

Highlights from the Hard Probes 2016 conference

EMMI-NQM Seminar

Andrea Dubla (Univerity of Heidelberg & GSI)

Physics motivation

- → Hard probes are produced in hard scattering processes (large Q²) in the early stage of the collision
- → They experience the full evolution of the system → sensitive probes of the properties of the hot and dense QCD matter (QGP)
- → Energy loss mechanisms
- → Collective expansion
- → Hadronization mechanisms

→ Need reference measurements in pp and p-Pb collisions
 → Perturbative QCD describes the cross sections measured in pp collisions.

Hot and dense medium effects: Pb-Pb collisions

Interaction with the QCD medium constituents

\rightarrow Energy loss:

- Elastic collisions (collisional energy loss)
- Gluon radiation (radiative energy loss)
- → **Momentum gain** due to the "push" from medium collective expansion:
 - Thermalization in the medium?
- → In-medium hadronization:
 - Hadronization via coalescence in the medium vs fragmentation in the vacuum?

Goal: extract medium properties with hard probes observables

3

A. Dubla

EMMI-NQM, GSI

Study in-medium energy loss

OCD modium

- Production of hard probes (heavy quarks, jets...) in A-A collisions is expected to scale with the number of nucleon-nucleon collisions N_{coll} (binary scaling)
 PbPb measurement
- Observable: nuclear modification factor

$$R_{\rm AA}(p_{\rm T}) = \frac{\alpha r r_{\rm AA} / \alpha p_{\rm T}}{\langle T_{\rm AA} \rangle d\sigma_{\rm pp} / dp_{\rm T}} \sim \frac{QCD}{QCD}$$
 including the second second

 $dN_{\star\star}/dn_{\rm m}$

- If no nuclear effects are present $\rightarrow R_{AA} = 1$ (binary scaling)
- In-medium parton energy loss via radiative (gluon emission) and collisional processes depending on:
 - \rightarrow color charge
 - \rightarrow quark mass (dead cone effect)
 - \rightarrow path length and medium density

$$ightarrow R_{AA} \neq 1$$

$$\Rightarrow \Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$$

Need to compare
 $R_{AA^{T}}, R_{AA^{D}}, R_{AA^{B}}$

Dokshitzer and Kharzeev, PLB 519 (2001) 199 Wicks, Gyulassy, J.Phys. G35 (2008) 054001

Collectivity: azimuthal anisotropy

- Re-scatterings among produced particles convert the initial geometrical anisotropy into an observable momentum anisotropy
- In addition, path-length dependent energy loss induces an asymmetry in momentum space
- Observable: elliptic flow $v_2 = 2^{nd}$ Fourier coefficient of the particle azimuthal distribution

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}p} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} \left(1 + \sum_{n=1}^{\infty} 2v_{n} \cos[n(\varphi - \Psi_{\mathrm{RP}})]\right)$$

*v*₂ measurements probe:

 Low/intermediate p_T: collective motion, degree of thermalization and hadronization mechanism (recombination)

– High p_T: path-length dependence energy loss

Results from the main LHC experiments

A. Dubla

Highlights from the conference

Spectra

- Charged particle R_{AA} at 5 TeV
- Jet R_{AA} at 2.76 TeV
- Collectivity in small systems

nPDFs

- Dijet pseudo-rapidity at 5 TeV

Jet structure

- Splitting function at 5 TeV
- Jet-track correlation at 2.76 TeV

Boson-jet

- Gamma-jet at 5 TeV
- Z-jet at 5 TeV

Heavy flavour

- D meson R_{AA} at 5 TeV
- B meson R_{AA} at 5 TeV
- Di-b-jet at 5 TeV
- Non-prompt J/psi at 2.76 TeV
- Heavy flavour decay leptons

Flow: path lenght dependence

- D meson v_n at 5 TeV
- High $p_{\rm T} v_{\rm n}$ at 5 TeV

Quarkonia

- Charmonium at 5 TeV
- Bottomonium at 5 TeV

Highlights from the conference

Spectra

- Charged particle R_{AA} at 5 TeV
- Jet R_{AA} at 2.76 TeV
- Collectivity in small systems

nPDFs

- Dijet pseudo-rapidity at 5 TeV

Jet structure

- Splitting function at 5 TeV
- Jet-track correlation at 2.76 TeV

Boson-jet

- Gamma-jet at 5 TeV
- Z-jet at 5 TeV

Heavy flavour

- D meson R_{AA} at 5 TeV
- B meson R_{AA} at 5 TeV
- Di-b-jet at 5 TeV
- Non-prompt J/psi at 2.76 TeV
- Heavy flavour decay leptons

Flow: path lenght dependence

- D meson v_n at 5 TeV
- High $p_{\rm T} v_{\rm n}$ at 5 TeV

Quarkonia

- Charmonium at 5 TeV
- Bottomonium at 5 TeV

Light flavour

Higher and higher *p*_T....

Do quenching effects sustain at very high p_T ? Suppression, path lenght and inner structure modification

Charged hadron suppression

- Energy loss at high p_T: Rising trend as a function of p_T up to 400 GeV/c → approaching 1
- Center of mass energy dependence Slightly larger $E_{loss} \rightarrow higher p_T$ and density

Charged hadron vs jet

- Charged hadron at high $p_T \rightarrow hard$ fragmenting high p_T jets

- Center of mass energy is different but changes are expected to be small
- High $p_{\rm T}$ hadrons are less suppressed than jets

v_2 {SP} and v_3 {SP} up to high p_T

 \rightarrow FIRST TIME measured v_2 and v_3 up to 100 GeV/c

- \rightarrow **v**₂ remains positive at very high p_T , **v**₃ consistent with 0 for p_T > 30 GeV/*c*
- \rightarrow Little centrality dependence of v_3 w.r.t v_2

Multi-particle cumulants

- FIRST TIME measured v_2 {4,6,8} up to p_T = 80 GeV/c

– Multi-particle seems to converge with v_2 {SP} at high p_T

- Multi-particle nature at high $p_T \rightarrow$ initial geometry effect

Multi-particle cumulants

 $-\operatorname{Low} p_{\mathsf{T}}: \operatorname{v_2}\{\mathsf{SP}\} > \operatorname{v_2}\{4\} \sim \operatorname{v_2}\{6\} \sim \operatorname{v_2}\{8\}$

- Expected in hydrodynamics

Multi-particle cumulants

 $-\operatorname{Low} p_{\mathsf{T}}: \operatorname{v_2}\{\mathsf{SP}\} > \operatorname{v_2}\{4\} \sim \operatorname{v_2}\{6\} \sim \operatorname{v_2}\{8\}$

- Expected in hydrodynamics

 v_2 {high} vs v_2 {low}

- Clear demonstration that soft and hard v₂ probe the same initial geometry

- Not so easy: one both varies the geometry and the medium properties \rightarrow Use Event Shape Engineering!

Flow harmonics in Pb-Pb at 5.02 TeV

– Flow harmonics v_n measured up to n = 7

- \rightarrow First measurements of v_7 in 0-60% centrality
- \rightarrow kinematic range: 0.5 < $p_{\rm T}$ < 25 GeV/c, $|\eta|$ < 2.5
- \rightarrow very weak pseudo-rapidity dependence

Ridge in pp and p-Pb systems

A. Dubla

– In pp collisions v_2 is flat as a function of N_{ch} and non-zero even for low value of N_{ch}

Agreement in all fourier
 coefficients between 5 and 13 TeV
 in pp collisions

v₂ and v₃ are larger in p-Pb collisions (w.r.t. pp) and rise monotonically

 - v₄ tend to be consistent within uncertainties between the two collision systems

Ridge in pp and p-Pb systems

- Shape of p_T -dependence of v_2 is consistent between **p-Pb** and **pp** (scaled by 1.51)

 $-v_4/v_2^2$ ratio is flat in N_{ch} in both systems

 \rightarrow Hint of a **common origin** of the ridge in the two systems?

Multi-particle cumulants in pp

Cumulants are extracted for reference particles (N_{trk}^{ref}): 0.3 < p_T < 3 GeV/*c* using two methods: Method 1: fixed N_{trk}^{ref} multiplicity (avoids multiplicity fluctuations) Method 2: events are selected using N_{trk} (p_T > 0.4 GeV/*c*)

- Weak energy dependence to cumulants, however systemtically higher c_2 {4} measured at 13 TeV at low N_{trk} , at higher N_{trk} the trend is reversed.
- Method 1: positive cumulants, therefore no collective effects
- Method 2: negative cumulants over a broad range of N_{trk}

Multi-particle cumulants in pp

Cumulants are extracted for reference particles (N_{trk}^{ref}): 0.3 < p_T < 3 GeV/*c* using two methods: Method 1: fixed N_{trk}^{ref} multiplicity (avoids multiplicity fluctuations) Method 2: events are selected using N_{trk} (p_T > 0.4 GeV/*c*)

- Weak energy dependence to cumulants, however systemtically higher c_2 {4} measured at 13 TeV at low N_{trk} , at higher N_{trk} the trend is reversed.
- Method 1: positive cumulants, therefore no collective effects
- Method 2: negative cumulants over a broad range of N_{trk}
- **PYTHIA**: confirm a negative contribution of fluctuation in method 2
- **Conclusion**: c_2 {4} in pp is sensitive to the choice of event class
 - \rightarrow Mult. fluctuation and non flow could give a negative contribution to c_2 {4}
 - \rightarrow Premature to conclude on collectivity w/o quantify influence of these effects $_{21}$

Heavy flavour

Can we see the dead cone effect?

As p_T gets larger \rightarrow effect gets smaller Low- p_T contribution from other effects e.g. radial flow

Coalescence

Is D meson v_2 enhanced? D_s measurements

D and B cross sections at LHC in pp collisions

Data / FONLL

2.5

2

0.5불

10

20

p, (GeV/c)

HF production cross section well described by NLO calculations:

- \rightarrow D meson on upper edge of FONLL calculation
- \rightarrow B meson consisten with central vaues of FONLL

EMMI-NQM, GSI

50

40

A. Dubla

D and B cross sections at LHC in pp collisions

ALICE experiment:

D meson measurements down to $p_T = 0$ GeV/c in both pp and p-Pb collisions! Analysis based on PID only w/o reconstruction of decay vertex topologies

D meson nuclear modification factor

New D meson R_{AA} from 2 GeV/c to 100 GeV/c at the centre of mass energy of 5.02 TeV \rightarrow similar suppression as observed at 2.76 TeV

→ same level of suppression as for charged hadrons

A. Dubla

J/ψ and D⁰ signal in Pb-Pb with LHCb

- LHCb can contribute to heavy-ion studies in a unique kinematic range

A. Dubla

EMMI-NQM, GSI

J/ψ and D⁰ signal with LHCb: fixed target

LHCb is unique to explore fixed targed physics → will provide measurements in many different environment

- ▶ pHe at $\sqrt{s_{NN}} = 110 \text{ GeV}$
- ▶ pNe at $\sqrt{s_{NN}} = 87$ GeV, 110GeV
- ▶ pAr at $\sqrt{s_{NN}}$ = 69 GeV, 110 GeV
- ▶ PbNe at $\sqrt{s_{NN}} = 54 \text{ GeV}$
- ▶ PbAr at $\sqrt{s_{NN}} = 69 \text{ GeV}$

27

A. Dubla

Heavy-flavour decay electron nuclear modification factor

New high $p_T R_{AA}$ measurements in several Pb-Pb centrality classes show stronger suppression in the 10% most central collisions respect to semi-central collisions. Stronger energy loss in central collisions due to the increase of medium density

Heavy-flavour decay leptons nuclear modification factor

New R_{AA} measurements in 0-10% central Pb-Pb collisions are extended down to $p_T = 0.5 \text{ GeV/c}$ $\rightarrow \text{low-}p_T$ measurements crucial in all systems to test binary scaling of total $c\bar{c}$ cross section \rightarrow Suppression compatible with the one observed in the muon decay channel

 \rightarrow Heavy-flavour decay muon R_{AA} at 5.02 TeV consistent with that at 2.76 TeV

Beauty-decay electron R_{AA}

- Analysis based on the electron impact parameter distribution.
- First R_{AA} measurement of beauty-decay electron:
 - $\rightarrow R_{AA} < 1$ for $p_T > 3$ GeV/c
 - \rightarrow consistent with the picture of mass-dependent radiative and collisional energy loss

A. Dubla

D-meson and $J/\psi \leftarrow B$ R_{AA} vs centrality

- pQCD model including mass-dependent radiative and collisional energy loss predicts a difference between the D-meson and non-prompt J/ ψ R_{AA} similar to that observed

$J/\psi \leftarrow B R_{AA}$ vs centrality and pT

Strong suppression observed for non-prompt J/ ψ in Pb-Pb collisions Clear suppression as a function of centrality and p_T

2.76 TeV and 5.02 TeV (ATLAS) results well consistent within the uncertainties 32

Elliptic flow of $J/\psi \leftarrow B$

New measurement of v_2 of non-prompt J/ ψ in Pb-Pb collisions at 2.76 TeV

 \rightarrow Central value of v_2 of non-prompt J/ ψ compatible within 2 σ with 0 \rightarrow Looking to see the new measurement with Run 2 data with larger statistics

B⁺ meson *R*_{AA}

Primary vertex

FIRST EVER measurement of fully reconstructed B⁺ meson in Pb-Pb collisions

Strong suppression of B⁺ mesons (p_T between 7-50 GeV/c)

34

b-jet

Secondary vertex

Flavour dependence of Eloss at 5.02 TeV

 R_{AA} of B, D and charged hadrons fully compatible within the uncertainties in the available p_{T} range (REMEMBER: $p_{T}^{B} > 7 \text{ GeV}/c$)

35

A. Dubla

Flavour dependence at high p_T

Same suppression for b-jets and inclusive jets at high $p_T \rightarrow$ mass difference negligible at high p_T

Flavour dependence at high pT

NLO process: gluon splitting about 20%, dominat at small opening angles

Same suppression for b-jets and inclusive jets at high p_{T}

 \rightarrow mass difference negligible at high $p_{\rm T}$

 \rightarrow Contribution of gluon splitting processes? In GSP case, we are not measuring the b-quark E_{loss} but to some fact gluon E_{loss}

Di-b-jet measurements in Pb-Pb at 5.02 TeV

In back-to-back events $b\overline{b}$ production via gluon splitting is negligible

x_J distribution of di-b-jets significantly modified in central Pb-Pb collisions

Di-b-jet measurements in Pb-Pb at 5.02 TeV

$$x_J = p_{T,2} / p_{T,1}$$

 \rightarrow Inclusive dijet and b dijet imbalance are within uncertainty

→ Same average asymmetry observed for inclusive jets

There is no significant difference in the suppression of inclusive and b-jets even after excluding the contribution of gluon splitting processes

D-meson elliptic flow

 $-v_2 > 0$ at low and high p_T in peripheral events

– In 0-10% \rightarrow consistent with v_2 of charged hadrons

- In 10-30% and 30-50%
 - \rightarrow Low p_T : v_2 (promt D⁰) < v_2 (charged hadrons)
 - \rightarrow High p_T : v_2 (promt D⁰) ~ v_2 (charged hadrons)

D-meson elliptic flow at different collision energies

CMS preliminary results at 5.02 TeV are consistent with ALICE results at 2.76 TeV within uncertainties

D-meson triangular flow

- FIRST observation of triangular flow for charm!

- $-p_{\rm T}$ dependence
 - \rightarrow Low $p_{\rm T}$: v_3 (prompt D⁰) > 0;
 - \rightarrow High $p_{\rm T}$: v_3 (prompt D⁰) ~ 0
- Little centrality dependence as for charged hadrons

D_s⁺ as a probe of charm recombination

Measurement of D_s⁺ production in Pb-Pb collisions
 Expectation: due to enhanced strangeness abundance
 → enhancement of the strange over non-strange
 D-meson yield at intermediate p_T if charm hadronizes via recombination in the medium

A. Dubla

JHEP 03 (2016) 082

- Strong D_s^+ suppression in central collisions (similar to other D-meson) for 8 < p_T < 12 GeV/c

– Hint of less suppression for $p_T < 8 \text{ GeV/}c$

TAMU: PRL 110 (2013) 112301 Andronic et al. PLB 659 (2008) 149 Kuznetsova, Rafelski EPJ C51 (2007) 113

The final picture

The final picture

EMMI-NQM, GSI

A. Dubla

Conclusion

- \rightarrow Demonstration that soft and hard v_2 probe the same initial geometry
- \rightarrow Additional studies on collectivity in small systems carried out by ATLAS
 - Premature to conclude on collectivity in pp collisions
- \rightarrow Strong suppression of particle yields in Pb-Pb collisions \rightarrow final-state effect
- → Strong suppression of **B mesons** and similar to **D mesons** and **charged hadrons**
 - Described by theoretical models implementing mass-dependent energy loss
- → A non-zero elliptic flow of heavy flavours was measured in semi-central collisions at both 2.76 and 5.02 TeV
- \rightarrow First ever measured v_3 of **D mesons**
- \rightarrow Suggests collective motion of low- p_{T} heavy quarks (mainly charm)
- \rightarrow Comparison of **different observables** (R_{AA} , v_2) at different collision energies with theory provide additional constrain the **energy-loss and hadronization models**

BACKUP

Multi-particle cumulants in pp

 Weak energy dependence to cumulants, however systemtically higher c2{4} measured at 13 TeV at low Ntrk, at higher Ntrk the trend is reversed.

Physics motivation

Cold nuclear matter effects: p-Pb collisions

- GOAL: assess the role of cold nuclear matter (CNM) effects
 - ➡Initial-state effects:
 - ✓ Nuclear modification of the PDFs → shadowing at low Bjorken-x is the dominant effect at LHC energies
 - ✓ Initial-state energy loss
 - ✓ k_T broadening

 → due to multiple collisions of the parton before the hard scattering
 - ⇒ Final-state effects

A. Dubla

- ✓ Final-state energy loss
- ✓ Interactions with the particles produced in the collision
 → collective expansion?
 - \rightarrow Mini QGP?
- Crucial for interpretation of Pb-Pb results

Model predictions: R_{AA} and v_2

- $-v_2$ and R_{AA} measurements for different heavy-flavour decay channels together start to provide constraints for models.
- → Both collisional and radiative energy loss mechanisms and an expanding medium seem to be needed to describe v_2 and R_{AA} for most of the model.
- \rightarrow Role of recombination of heavy quark in the medium seems to help in describing v_2

D-meson nuclear modification factor

- R_{pPb} consistent with unity (PRL 113 (2014) 232301) \rightarrow no strong modification of D-meson spectra in p-Pb collisions relative to pp collisions
- Large suppression of D-mesons at high p_T in Pb-Pb collisions → larger suppression in the 10% most central collisions → final-state effect due to charm quark in-medium energy loss
- **D-meson** R_{AA} compatible within uncertainties with $D^0 R_{AA}$ by STAR for $p_T > 2$ GeV/c
 - \rightarrow low- p_T measurements crucial in all systems to test binary scaling of total $c\bar{c}$ cross section₅₁

R_{AA} of beauty decay electrons and $J/\psi \leftarrow B$

- Indication of suppression $R_{AA}(J/\Psi \leftarrow B)$ in central events at high p_T
- R_{AA} measurement of beauty:

 \rightarrow Hint for R_{AA} < 1 for beauty-decay electrons in p_T > 3 GeV/c

 models including in-medium energy loss can describe qualitatively the measured suppression

A. Dubla

EMMI-NQM, GSI

Model predictions: R_{AA} and v_2

EMMI-NQM, GSI

- Vitev:: PRC 80 (2009) 054902;

- Djordjevic: PRL 737 (2014) 298

 v₂ and R_{AA} measurements together start to provide constraints for models

A. Dubla

D-meson and pion *R*_{AA}

- Expected hierarchy in the energy loss: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \xrightarrow{?} R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$
- D meson and πR_{AA} as a function of p_T and N_{part} are compatible within uncertainties

D-meson and pion nuclear modification factor

- Expected hierarchy in the energy loss: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \Rightarrow R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$
- D-meson and πR_{AA} as a function of p_T and $\langle N_{part} \rangle$ are compatible within uncertainties
- Consistency between $R_{AA}(D)$ and $R_{AA}(\pi)$ described by models taking into account:
 - $\rightarrow \Delta E_g > \Delta E_{u,d,s} > \Delta E_c$
 - \rightarrow different shape of the parton $p_{\rm T}$ spectra
 - \rightarrow different parton fragmentation functions

D-meson and pion R_{AA}

Centrality 0-10% arXiv:1509.06888

MC@sHQ+EPOS2: PRC 89 (2014) 014905 TAMU: PLB 735 (2014) 445

 \rightarrow low- p_T measurements better described by model including nuclear shadowing (EPS09) \rightarrow low- p_T measurements crucial in all systems to test binary scaling of total $c\overline{c}$ cross section

p_{T} -differential cross section

FONLL: JHEP 9805 (1998) 007 GM-VFNS: PRL 96 (2006) 012001 k_T Fact: PRD 62 (2000) 071502

(ATLAS) PLB 707 (2012) 438 (ALICE) Phys. Rev. D86 (2012) 112007

Heavy-flavour p_{T} -differential cross sections well described by pQCD calculations at both energies (7 and 2.76 TeV)

data/FONLL

EMMI-NQM, GSI

A. Dubla

Model predictions: D meson R_{AA} and v_2

POWLANG: JPG 38 (2011) 124144; Eur. Phys.J. C71 (2011) 1666; - TAMU: arXiv:1401.3817;
 MC@HQ+EPOS: PRC 89 (2014) 014905; - WHDG: Nucl. Phys. A 872 (2011) 256;
 BAMPS: PLB 717 (2012) 430; arXiv:1310.3597v1[hep-ph]; - UrQMD: arXiv:1211.6912[hep-ph];
 J.Phys. Conf. Ser. 426 (2013) 012032; - Cao,Quin, Bass: PRC 88 (2013);

In-plane

Out-of-plane

R_{AA} measured in-plane and out-of-plane, sensitive to

arXiv: 1405.2001; PRL 111, 102301 (2013)

- path length dependence of parton energy loss at high $p_{\rm T}$
- collectivity at low P_T