Multiplicity dependence of charm production in pp scattering at 7 TeV and parton saturation

1

K.W. in collaboration with

T. Pierog, Iu. Karpenko, B. Guiot, G. Sophys

D multiplicity vs charged multiplicity in pp

ALICE arXiv:1505.00664v1

Significant deviation from the diagonal (linear increase)

in particular for large p_t

Similar observations for J/Ψ and Υ

PYTHIA 8.157

Already understanding a linear increase is a challenge!

(Only recent Pythia versions can do)

Even much more the deviation from linear (towards higher values)

Trying to understand these data in the EPOS framework

Important issues:

Multiple scattering, parton saturation

□ Collectivity

Part I EPOS Overview

EPOS: Based on multiple scattering and flow

Several steps (even in pp!):

1) Initial conditions:

Gribov-Regge **multiple scattering** approach, elementary object = Pomeron = parton ladder, Nonlinear effects via saturation scale Q_s

- **2)** Core-corona approach to separate fluid and jet hadrons
- 3) Viscous hydrodynamic expansion, $\eta/s = 0.08$
- 4) Statistical hadronization, final state hadronic cascade

arXiv:1312.1233, arXix:1307.4379

GSI Seminar July 06, 2016 — Klaus Werner — Subatech — Nantes

Initial conditions: Marriage pQCD+GRT+energy sharing

(Drescher, Hladik, Ostapchenko, Pierog, and Werner, Phys. Rept. 350, 2001)

$$\operatorname{cut}\operatorname{Pom}: G = \frac{1}{2\hat{s}} \operatorname{2Im}\left\{\mathcal{FT}\left\{T\right\}\right\}(\hat{s}, b), \ T = i\hat{s}\,\sigma_{hard}(\hat{s})\,\exp(R_{hard}^2t)$$

Nonlinear effects considered via saturation scale Q_s

$$\begin{split} \sigma^{\text{tot}} &= \int d^2 b \int \prod_{i=1}^A d^2 b_i^A \, dz_i^A \, \rho_A(\sqrt{(b_i^A)^2 + (z_i^A)^2}) \\ &\prod_{j=1}^B d^2 b_j^B \, dz_j^B \, \rho_B(\sqrt{(b_j^B)^2 + (z_j^B)^2}) \\ &\sum_{m_1 l_1} \dots \sum_{m_{AB} l_{AB}} (1 - \delta_{0\Sigma m_k}) \int \prod_{k=1}^{AB} \left(\prod_{\mu=1}^{m_k} dx_{k,\mu}^+ dx_{k,\mu}^- \prod_{\lambda=1}^{l_k} d\tilde{x}_{k,\lambda}^+ d\tilde{x}_{k,\lambda}^- \right) \bigg\{ \\ &\prod_{k=1}^{AB} \left(\frac{1}{m_k!} \frac{1}{l_k!} \prod_{\mu=1}^{m_k} G(x_{k,\mu}^+, x_{k,\mu}^-, s, |\vec{b} + \vec{b}_{\pi(k)}^A - \vec{b}_{\tau(k)}^B|) \right) \\ &\prod_{\lambda=1}^{l_k} -G(\tilde{x}_{k,\lambda}^+, \tilde{x}_{k,\lambda}^-, s, |\vec{b} + \vec{b}_{\pi(k)}^A - \vec{b}_{\tau(k)}^B|) \bigg) \\ &\prod_{i=1}^A \left(1 - \sum_{\pi(k)=i} x_{k,\mu}^+ - \sum_{\pi(k)=i} \tilde{x}_{k,\lambda}^+ \right)^\alpha \prod_{j=1}^B \left(1 - \sum_{\tau(k)=j} x_{k,\mu}^- - \sum_{\tau(k)=j} \tilde{x}_{k,\lambda}^- \right)^\alpha \bigg\} \end{split}$$

Core-corona procedure (for pp, pA, AA):

Pomeron => parton ladder => flux tube (kinky string)

Core => Hydro evolution (Yuri Karpenko)

Israel-Stewart formulation, $\eta - \tau$ coordinates, $\eta/S = 0.08$, $\zeta/S = 0$

Freeze out: at 168 MeV, Cooper-Frye $E \frac{dn}{d^3p} = \int d\Sigma_{\mu} p^{\mu} f(up)$, equilibrium distr

Hadronic afterburner: UrQMD

Marcus Bleicher, Jan Steinheimer

Results

Detailed studies of **pt spectra** and **azimuthal anisotropies** (dihadron corr., v_n) in pp, pA:

- arXiv:1312.1233 [nucl-th]. Published in Phys.Rev. C89 (2014) 6, 064903.
- arXiv:1307.4379 [nucl-th]. Published in Phys.Rev.Lett. 112 (2014) 23, 232301.
- arXiv:1011.0375 [hep-ph]. Published in Phys.Rev.Lett. 106 (2011) 122004
- arXiv:1004.0805 [nucl-th]. Published in Phys.Rev. C82 (2010) 044904.

In the follwing : An example of an **asymmetric space-time evolution (high mult pp event, 7TeV)**

Part II A crucial ingredient: The saturation scale Q_s^2

Some facts about the Gribov-Regge multiple scattering scheme (the heart of the EPOS approach)

S-matrix:

$$|\psi(t=+\infty) = \hat{S} |\psi(t=-\infty)\rangle$$

Unitarity relation:

$$\hat{S}^{\dagger}\hat{S} = 1$$

GSI Seminar July 06, 2016 — Klaus Werner — Subatech — Nantes

which leads to (\sum includes phase space integration)

$$\underbrace{\sum_{f} (2\pi)^4 \delta(p_f - p_i) |T_{fi}|^2}_{2s \sigma_{\text{tot}}} = \frac{1}{i} (T_{ii} - T_{ii}^*)$$
$$= 2 \text{Im} T_{ii}$$

$$= \frac{1}{i} \operatorname{disc} T_{ii}$$

with (s, t : Mandelstam variables)

disc
$$T_{ii} = T_{ii}(s + i\epsilon, t) - T_{ii}(s - i\epsilon, t)$$

In detail : $1 = \langle i | \hat{S}^{\dagger} \hat{S} | i \rangle$ $= -\sum_{f} \left< i \right| \hat{S}^{\dagger} \left| f \right> \left< f \right| \hat{S} \left| i \right>$ $= \sum_{i} \left< f \right| \hat{S} \left| i \right>^* \left< f \right| \hat{S} \left| i \right>$ So $1 = \sum_{f} S_{fi}^* S_{fi}$ Using $S_{fi} = \delta_{fi} + i(2\pi)^4 \delta(p_f - p_i) T_{fi}$, dividing by $i(2\pi)^4 \delta(0)$ $\frac{1}{i} (T_{ii} - T_{ii}^*) = \sum_{f} (2\pi)^4 \delta(p_f - p_i) |T_{fi}|^2$ $= 2w \sigma_{tot}$ $2s\sigma_{\rm tot}$ = The l.h.s. : $\frac{1}{i}\left(T_{ii} - T_{ii}^*\right) = 2\mathrm{Im}T_{ii}$

So we get the optical theorem

$$2\text{Im}T_{ii} = \sum_{f} (2\pi)^{4} \delta(p_{f} - p_{i}) |T_{fi}|^{2} = 2s \,\sigma_{\text{tot}}$$

Assume:

 $\Box T_{ii}$ is Lorentz invariant \rightarrow use s, t

 $\exists T_{ii}(s,t)$ is an analytic function of *s*, with *s* considered as a complex variable (Hermitean analyticity)

 $T_{ii}(s,t)$ is real on some part of the real axis (see optical theorem)

Using the Schwarz reflection principle, $T_{ii}(s,t)$ first defined for $\text{Im}s \ge 0$ can be continued in a unique fashion via $T_{ii}(s^*,t) = T_{ii}(s,t)^*$. So:

$$\frac{1}{i} (T_{ii}(s,t) - T_{ii}(s,t)^*) = \frac{1}{i} (T_{ii}(s,t) - T_{ii}(s^*,t)) = \frac{1}{i} \operatorname{disc} T_{ii}$$

with

disc
$$T_{ii} = T_{ii}(s + i\epsilon, t) - T_{ii}(s - i\epsilon, t).$$

Discontinuity, example: exp and its inverse log

Problem: exp(w) maps two points to one, inversion not possible unless one excludes the green line

and shifts points on this line up or down (by ϵ). Discontinuity = $2\pi i$

Back to our T-matrix : We have

$$2s \,\sigma_{\text{tot}} = \sum_{f} (2\pi)^4 \delta(p_f - p_i) \, |T_{fi}|^2 = \frac{1}{i} \text{disc} \, T_{ii}$$

 $\frac{1}{i}$ disc *T* can be seen as a so-called "cut diagram", with modified Feynman rules, the "intermediate particles" are on mass shell, and we use simply

$$2s\,\sigma_{\rm tot} = \frac{1}{\rm i} {\rm disc}\,T_{ii}$$

Modified Feynman rules :

Draw a dashed line from top to bottom

- \Box Use "normal" Feynman rules to the left
- \Box Use the complex conjugate expressions to the right
- \Box For lines crossing the cut: Replace propagators by mass shell conditions $2\pi\theta(p^0)\delta(p^2-m^2)$
Useful in case of substructures:

Cut diagram

= sum of products of cut/uncut subdiagrams

Single Pomeron contribution G, computed via pQCD, can be (very well) fitted as^{*)}

$$Gpprox G_{
m fit}=lpha\,(x^+)^eta(x^-)^{eta'}$$

(x^{\pm} are light cone momentum fractions)

Extremely useful! Allows analytical calculations of cross sections.

*) (Drescher, Hladik, Ostapchenko, Pierog, and Werner, Phys. Rept. 350, 2001)

Consistency requires adding more diagrams (ladder splitting/fusion, triple Pomeron vertices, gluon fusion in CGC ...)

(Drescher, Hladik, Ostapchenko, Pierog, and Werner, Phys. Rept. 350, 2001)

Motivated by model calculations, we treat ladder fusion via adding an exponent ¹ :

$$G_{
m fit} o G_{
m eff} = lpha \, (x^+)^{eta + arepsilon^{
m proj}} (x^-)^{eta' + arepsilon^{
m targ}}$$

("epsilon method") with

 $\varepsilon = \varepsilon(Z),$

depending on "the number of participants":

$$Z^{\text{proj}} = \sum_{\text{proj nucleons } i'} f_{\text{part}} \left(|\vec{b} + \vec{b_{i'}} - \vec{b_j}| \right)$$

(*j* is the target nucleon the Pomeron is connected to)

¹K.Werner, FM.Liu, T.Pierog, Phys.Rev. C74 (2006) 044902

44

Advantages

□ Cross section calculations perfectly doable □ Energy dependence of σ_{tot} , σ_{el} (and more) correct

Big problems

 \Box Adding ε does not change the internal Pomeron structure

 \Box No binary scaling in pA at high p_t (tails much too low)

Solution

□ Introducing a **saturation scale** (K. Werner, B. Guiot, Iu. Karpenko, T. Pierog, Phys.Rev. C89 (2014) 064903)

Before: Compute *G* with fixed soft cutoff Q_0 ightarrow fit ightarrow add arepsilon exponents

New: Compute G with saturation scale $Q_s \propto Z \, \hat{s}^\lambda \to {
m fit} \quad (\hat{s} = {
m Pomeron invariant mass})$

varying Q_s changes internal structure!

Still something missing ...

□ The saturation scale depends on the number of **participating nucleons**,

 \Box but NOT on the **number of Pomerons** N_{Pom} (participating parton pairs)

The number of Pomerons represents the event activity in pp, as the number of participating nucleons does in pA.

The final solution

- □ Combining "epsilon method" and saturation scale in a smart way (T. Pierog and K. Werner, procs. EDS 2015, Borgo, France)
- **Step 1** Compute $G = G(Q_0)$ with fixed soft cutoff Q_0 \rightarrow fit \rightarrow add ε exponents ($\rightarrow G_{\text{eff}}$) in order to fit cross sections
- Step 2 Introduce saturation scale via

$$G_{\rm eff} = k \, G(Q_s)$$

affecting the internal structure (We will see what to take to *k*)

The saturation scale Q_s^2

pp at 7 TeV $using \ G_{
m eff} = k \ G(Q_s)$

48

with constant k

 $(x+_{\rm PE}$ is the LC momentum fraction on the projectile side)

A crucial test: Multiplicity dependence of spectra at high p_t

preliminary ALICE data

(digitalized from B.A.Hess, talk at MPI@LHC 2015 Trieste November 27, 2015)

multiplicity bins (top to bottom): 0-1%, 1-5%, 10-15%, 20-30%, 40-50%, 70-100%

lines to guide the eye

Same data - ratio to 70-100%

Comparing ALICE data with EPOS calculations

(preliminary ALICE data digitalized from B.A.Hess, talk at MPI@LHC 2015 Trieste November 27, 2015)

multiplicity bins (top to bottom): 0-1%, 1-5%, 10-15%, 20-30%, 40-50%, 70-100%

Not too bad for a first shot ... but tails are not correct

Comparing ALICE data with EPOS calculations Ratio calculation / data

multiplicity bins : 0-1% (red) , 1-5%, 10-15%, 20-30%, 40-50%, 70-100% (grey)

Tails wrong by factors of two (low pt will be modified by hydro)

Make saturation scale Q_s^2 depending on $N_{ m Pom}$

pp at 7 TeV

using $G_{
m eff} = k\,G(Q_s)$

with

$$k = \left(rac{N_{
m Pom}}{\langle N_{
m Pom}
angle}
ight)^{0.75}$$

higher Q_s^2 with increasing Pomeron number (like $N_{\rm part}$ dependence in pA)

Comparing ALICE data with EPOS calculations

Comparing ALICE data with EPOS calculations Ratio calculation / data

using

$$k = \left(rac{N_{
m Pom}}{\langle N_{
m Pom}
angle}
ight)^{0.75}$$

multiplicity bins : 0-1% (red) , 1-5%, 10-15%, 20-30%, 40-50%, 70-100% (grey)

Tails reasonable (low pt will be modified by hydro)

Still finetuning and tests needed, but we use

 $G_{
m eff} = k\,G(Q_s)$

with

$$\boldsymbol{k} = \left(\frac{\boldsymbol{N}_{\mathrm{Pom}}}{\langle \boldsymbol{N}_{\mathrm{Pom}} \rangle}\right)^{\boldsymbol{A}_{\mathrm{sat}}}, \quad \boldsymbol{A}_{\mathrm{sat}} = 0.75$$

to analyse the multiplicity dependence of D-meson production (results depend somewhat on A_{sat})

Remark : This new procedure => EPOS 3.2xx

57

Part III Multiplicity dependence of charm production

Notations (always at midrapidity) (D-meson = average D^+, D^0, D^{*+})

- $N_{\rm ch}$: Charged particle multiplicity
- N_{D1} : D-meson multiplicity for $1 < p_t < 2 \, {
 m GeV/c}$
- N_{D2} : D-meson multiplicity for $2 < p_t < 4 \, {
 m GeV/c}$
- N_{D4} : D-meson multiplicity for $4 < p_t < 8 \, {
 m GeV/c}$
- N_{D8} : D-meson multiplicity for $8 < p_t < 12\,{
 m GeV/c}$
- In addition we define normalized multiplitities

 $n=N/\left\langle N
ight
angle$

for $n_{
m ch}$ and n_{Di}

Heavy quark (Q) production in EPOS multiple scattering framework

as light quark production

(but non-zero masses : $m_c = 1.3, m_b = 4.2$) **In any of the ladders**

□ **during SLC** (space-like cascade)

□ **during TLC** (time-like cascade)

🗆 in Born

Multiple scattering (EPOS3, basic):

 $N_{Di} \propto N_{\rm ch} \propto N_{\rm Pom}$

"Natural" linear behavior (first approximation)

The actual calculations

n_{Di} vs n_{ch}

... even more than linear increase!

61

(in particular for large p_t)

(less for $A_{sat} = 0$) (much less in EPOS 3.1xx)

Why this pt dependence ?

Crucial: Fluctuations

 $N_{\rm ch}$ and $N_{\rm Pom}$ are correlated, but not one-to-one

(=> two-dimensional probability distribution)

62

In the following, we consider fixed values ${n_{{
m ch}}}^{*}$ of normalized charged multiplicities

GSI Seminar July 06, 2016 — Klaus Werner — Subatech — Nantes

To understand the implications of "fixed n_{ch} " Strings in multiple scattering event (schematic view): basic EPOS

space-time rapidity

full EPOS (with hydro) string segments => fluid

but string properties - number, - masses, - hardnesses determine initial energy density and final multiplicity

space-time rapidity

64

Consider n_{D1} for some given ${n_{\mathrm{ch}}}^*$

The precise calculation (red point)

n_{D8} for given ${n_{ m ch}}^*$

$$n_{D8} =$$

$$\sum_{N_{Pom}} \operatorname{prob}(N_{Pom}, n_{ch}^{*})$$

$$\times n_{D8}(N_{Pom}, n_{ch}^{*})$$

$$>> n_{ch}^{*}$$

because n_{D8} > n_{ch}^* at high N_{Pom}

and

increases strongly towards small $N_{\rm Pom}$

67

The precise calculation (red point)

We compute in addition

□ The average invariant Pomeron mass for given $N_{\rm Pom}$ and $n_{\rm ch}^*$ (/100 GeV)

□ The average Pomeron hardness

$$\left(\left\langle p_{t}^{2}
ight
angle / \left\langle p_{t}^{2}
ight
angle_{ ext{ref}} - 1
ight) imes 100$$

for given N_{Pom} and n_{ch}^* (based on string segments; $\langle p_t^2 \rangle_{\text{ref}} = 0.55 \,\text{GeV}^2$)

Pomeron mass and hardness

both increase significantly with decreasing $N_{\rm Pom}$

red line: n_{D8}

blue dashed-dotted: $N_{
m Pom}$ distr

correspondence hardness - n_{D8} !!

Strong non-linear increase (of $n_{D8}(n_{ch})$) since

- \Box Pomerons harder with increasing multiplicity (more screening, higher Q_2^s)
- The number of Pomerons fluctuates for given multiplicity and smaller Pomeron numbers imply harder Pomerons

 \Box note : n_{D8} is nothing but a "Pomeron hardness" measure (even a very sensitive one)

72

EPOS 3.204 compared to data

Hydo helps somewhat

(for basic EPOS the increase is somewhat less)

No change for n_{Di}

But some reduction of $n_{\rm ch}$

73

=> $n_{D8}(n_{\rm ch})$ with hydro is somewhat steeper compared to basic EPOS

Why multiplicity reduction?

Taking charged-particle multiplicity at forward/backward rapidity

 $2.8 < \eta < 5.1$ and $-3.7 < \eta < -1.7$

(Vzero multiplicity, N_{vz} , n_{vz})

Vzero multiplicity : Smaller increase

n_{D8} for given ${n_{ m vz}}^*$

whereas $n_{D8}(N_{
m Pom}, {n_{
m ch}}^*)$ increases strongly towards small $N_{
m Pom}$

77

 $n_{D8}(N_{
m Pom},{n_{
m vz}}^*)$ decreases slightly

=> Pomerons do not get harder

Why do Pomerons get harder at small $N_{ m Pom}$ for fixed $n_{ m ch}$ but not for fixed $n_{ m vz}$?

In case of $n_{\rm ch}$, almost all Pomerons cover the corresponding central rapidity range

In case of $n_{\rm ch}$, almost all Pomerons cover the corresponding central rapidity range, so to keep $n_{\rm ch}$ fixed for smaller $N_{\rm Pom}$ requires harder Pomerons (no other way)

80

81

Side remark:

In principle a possibility to define

 particular event classes, with essentially "hard" Pomerons,

by triggering on high multiplicity AND large D meson yields In case of $n_{\rm vz}$, only some Pomerons cover the corresponding forward rapidity range,

In case of $n_{\rm vz}$, only some Pomerons cover the corresponding forward rapidity range, so to keep $n_{\rm vz}$ fixed for smaller $N_{\rm Pom}$ can be accomodated with more Pomerons covering that rapidity range

Summary

- New (and final?) major improvement of the multiple scattering scheme in EPOS: Pomeron number dependence of the saturation scale (and the corresponding technical improvements which make it possible)
- Provides increasing Pomeron hardness with increasing multiplicity (ALICE multipl dependence of spectra)
- Explains strong increase of high pt charm production vs multiplicity, and the modest increase in case of forward multiplicity.