

Physics Highlights from the LHCb Experiment

Michael Schmelling - MPI for Nuclear Physics

Outline

- Introduction
- The LHCb Detector
- Flavour Physics and Spectroscopy
- Ion Physics
- New Developments
- Summary and Outlook

1. Introduction

→ an extremely successful theory: the Standard Model

- unexplained findings:
 - 1 fundamental scalar
 - 2 types of fermions
 - 3 generations
 - 4 fermions/generation
 - 3 gauge interactions
 - 4 gauge bosons

1. Introduction

→ an extremely successful theory: the Standard Model

- unexplained findings:
 - 1 fundamental scalar
 - 2 types of fermions
 - 3 generations
 - 4 fermions/generation
 - 3 gauge interactions
 - 4 gauge bosons

→ some of today's big physics questions

What is the origin of mass?

- → how do fundamental particles acquire mass?
 - Standard Model: Higgs mechanism
 - → space is filled with a Higgs background field
 - mass arises as resistance to movement through this field
 - → if the model is correct, then a Higgs particle must exists
 - the LHC experiments found a Higgs-particle

What is the origin of mass?

- → how do fundamental particles acquire mass?
 - Standard Model: Higgs mechanism
 - → space is filled with a Higgs background field
 - mass arises as resistance to movement through this field
 - if the model is correct, then a Higgs particle must exists
 - the LHC experiments found a Higgs-particle
- → what determines the mass values?
 - the Higgs mechanism does not predict mass values
 - understanding mass hierarchy requires New Physics
 - → new (heavy) particles and fields
 - → rich new phenomenology

What is Dark Matter made of?

→ cosmic microwave background & structure formation:

What is Dark Matter made of?

→ cosmic microwave background & structure formation:

the universe is "flat" (euclidean)

What is Dark Matter made of?

→ cosmic microwave background & structure formation:

- the universe is "flat" (euclidean)
- its energy content is [Planck]
 - → 68.3% dark energy
 - → 4.9% ordinary matter
 - → 26.8% dark matter (heavy particles?)

Where is the Antimatter?

→ the puzzle

- antimatter (in small quantities) is observed in lab-experiments
- always same amounts of matter and antimatter created
- the same processes occured in the early universe, but
- no evidence for sizeable amounts of antimatter in the universe

Where is the Antimatter?

→ the puzzle

- antimatter (in small quantities) is observed in lab-experiments
- always same amounts of matter and antimatter created
- the same processes occured in the early universe, but
- no evidence for sizeable amounts of antimatter in the universe

image: HST)

- no evidence for anti-matter annihilation radiation
- no evidence for anti-nuclei in cosmic rays

Properties of matter at extreme conditions?

open questions

- behaviour of hadronic matter
 - at extreme densities
 - at extreme temperatures
- study phase transitions
 - deconfinement
 - order of phase transition

Properties of matter at extreme conditions?

open questions

- behaviour of hadronic matter
 - at extreme densities
 - at extreme temperatures
- study phase transitions
 - deconfinement
 - order of phase transition

ultimate goal:

understanding of our universe from the big bang until today

→ exploit the physics capabilities of the LHC

- exploit the physics capabilities of the LHC
 - new particles could explain dark matter and mediate extra CP-violation
 - → direct search for new heavy particles (ATLAS, CMS)
 - probe by precision measurements in flavour physics (LHCb)
 - new particles will have additional couplings and phases
 - affect Standard Model suppressed decay rates and CP-violation

- exploit the physics capabilities of the LHC
 - new particles could explain dark matter and mediate extra CP-violation
 - → direct search for new heavy particles (ATLAS, CMS)
 - → probe by precision measurements in flavour physics (LHCb)
 - new particles will have additional couplings and phases
 - affect Standard Model suppressed decay rates and CP-violation
 - weak interaction physics
 - expected to play a key role in search for New Physics
 - weak interaction couples to all known fields
 - phenomenology depends on mass hierarchies, (becomes trivial – no mixing – for degenerate masses)

- exploit the physics capabilities of the LHC
 - new particles could explain dark matter and mediate extra CP-violation
 - → direct search for new heavy particles (ATLAS, CMS)
 - → probe by precision measurements in flavour physics (LHCb)
 - new particles will have additional couplings and phases
 - affect Standard Model suppressed decay rates and CP-violation
 - weak interaction physics
 - expected to play a key role in search for New Physics
 - weak interaction couples to all known fields
 - phenomenology depends on mass hierarchies, (becomes trivial – no mixing – for degenerate masses)
 - strong interaction physics
 - → the QCD Lagrangian is well known and tested
 - → many open questions in the non-perturbative regime
 - soft processes and bound states
 - Quark Gluon Plasma high densities and temperatures (ALICE)

LHC DETECTOR

forward spectrometer with $15 < \Theta < 300 \, \mathrm{mrad}$ and $\int Bdl = 4 \, \mathrm{Tm}$

forward spectrometer with $15 < \Theta < 300 \, \mathrm{mrad}$ and $\int Bdl = 4 \, \mathrm{Tm}$

- VELO: silicon strip detector for precise secondary vertex reconstruction
- TT,T1,T2,T2: tracking stations, silicon strip and straws for charged particles
- RICH1, RICH2: ring imaging cherenkov detectors for $\pi/K/p$ -separation
- ECAL, HCAL: electromagnetic & hadronic calorimeters for trigger and neutrals
- M1-M5: tracking stations for muon identification

Installation in the cavern

Inside the spectrometer magnet

Design aspects of LHCb

- → optimization for B-Physics but can do much more
 - forward angular coverage → large boosts: B decay lengths O(1 cm)
 - focus on vertex reconstruction and particle identification
 - phase space coverage down to low p_T , small x_{Bi} and large η
 - flexible and highly selective trigger

Angular coverage of the LHC experiments

ca. 50 kB/event

→ allow selection of rare processes

ca. 50 kB/event

allow selection of rare processes

- Level-0 Trigger: hardware
 - → fully synchronous at 40 MHz
 - use calorimeters and muon system
 - → selection of high-p_T particles
 - \bullet $p_T(\mu) > O(1) \text{ GeV/}c$
 - \bullet $p_T(h, e, \gamma) > O(3) \text{ GeV}/c$

ca. 50 kB/event

allow selection of rare processes

- Level-0 Trigger: hardware
 - → fully synchronous at 40 MHz
 - → use calorimeters and muon system
 - → selection of high-p_T particles
 - \bullet $p_T(\mu) > O(1) \text{ GeV/}c$
 - \bullet $p_T(h, e, \gamma) > O(3) \text{ GeV}/c$
- High-Level Trigger: software
 - → HLT1: add VFI O information
 - impact parameter- and lifetime cuts
 - → HLT2: global event reconstruction
 - exclusive & inclusive selections

ca. 50 kB/event

- allow selection of rare processes
- Level-0 Trigger: hardware
 - → fully synchronous at 40 MHz
 - → use calorimeters and muon system
 - → selection of high-p_T particles
 - \bullet $p_T(\mu) > O(1) \text{ GeV/}c$
 - \bullet $p_T(h, e, \gamma) > O(3) \text{ GeV}/c$
- High-Level Trigger: software
 - → HLT1: add VFI O information
 - impact parameter- and lifetime cuts
 - → HLT2: global event reconstruction
 - exclusive & inclusive selections
- up to O(30) kHz "deferred" triggering

Run-I LHCb data taking history

- DAQ efficiency $\approx 95\%$
- \blacksquare instantaneous luminosity up to $L = 4 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$
 - → twice design value at double the nominal bunch spacing
 - → luminosity leveling for LHCb by beam steering
- \blacksquare a total of 2×10^{14} pp-collisions scrutinized

Run-I LHCb data taking history

year	luminosity	E[TeV]
2009	$6.8\mu\mathrm{b}^{-1}$	0.9
2010	$0.3{ m nb}^{-1}$	0.9
2010	$0.37{\rm pb^{-1}}$	7
2011	$0.1{ m pb}^{-1}$	2.76
2011	$1\mathrm{fb}^{-1}$	7
2012	$2\mathrm{fb}^{-1}$	8
2013	$1.3{\rm nb}^{-1}$	5 (pA)
2013	$0.6{\rm nb}^{-1}$	5 (Ap)

- DAQ efficiency $\approx 95\%$
- instantaneous luminosity up to $L = 4 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$
 - → twice design value at double the nominal bunch spacing
 - → luminosity leveling for LHCb by beam steering
- \blacksquare a total of 2×10^{14} pp-collisions scrutinized

Tracking, vertexing and PID performance

excellent mass resolution for complex decays

B-mass resolution: $\sigma(m_B) = 8 \,\mathrm{MeV}/c^2$ for $B_s \to J/\psi X$ with J/ψ mass constraint

Tracking, vertexing and PID performance

excellent mass resolution for complex decays

- ightharpoonup B-mass resolution: $\sigma(m_B)=8\,{
 m MeV}/c^2$ for $B_s o J/\psi X$ with J/ψ mass constraint
- excellent vertex- and proper-time resolution

ightharpoonup proper time resolution: $\sigma_t \sim 45 \, \mathrm{fs}$ for B_s -mixing

Tracking, vertexing and PID performance

excellent mass resolution for complex decays

- $m{ ilder}$ B-mass resolution: $\sigma(m_B)=8\,{
 m MeV}/c^2$ for $B_s o J/\psi X$ with J/ψ mass constraint
- excellent vertex- and proper-time resolution

ightharpoonup proper time resolution: $\sigma_t \sim 45 \, \mathrm{fs}$ for B_s -mixing

particle identification essential to reconstruct decay modes
 polarity switching of dipol magnet allows to control systematics

Calorimetry and muon identification

- ECAL: optimized to measure radiative B-decays
- HCAL: for triggering on hadronic final states
- Muon system for quarkonium and semi-leptonic decays

3. FLAVOUR PHYSICS AND SPECTROSCOPY

- → only part of the current LHCb physics portfolio. . .
 - QCD measurements and spectroscopy in pp and p-Pb collisions
 - → particle production, particle ratios, forward energy flow
 - b- and c-hadron spectroscopy
 - → charmonium, bottomonium
 - studies of exotic states

3. FLAVOUR PHYSICS AND SPECTROSCOPY

- → only part of the current LHCb physics portfolio. . .
 - QCD measurements and spectroscopy in pp and p-Pb collisions
 - → particle production, particle ratios, forward energy flow
 - b- and c-hadron spectroscopy
 - → charmonium, bottomonium
 - → studies of exotic states
 - electro-weak studies
 - → W & Z, Drell-Yan and jet production

3. Flavour Physics and Spectroscopy

- → only part of the current LHCb physics portfolio. . .
 - QCD measurements and spectroscopy in pp and p-Pb collisions
 - → particle production, particle ratios, forward energy flow
 - b- and c-hadron spectroscopy
 - charmonium, bottomonium
 - → studies of exotic states
 - electro-weak studies
 - → W & Z, Drell-Yan and jet production
 - CKM physics with heavy flavours b and c
 - CP-violation and mixing
 - → rare decays
 - \rightarrow full access to B_s system

3. FLAVOUR PHYSICS AND SPECTROSCOPY

- → only part of the current LHCb physics portfolio. . .
 - QCD measurements and spectroscopy in pp and p-Pb collisions
 - → particle production, particle ratios, forward energy flow
 - b- and c-hadron spectroscopy
 - → charmonium, bottomonium
 - → studies of exotic states
 - electro-weak studies
 - → W & Z, Drell-Yan and jet production
 - CKM physics with heavy flavours b and c
 - CP-violation and mixing
 - → rare decays
 - \rightarrow full access to B_s system
 - searches
 - → search for lepton number violation
 - → tests of CPT and Lorentz invariance

3. FLAVOUR PHYSICS AND SPECTROSCOPY

- → only part of the current LHCb physics portfolio. . .
 - QCD measurements and spectroscopy in pp and p-Pb collisions
 - particle production, particle ratios, forward energy flow
 - → b- and c-hadron spectroscopy
 - → charmonium, bottomonium
 - studies of exotic states
 - electro-weak studies
 - → W & Z, Drell-Yan and jet production
 - CKM physics with heavy flavours b and c
 - CP-violation and mixing
 - → rare decays
 - \rightarrow full access to B_s system
 - searches
 - → search for lepton number violation
 - → tests of CPT and Lorentz invariance

a few selected topics ->

Direct CP-violation in B-decays

 \rightarrow study B_d , $\bar{B}_s \rightarrow K^+\pi^- + c.c.$ decays

Results based on 1 fb⁻¹

→ corrections for detector and production asymmetries

$$A_{CP} = A_{\text{raw}} - (A_{\text{det}} + A_{\text{prod}})$$

- LHCb made of matter
- LHCb not perfectly symmetric for positive and negative tracks
- initial pp state is purely matter

Results based on 1 fb⁻¹

corrections for detector and production asymmetries

$$A_{CP} = A_{ ext{raw}} - (A_{ ext{det}} + A_{ ext{prod}})$$

- LHCb made of matter
- LHCb not perfectly symmetric for positive and negative tracks
- initial pp state is purely matter
- \rightarrow most precise single measurement in B_d system

$$A_{CP} = \frac{\Gamma(\overline{B}_d \to K^-\pi^+) - \Gamma(B_d \to K^+\pi^-)}{\Gamma(\overline{B}_d \to K^-\pi^+) + \Gamma(B_d \to K^+\pi^-)} = -0.080 \pm 0.007_{\rm stat} \pm 0.003_{\rm syst}$$

dominant systematics from detector and production asymmetries

$$A_{CP} = A_{ ext{raw}} - (A_{ ext{det}} + A_{ ext{prod}})$$

- LHCb made of matter
- LHCb not perfectly symmetric for positive and negative tracks
- initial pp state is purely matter
- → most precise single measurement in B_d system

$$A_{CP} = \frac{\Gamma(\overline{B}_d \to K^-\pi^+) - \Gamma(B_d \to K^+\pi^-)}{\Gamma(\overline{B}_d \to K^-\pi^+) + \Gamma(B_d \to K^+\pi^-)} = -0.080 \pm 0.007_{\rm stat} \pm 0.003_{\rm syst}$$

- dominant systematics from detector and production asymmetries
- → first observation of CPV in B_s system

$$A_{CP} = rac{\Gamma(\overline{B}_s o K^+\pi^-) - \Gamma(B_s o K^-\pi^+)}{\Gamma(\overline{B}_s o K^+\pi^-) + \Gamma(B_s o K^-\pi^+)} = 0.27 \pm 0.04_{
m stat} \pm 0.01_{
m syst}$$

dominant systematics from fit model

The B_s-mixing frequency

→ measure by means of flavour-specific B_s-decays

- second-order weak process
- only small phase from CKM-couplings
- decay modes studied
 - $\rightarrow B_s^0(\bar{b}s) \rightarrow D_s^-(\bar{c}s) \pi^+$
 - $\rightarrow \bar{B}_s^0(b\bar{s}) \rightarrow D_s^+(c\bar{s}) \pi^-$

The B_s-mixing frequency

→ measure by means of flavour-specific B_s-decays

- second-order weak process
- only small phase from CKM-couplings
- decay modes studied

$$\rightarrow B_s^0(\bar{b}s) \rightarrow D_s^-(\bar{c}s) \pi^+$$

$$ightharpoonup ar{B}^0_s(bar{s})
ightarrow D^+_s(car{s}) \pi^-$$

flavour tagging of initial state

- opposite side taggers: partial reconstruction of 2nd B-hadron
- same side kaon tagger: self-tagging from hadronization
- combined tagging power: $\varepsilon(1-2\omega)^2 = 3.5 \pm 0.5\%$

The B_s -mixing frequency

\rightarrow measure by means of flavour-specific B_s -decays

- second-order weak process
- only small phase from CKM-couplings
- decay modes studied

$$\rightarrow B_s^0(\bar{b}s) \rightarrow D_s^-(\bar{c}s) \pi^+$$

$$ightharpoonup$$
 $\bar{B}^0_s(b\bar{s}) o D^+_s(c\bar{s}) \pi^-$

flavour tagging of initial state

- → opposite side taggers: partial reconstruction of 2nd B-hadron
- same side kaon tagger: self-tagging from hadronization
- ⇒ combined tagging power: $\varepsilon (1 2\omega)^2 = 3.5 \pm 0.5\%$

result: $\Delta m_s = 17.768 \pm 0.023 \pm 0.006 \, \mathrm{ps}^{-1}$

NJP 15(2013)053021

The "golden" decay $B_s o J/\psi\phi$

→ CP-violation from interference between mixing and decay

- SM-dominated tree-level decay
- small SM phase between mixing & decay
 - → "null-test" of the Standard Model
 - sensitive to New Physics in mixing

The "golden" decay $B_s o J/\psi\phi$

→ CP-violation from interference between mixing and decay

- SM-dominated tree-level decay
- small SM phase between mixing & decay
 - "null-test" of the Standard Model
 - sensitive to New Physics in mixing

- measure mixing phase and lifetime-difference
- study flavour symmetric decay modes
 - $\rightarrow B_s \rightarrow J/\psi \phi, B_s \rightarrow J/\psi \pi^+ \pi^-$
- LHCb analysis for vector-vector states
 - $\phi_s = -0.010 \pm 0.039 \, \text{rad}$
 - → $\Delta\Gamma_s = 0.106 \pm 0.011 \pm 0.007 \,\mathrm{ps^{-1}}$ consistent with Standard Model

The rare decays $B_{d,s} o \mu^+\mu^-$

→ very rare FCNC decays

- SM prediction PRL 112(2014)101801 $BR(B_s \to \mu^+ \mu^-) = (3.66 \pm 0.23) \cdot 10^{-9}$
- [Eur.Phys.J. C72(2012)2172] $[(3.23 \pm 0.27) \cdot 10^{-9}]$ $[(1.07 \pm 0.10) \cdot 10^{-10}]$
- $BR(B_d \to \mu^+ \mu^-) = (1.06 \pm 0.09) \cdot 10^{-10}$
- \blacksquare possibly strong enhancements in MSSM $BR(B \to \mu^+ \mu^-) \propto \tan^6 \beta$

experimental aspects

→ clean signature

experimental aspects

clean signature

- challenging analysis since also rare background processes contribute
 - random combinatorial background
 - ightharpoonup semileptonic decays with misidentified hadron, e.g. $B^0 o \pi^- \mu^+ \nu$
 - two-body decays with misidentified daughters e.g. $B^0 \to K^+\pi^-$

experimental aspects

clean signature

- challenging analysis since also rare background processes contribute
 - random combinatorial background
 - lacktriangledown semileptonic decays with misidentified hadron, e.g. $B^0 o \pi^- \mu^+
 u$
 - \rightarrow two-body decays with misidentified daughters e.g. $B^0 \rightarrow K^+\pi^-$
- multivariate classifiers (geometrical likelihood, BDT)
- evidence ($<5\sigma$) for the decay by LHCb (3 fb⁻¹) and CMS (25 fb⁻¹)

Combination of CMS and LHCb

final result from LHC Run-I

- \blacksquare 6.2 σ observation of $B_s \to \mu^+\mu^ BR(B_s \to \mu^+ \mu^-) = (2.8 \pm 0.7) \cdot 10^{-9}$
 - consistent with Standard Model
- \blacksquare 3.2 σ evidence for $B_d \to \mu^+\mu^ BR(B_d \to \mu^+ \mu^-) = (3.9 \pm \frac{1.6}{1.4}) \cdot 10^{-10}$
 - larger than SM expectation but still compatible
- statistics limited result
 - $\rightarrow \sigma_{\rm experiment} > \sigma_{\rm theory}$
 - include Run-II data . . .

Implications of the results for SUSY

- strong constraints on New Physics
- complementary approach to direct searches by GPDs

Implications of the results for SUSY

- strong constraints on New Physics
- complementary approach to direct searches by GPDs
- two recent examples:
 - \rightarrow limits on MSSM mass-scales from $B_s \rightarrow \mu^+ \mu^-$
 - \rightarrow accessible $\{\phi_s, BR(B_s \rightarrow \mu^+ \mu^-)\}$ range for various models

limits based on summer 2012 data

The X(3872) state

- → determination of the quantum numbers of the X(3872)
 - exotic state which does not fit into the standard scheme of hadrons
 - first observed by Belle: $B^+ \to X(3872)K^+ \to (J/\psi\pi^+\pi^-)K^+$
 - quantum numbers limited to $J^{PC} = 1^{++}$ or $J^{PC} = 2^{-+}$ by CDF

- exotic state which does not fit into the standard scheme of hadrons
- first observed by Belle: $B^+ \to X(3872)K^+ \to (J/\psi\pi^+\pi^-)K^+$
- quantum numbers limited to $J^{PC} = 1^{++}$ or $J^{PC} = 2^{-+}$ by CDF

- clean signal seen by LHCb
- interpretation open
 - \bullet $D\bar{D}$ molecule (?)
 - tetra-quark state (?)
- enough statistics to test quantum number assignments

Quantum numbers of the X(3872)

- → likelihood-ratio test to decide between hypotheses
 - full 5-dim space of helicity angles
 - \blacksquare test variable $t=-2\ln L(2^{-+})/L(1^{++})$

Quantum numbers of the X(3872)

→ likelihood-ratio test to decide between hypotheses

- full 5-dim space of helicity angles
- \blacksquare test variable $t = -2 \ln L(2^{-+})/L(1^{++})$

- → 8-sigma exclusion of $J^{PC} = 2^{-+}$
- → p-value p = 0.34 for $J^{PC} = 1^{++}$

projections on $\cos \Theta_X$ Number of candidates / 0.4 LHCb all candidates RPL 110(2013)222001 Simulated JPC=1** Simulated JPC=24 |cosθ₌₌| > 0.6 -0.5 cosθ,

New and unexpected resonances

ightharpoonup discovery in $\Lambda_b o J/\psi p K$ decays

ightharpoonup discovery in $\Lambda_b o J/\psi p K$ decays

- \blacksquare reconstruct J/ψ in $\mu^+\mu^-$
- lacksquare look for Λ^* states in pK decay
- study Dalitz plot

discovered

 \rightarrow discovery in $\Lambda_b \rightarrow J/\psi pK$ decays

- reconstruct J/ψ in $\mu^+\mu^-$
- look for Λ^* states in pK decay
- study Dalitz plot
- \rightarrow unexpected structure in $J/\psi p$
 - narrow resonance
 - baryon
 - new particle or artefact?

Checks

→ event displays

clean signatures

event displays

- clean signatures
- check that the signal is no kinematic reflection
 - $\rightarrow J/\psi \rightarrow \mu^+\mu^-$, clone μ^+ and assign proton mass \rightarrow passed

event displays

- clean signatures
- check that the signal is no kinematic reflection
 - $\rightarrow J/\psi \rightarrow \mu^+\mu^-$, clone μ^+ and assign proton mass \rightarrow passed
- check that the signal is no detector artefact
 - → signal independent of the azimuth around the beam → passed

event displays

- clean signatures
- check that the signal is no kinematic reflection
 - → $J/\psi \rightarrow \mu^+\mu^-$, clone μ^+ and assign proton mass → passed
- check that the signal is no detector artefact
 - → signal independent of the azimuth around the beam → passed
- many other checks -> passed

try to understand the mass spectrum ->

- spectrum cannot be described by known resonances
 - introduce two new Breit-Wigner amplitudes in the Dalitz fit
 - require a narrow state $P_c(4450)$ and a wide state $P_c(4380)$

- spectrum cannot be described by known resonances
 - → introduce two new Breit-Wigner amplitudes in the Dalitz fit
 - \rightarrow require a narrow state $P_c(4450)$ and a wide state $P_c(4380)$
- fit OK but not perfect
 - \rightarrow high-mass spectrum better described when omitting light Λ^* states

- spectrum cannot be described by known resonances
 - → introduce two new Breit-Wigner amplitudes in the Dalitz fit
 - \rightarrow require a narrow state $P_c(4450)$ and a wide state $P_c(4380)$
- fit OK but not perfect
 - high-mass spectrum better described when omitting light Λ* states
 - important check: phase motion of amplitudes over the resonance -> passed

Results and interpretation

two new resonances

	$P_c(4380)^+$	$P_c(4450)^{+}$
significance	9 σ	12 σ
mass	$4380\pm8\pm29\mathrm{MeV}$	$4449.8 \pm 1.7 \pm 2.5 \text{MeV}$
width	$205\pm18\pm86\text{MeV}$	$39\pm5\pm19\mathrm{MeV}$
fit fractions	$8.4 \pm 0.7 \pm 4.2\%$	$4.1 \pm 0.5 \pm 1.1\%$
best fit J^P	$3/2^{-}$	$5/2^{+}$

alternative spin-parity assignments have almost the same fit quality

Results and interpretation

two new resonances

	$P_c(4380)^+$	$P_c(4450)^{+}$
significance	9 σ	12 σ
mass	$4380\pm8\pm29\mathrm{MeV}$	$4449.8 \pm 1.7 \pm 2.5 \text{MeV}$
width	$205\pm18\pm86\text{MeV}$	$39\pm5\pm19\mathrm{MeV}$
fit fractions	$8.4 \pm 0.7 \pm 4.2\%$	$4.1 \pm 0.5 \pm 1.1\%$
best fit J^P	$3/2^{-}$	$5/2^{+}$

- alternative spin-parity assignments have almost the same fit quality
- discussion on the interpretation has started...

e.g. $\overline{D}^* \Sigma_c - \overline{D}^* \Sigma_c^*$ (arXiv:1507.04249)

measure guarkonium production in p-Pb and compare to pp

- pA collisions are an ideal laboratory to probe cold nuclear effects, e.g.
 - → parton shadowing as parameterized in nuclear PDFs
 - → (coherent) energy loss
- needed for the interpretation of quark-gluon-plasma signatures in heavy-ion collisions
- measure quarkonium states $(J/\psi, \Upsilon)$ to probe the hadronic environment
- combine information to disentangle shadowing and energy loss
 - \rightarrow e.g. differentiate between prompt J/ψ and J/ψ from b

A typical pPb interaction

Current knowledge of nuclear PDFs

 \rightarrow ratios of nucleon PDFs: $F_N(Pb)/F_N(free)$

- currently still large unexplored regions
- access to nuclear structure via inclusive production of heavy systems

Current knowledge of nuclear PDFs

 \rightarrow ratios of nucleon PDFs: $F_N(Pb)/F_N(free)$

- currently still large unexplored regions
- access to nuclear structure via inclusive production of heavy systems
- → kinematics ignoring masses and transverse momenta

$$x_1\,x_2=rac{Q^2}{s}$$
 and $rac{x_1}{x_2}=e^{2\,y}$

Accessible phase space

 \rightarrow proton-proton collisions at $\sqrt{s} = 13$ TeV

• combination of Drell-Yan, J/ψ , Υ and Z probes $10^{-6} \lesssim x \lesssim 1.0$

Observables sensitive to nuclear effects

nuclear modification factor:
$$R_{pA}(y) = rac{1}{A} \cdot rac{d\sigma_{pA}/dy}{d\sigma_{pp}/dy}$$

forward-backward asymmetry:
$$R_{FB}(y) = rac{R_{pA}(+|y|)}{R_{pA}(-|y|)}$$

- positive rapidity in direction of the proton
- pp cross-section cancels in R_{FB}
- exploit asymmetric layout of LHCb to measure forward and backward

results from 1.6 nb⁻¹ pPb-data recorded in 2013 →

Separating prompt and delayed components

simultaneous fit of mass and pseudo-proper-time $t_z = (z_{J/\psi} - z_{PV}) \cdot M_{J/\psi}/p_z$

pA collisions: forward hemisphere 2.5 < y < 3.0 $p_T < 14 \, \mathrm{GeV/}c$

Ap collisions: backward hemisphere -4.0 < y < -3.5 $p_T < 14\,\mathrm{GeV/}c$

Single differential cross-sections

• $\sqrt{s} = 5$ TeV, transverse momentum $0 < p_T < 14$ GeV/c

Results: nuclear modification factors

 \rightarrow common range of forward and backward acceptance: 2.5 < |y| < 4.0

Results: nuclear modification factors

ightharpoonup common range of forward and backward acceptance: 2.5 < |y| < 4.0

- \blacksquare results require interpolation of pp cross-section to $\sqrt{s}=5\,\text{TeV}$
- \blacksquare $R_{pPb} \neq 1$: the nucleus is not a loose collection of independent nucleons
- lacktriangle tighter bound B-mesons less affected than prompt J/ψ
- energy loss and shadowing are about equally important
- J/ψ data agree with "energy loss + NLO shadowing"

Results: forward-backward asymmetries

→ interpolated pp cross-section not required

Results: forward-backward asymmetries

→ interpolated pp cross-section not required

- lacktriangle differential measurement in |y|
- lacksquare same observations/conclusions as for R_{pPb}

Z production in pA collisions

→ clean signals: 4 backward-candidates, 11 forward-candidates

muon selection

$$p_T > 20 \, \text{GeV}/c, 2.0 < \eta < 4.5$$

$$lacksquare 60 < M(\mu^+\mu^-) < 120\,{
m GeV}/c^2$$

cross-section results

$$\sigma_{
m fwd} = 13.5 \pm ^{5.4}_{4.0} {}_{
m (stat)} \pm 1.2 {}_{
m (syst)} \, {
m nb}$$
 $\sigma_{
m bwd} = 10.7 \pm ^{8.4}_{5.1} {}_{
m (stat)} \pm 1.0 {}_{
m (syst)} \, {
m nb}$

5. New Developments

→ HeRSCheL: High Rapidity Shower Counters for LHCb

 $p_T > 0.5 \, \text{GeV}/c$

 $p_T > 1.5 \,\mathrm{GeV}/c$

- forward scintillators for selecting rapidity gaps
 - up to ±114 m from IP
- central region not covered
- \blacksquare gap size $2 < \eta < 8$
 - huge gain for diffractive physics and central exclusive production (e.g. J/ψ photoproduction on the proton in pA)

LHCb simulation results for the efficiency to see charged pions

Fixed target physics with LHCb

→ SMOG: System for Measuring Overlap with Gas

- possibility to inject (noble) gases: Ne or He, Ar, Kr (under discussion)
- fixed target physics in pA and PbA configuration

Fixed target strangeness production

- → proton-Neon collisions
 - $\sqrt{s_{NN}} = 87 \, \text{GeV}$, boost to center-of-mass $\Delta y \approx 4.5$
 - LHCb: backward direction in the nucleon-nucleon center-of-mass

→ first look at PbNe collisions using data from O(10) min running

- physics potential:
 - → explore nuclear structure at large x
 - → conditions between SPS and RHIC for QGP studies

Links to other communities

- → cosmic ray physics and cosmology
 - understanding of extensive air showers → MC tuning
 - understanding the AMS antiproton/proton ratio

AMS p/p results and modeling

use fixed target measurements to clarify: QCD or Dark Matter annihilation

→ LHCb: a truly general purpose forward spectrometer

- → LHCb: a truly general purpose forward spectrometer
 - currently the leading flavour physics experiment
 - → direct CP violation in the B_s system
 - B_s mixing resolved, frequency measured with 0.13% precision
 - → mixing phase consistent with the Standard Model
 - \rightarrow rare decays $B_{d.s} \rightarrow \mu^+ \mu^-$ seen slight tension with Standard Model

- → LHCb: a truly general purpose forward spectrometer
 - currently the leading flavour physics experiment
 - → direct CP violation in the B_s system
 - B_s mixing resolved, frequency measured with 0.13% precision
 - → mixing phase consistent with the Standard Model
 - \rightarrow rare decays $B_{d.s} \rightarrow \mu^+ \mu^-$ seen slight tension with Standard Model
 - important contributions to spectroscopy
 - → quantum numbers of X(3872) determined
 - observation of two new states consistent with charm-pentaguark

- → LHCb: a truly general purpose forward spectrometer
 - currently the leading flavour physics experiment
 - \rightarrow direct CP violation in the B_s system
 - \rightarrow B_s mixing resolved, frequency measured with 0.13% precision
 - → mixing phase consistent with the Standard Model
 - ightharpoonup rare decays $B_{d,s} o \mu^+ \mu^-$ seen slight tension with Standard Model
 - important contributions to spectroscopy
 - → quantum numbers of X(3872) determined
 - → observation of two new states consistent with charm-pentaquark
 - studies of p-Pb collisions
 - cold nuclear matter effects in heavy quarkonia
 - observation of Z-production

→ LHCb: a truly general purpose forward spectrometer

- currently the leading flavour physics experiment
 - \rightarrow direct CP violation in the B_s system
 - \rightarrow B_s mixing resolved, frequency measured with 0.13% precision
 - → mixing phase consistent with the Standard Model
 - ightharpoonup rare decays $B_{d,s} o \mu^+ \mu^-$ seen slight tension with Standard Model
- important contributions to spectroscopy
 - → quantum numbers of X(3872) determined
 - → observation of two new states consistent with charm-pentaquark
- studies of p-Pb collisions
 - → cold nuclear matter effects in heavy quarkonia
 - observation of Z-production
- further extended physics scope for LHC Run-II
 - → join Pb-Pb physics
 - → add a fixed target ion physics program
 - ❖ much more to come in LHC Run-II...