gamma}T^2 \mu_K$, $\epsilon \equiv \tilde{\epsilon}T^6$ and $\mu_K = \mu_d - \mu_s$

are susceptibilities, the non-leptonic weak rate and the emissivity

★ Goal: Connection to microscopic particle properties

Direct constraints on CSC phases

- luating these $\epsilon_{A_{P}}$. per victing phases (e.g. ϵ_{C-1} , vert ound on the $m_s \ge \left(\frac{2^{20}\pi^{15}457}{3^{3}5^{3}7^4}, \frac{c_{-u_s}}{G_F^4 \sin^6 \theta_c \cos^4 \theta_c} |f_0|\right)$ Rather inset $m_s \ge \left(\frac{2^{20}\pi^{15}457}{3^{3}5^{3}7^4}, \frac{c_{-u_s}}{G_F^4 \sin^6 \theta_c \cos^4 \theta_c} |f_0|\right)$ Popularises me in poperties except for the frequency ... bound arises for the frequency ... bound Evaluating these expressions for partially paired color-

300

400

f [Hz]

600

- would require $\Delta > 100 \,\mathrm{MeV}$, which is not provided by microscopic models!

Gravitational waves & R-mode astronomy

Present & future windows to the cosmos

gravitational waves

- Emitted by huge and quickly moving masses
- Hardly absorbed by matter
- Probe the interior of dense objects

electromagnetic radiation,

- Emitted by (thermally) moving charges
- Generally easily absorbed by matter
- Probe the surface of dense objects

(particle rays >>)

frequency

Gravitational Wave Detectors

- Extremely hard to detect ... and not directly detected, yet!
 - ➡ huge interferometers required
- Present facilities:

LIGO (4km; Hanford WA & Livingston LA) Virgo (3km; Cascina, Italy) GEO (600m; Hannover, Germany)

• Future facilities:

advanced LIGO (~10-times LIGO sensitivity) advanced Virgo KAGRA (3km; Kamioka, Japan)

... Einstein Telescope (~100-times sensitivity)

Exciting times ... the future just started

Advanced LIGO started this fall!

A Timber, Annual to Physics, Read 40, 1915 1915. No. 7. ANNALEN DER PHYSIK.

VIERTE FOLGE. DAND 49.

 Die Grundtage der allgeweinen Relativitätstheorie; von A. Einstein.

During the Einstein centennial! (there are first rumors about a detection ...)

GW identification and direct Information

• Direct observables from the gravitational wave data are

GW amplitude h_0 , GW frequency u, GW spindown rate $\dot{\nu}$...

 If the rotation frequency is known r-mode gravitational wave emission can be clearly identified

• The most important information is ...

... that r-mode GW emission is present!

- ★ yields direct information on the damping in the interior
- for the different classes of sources this directly distinguishes different phases of dense matter

Gravitational waves from old ms-pulsars

- In addition to the standard case of deformations Aasi, et. al., arXiv:1309.4027
 r-modes are a promising continuous GW-source
- The r-mode saturation mechanism should operate in all sources ...
 - novel universal spindown limit for the GW signal
- Millisecond pulsars are below the aLigo sensitivity
- ✓ However they should be detectable with further improvements or
 3. generation detectors

("universal spindown limit") M. Alford & K. S., MNRAS 446 (2015) 3631

Gravitational wave emission of young sources

- Since r-mode emission can *quantitively* explain the low rotation frequencies of young pulsars (which already spin too slow to emit GWs), very young sources are promising targets
- GW strain depends basically only on age and distance $h(t) \xrightarrow{\Omega_{\alpha} \in \Omega_{i}}$

Several potential sources in reach of aLigo

3 CGI

M. Alford & K. S., Astrophys. J. 781 (2014) 26

Information from multi-messenger observations

- For pulsars we know the ... Rotation Frequency f
- From the numerical result for the gravitational wave/rotation frequency connection that is nearly independent to the equation of state, one obtains a result for the ... Compactness parameter

$$\frac{M}{R} \approx 0.017 + 0.767 \sqrt{\frac{3\nu}{4f}} - 1.029}$$
 & for known mass the ... Radius

- Stems presently from a numerical fit but a controlled result in a post-Newtonian and slow-rotation expansion could be derived!
- For many pulsars we also know the ... (Spindown Rate \dot{f}
- If the observed spindown power $P_{rot} = I\Omega\dot{\Omega}$ roughly agrees with the rmode spindown torque P_R , r-modes dominate the spindown and in this case one obtains a direct measurement for the ...

Moment of Inertia $I \xrightarrow{P_{rot} \approx P_R} \frac{D^2 \nu h_0^2}{5 |\dot{f}|}$ A. Mytidis, M. Coughlin, and B. Whiting, arXiv:1505.03191

Precise measurement would rule out most of the current EoS!

Accreting sources

• For accreting sources in LMXBs other observables are known:

Temperature T_{∞} and thermal photon flux J_{γ}

The ratio of the r-mode heating power and the thermal photon

LMXBs could become "standard sirens" for astronomy ... • If this is quar

$$L_{\gamma} = \frac{2\pi^2}{5} D^2 \left(2f - \nu\right) \nu h_0^2$$

 \star If the radius is independently measured by a precise mass measurement and the compactness ratio Distance $D \xrightarrow[L_{\gamma} \gg L_{\nu}, P_G \gg P_{acc}]{} \sqrt{\frac{\pi}{6} \frac{R^2 T_{\infty}^4}{(2f - \nu) \nu h_0^2} \left(1 - 2G \frac{M}{R}\right)^2}$ this gives the

mermal luminosity

So far we are at the beginning ...

... but it could be only a matter of sensitivity

Conclusions and Outlook

- Thermal X-ray data of LMXBs and timing data of radio pulsars ... can be used to probe the interior of compact stars
 - "Minimal" neutron stars cannot damp r-modes in LMXBs and have problems to explain the pulsar data for know saturation mechanisms
 - ★ Unpaired quark matter can simultaneously explain the data

on LMXBs and radio pulsars

THERMAL X-RAYS AND

Hybrid stars can saturate r-modes at insignificantly low amplitudes
 NO X-RAYS AND NO GRAVITATIONAL WAVES

- Partially gapped color superconducting phases (e.g. 2SC phase) have big problems to explain the pulsar data
- Thermal x-ray or for nearby millisecond pulsars could tell us which scenario is realized
- * Gravitational wave astronomy opens a novel window to the star interior