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Introduction: Lattice QCD and the sign problem

Overview: the finite T transition from direct lattice simulations

Towards cold and dense QCD:  effective lattice theories

 EMMI Nuclear and Quark Matter Seminar

(is slow…but steady)



Quantum Chromodynamics, theory of strong interactions

gluons    quarks    gauge group SU(3)   

photons     e,p     gauge group U(1)

gluon self-interaction!



Lattice gauge theory + Monte Carlo method 

QCD partition fcn:

links=gauge fields

         lattice spacing a<< hadron << L !
         
         typically                       dim. integral

         Monte Carlo, importance sampling

> 108 � 1010

U

det M e�Sgauge

T =
1

aNt

Nt �⇥, a� 0Continuum limit: Nt = 4, 6Phase diagram:                            
                                 

a � 0.3, 0.2 fm

Z =
⇥

DU
�

f

det M(µf , mf ;U) e�Sgauge(�;U)

Light fermions expensive,                                        

Simulate with different quark masses,  extrapolate to physical point

Euclidean time:

4d : N3
s �Nt

Directly calculable: particle masses, decay constants, equilibrium thermodynamics
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Success of lattice QCD:  hadron spectrum
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Nuclear matter as we know it: 
light hadron spectrum from the lattice

                     BMW collaboration  (Budapest, Marseille, Wuppertal) 2010

                     QCD is correct theory for strong interactions also at low energy!

mesons=
quark anti-quark states

baryons=
three-quark states

The nucleon mass splitting 

High precision:  isospin breaking mu 6= md,↵em 6= 0

Budapest - Wuppertal 2014

Enlarge the theory by including electromagnetic  coupling
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Nuclear matter as we know it: 
light hadron spectrum from the lattice

                     BMW collaboration  (Budapest, Marseille, Wuppertal) 2010

                     QCD is correct theory for strong interactions also at low energy!

mesons=
quark anti-quark states

baryons=
three-quark statesHigh precision hadron spectrum

QED effects included

LQCD used as discovery tool:  
 
exotic hadron states, hadronic matrix elements for g-2,  
beyond SM models, axions+relic WIMP abundance….

Nf=2+1 QCD including isospin splitting + QED



   QCD at high temperature/density: change of dynamics

chiral condensate , Cooper pairs

Chiral symmetry:          broken                                        (nearly) restored

Phase transitions?



QCD phase diagram: theorist’s view (science fiction)
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!
~170 MeV

~1 GeV?

Expectation based on simplifying models (NJL, linear sigma model, random matrix models, ...)

Check this from first principles QCD! 

Until 2001: no finite density lattice calculations, sign problem!
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Less conservative views….
Others with more (and non-chiral) critical points...  

                                    NJL with vector interactions,               Zhang, Kunihiro, Fukushima 09
                                    Ginzburg-Landau approach                  Baym et al. 06
                                    for quark condensates, 
                                    beyond mean field methods...               Ferroni, Koch, Pinto 10        
                                                    ...    

+ inhomogeneous phases,  quarkyonic phases,….  you name it!



The QCD phase diagram established by experiment:
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Unsolved from QCD: nuclear matter
Nuclear physics

~100 years old, still no fundamental description, Bethe-Weizsäcker droplet model: 

Z

N

Binding energy per nucleon

QFT descriptions: Fetter-Walecka model, Skyrme model, ...

Ab initio Hamiltonian descriptions



Theory: how to calculate p.t., critical temperature

= crit. exponent



The order of the p.t., arbitrary quark masses  

chiral p.t.
restoration of global symmetry in flavour space

µ = 0

deconfinement p.t.: 
breaking of global          symmetry  

SU(2)L � SU(2)R � U(1)A

Z(3)

anomalous

chiral critical line

deconfinement critical line

Order of p.t., arbitrary quark masses  
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no continuum extrapolation yet!

The nature of the phase transition at the physical point Fodor et al. 06

...in the staggered approximation...in the continuum...is a crossover!

The nature of the transition for phys. masses Aoki et al. 06



Order of the transition in the chiral limit
is not yet settled!
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Large cut-off effects on critical lines!
Towards the continuum: Nt = 6, a � 0.2 fm
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Physical point deeper in crossover region as            

Cut-off effects stronger than finite density effects! 

Preliminary: curvature of chiral crit. surface remains negative    de Forcrand, O.P. 10     

a� 0

de Forcrand, Kim, O.P. 07
Endrodi et al 07 

Nt=6

critical pion mass shrinks by factor ~1.8 from a=0.3 fm to a=0.2 fm!  
no continuum limit yet!



The sign problem for finite density QCD
How to identify the critical surface: Binder cumulant
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How to identify the order of the phase transition

x� xc

parameter along  phase boundary, T = Tc(x)

The ‘sign problem’ is a phase problem

importance sampling requires
positive weights

Dirac operator:  

Lattice QCD at finite temperature and density

Difficult (impossible?): sign problem of lattice QCD

Z =

∫

DU [detM(µ)]fe−Sg[U ]

positivity governed by γ5-hermiticity: D/ (µ)† = γ5D/ (−µ∗)γ5

⇒det(M) complex for SU(3), µ ̸= 0

⇒real positive for SU(2), µ = iµi

N.B.: all expectation values are real, but MC importance sampling impossible

The following methods evade the sign problem, they don’t cure it!

N.B.: all expectation values real, imaginary parts cancel, 
but importance sampling config. by config. impossible!
        

D/ (µ)† = γ5D/ (−µ∗)γ5

Z =

∫
DU [detM(µ)]fe−Sg[U ]

Lattice QCD at finite temperature and density

Difficult (impossible?): sign problem of lattice QCD

Z =

∫

DU [detM(µ)]fe−Sg[U ]

positivity governed by γ5-hermiticity: D/ (µ)† = γ5D/ (−µ∗)γ5

⇒det(M) complex for SU(3), µ ̸= 0

⇒real positive for SU(2), µ = iµi

N.B.: all expectation values are real, but MC importance sampling impossible

The following methods evade the sign problem, they don’t cure it!

µu = −µd

Same problem in many condensed matter systems!
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Much harder: is there a QCD critical point?

12

Some methods trying (1) give indications of critical point, but systematics not yet controlled 



Approach 2:  follow chiral critical line        surface 
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Chiral and deconfinement critical surfaces

shape, sign of curvatures determined by tricritical scaling!

de Forcrand, O.P. 10
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Wilson,Nf=2:
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Non-trivial phase structure 
Roberge-Weiss  Z(3) symmetry! 
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Critical surfaces at real and imaginary chemical potential

shape, sign of curvatures determined by tricritical scaling!
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Critical surfaces at real and imaginary chemical potential

shape, sign of curvatures determined by tricritical scaling!
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shape, sign of curvatures determined by tricritical scaling!
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So far only “heavy dense QCD”, i.e. static quarks  Aarts et al. 16  
cf. density of states   Langfeld et al. 16                                 



The crossover for physical masses

Figure 4: The phase diagram based on the µ-dependent Tc from the chiral condensate,
analytically continued from imaginary chemical potential. The blue band indicates the width
of the transition. The shaded black region shows the transition line obtained from the chiral
condensate. The widening around 300 MeV is coming from the uncertainty of the curvature
and from the contribution of higher order terms, thus the application range of the results
is restricted for smaller µ values. For completeness, on the right panel we also show some
selected non-lattice results: the Dyson-Schwinger result of Ref. [37] and the freeze-out data
of Refs. [57–63].

a. In Ref. [38] we used a vanishing strangeness chemical potential. In the
present analysis we use instead vanishing strange density. The reason for this
change is to be as close to the experimental situation as possible. In heavy ion
collisions the net strangeness is zero.

b. It is emphasized in the discussion of Figure 5 of [38] that only statistical
uncertainties were provided. The present analysis estimates systematic uncer-
tainties coming from various aspects of the analysis as discussed earlier. These
are comparable to or in some cases even larger than the statistical uncertainties.
A similar assumption on the systematics of Ref. [38] would make the tension
between the results much weaker.
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In the continuum:

Fluctuations at finite temperature and density Szabolcs Borsányi
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Figure 8: Strange susceptibility at vanishing (red) and non-vanishing (imaginary) chemical potentials on
a 403 ⇥ 10 lattice with the 4stout action. The blue squares are the direct simulation points at µ

B

,µ
S

pairs
where the net strangeness vanishes. These data are reproduced by a leading Taylor estimate (open circles).
If we keep all chemical potentials equal instead of requiring strangeness neutrality we arrive at the green
dots and triangles. The latter two refer to an extrapolation from the µ

B

= 0 or the Imµ
B

> 0 data, they are in
agreement [24].

The strange susceptibility together with the chiral condensate and susceptibility was used to
calculate the curvature of the transition line in the QCD phase diagram [63]. The use of imaginary
chemical potentials became a very popular approach, since then the µ

B

-derivative of the chiral
observables do not have to be calculated. Instead, T

c

has to be determined for several imaginary
values of the chemical potentials. Recently three consistent continuum results emerged [23, 24, 25].
In Fig. 9 we show the continuum extrapolated T

c

results at various imaginary chemical potentials
and the phase diagram after the analytical continuation. The curvature k of the phase diagram is
defined as

T

c

(µ
B

)

T

c

(µ = 0)
= 1�k

✓
µ

B

T

c

(µ
B

)

◆2

+O(µ4
B

) . (5.2)

The Pisa group concluded at k = 0.0135(15) (2stout staggered action up to N

t

= 12) [23] the
Wuppertal-Budapest group published k = 0.0149(21) (4stout staggered action up to N

t

= 16) [24].

6. Fluctuations, where theory meets experiment

Perhaps the most beautiful aspect of fluctuations of conserved charges is their availability from
heavy ion experiments. Fluctuations are characteristic to the temperature, chemical potential(s)
and volume of a grand canonical ensemble. Using a somewhat simplified picture, the plasma that
was created at a high energy density equilibrates locally and follows a hydrodynamical evolution,
simultaneously cooling down into the transition range. Although the total baryon number and
electric charge are conserved a subsystem can be described by a grand canonical ensemble, though
it is important to consider the finite size of the subvolume [72]. The net abundance of conserved
charges in a subsystem is counted by using rapidity cuts in experiment. The efficiency of the
detector is corrected for and spallation protons are excluded by appropriate cuts in p

T

, though
such cuts also introduce systematic errors [73]. At RHIC STAR has published results on the first

10

Bonati et al., 15
Cea et al. 15
Bielefeld-Brookhaven 14

Consistent with other simulations
and different actions



The calculable region of the phase diagram
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confined

QGP

Color superconductor
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Upper region: equation of state, screening masses, quark number susceptibilities etc.  
under control, but no chiral critical point; some (not yet confirmed) signals at larger 
densities

µ/T <� 1 (µ = µB/3)

New computational avenues in LQCD:

CPU GPU

Here, very old-fashioned approach: BPU!



Biological Processing Unit!

Large densities?     Effective theories!



Effective lattice theory for heavy and dense QCDThe effective lattice theory approach I

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  split temporal and spatial link integrations:     

Spatial integration after analytic strong coupling and hopping expansion
                                                                           

Result: 3d spin model of QCD, infinitely many couplings, ordered parametrically

Truncation: valid for heavy quarks, sufficiently close to the continuum

Step II:  sign problem milder: Monte Carlo, complex Langevin

Numerical simulations in 3d without fermion matrix inversion,  very cheap! 

Z =
�

DU0DUi det Q eSg[U ] �
�

DU0e
�Seff [U0] =

�
DL e�Seff [L]

3

Truncation valid for heavy quarks on reasonably fine lattices, a~0.1 fm 

Step II.: Mild sign problem, complex Langevin, Monte Carlo  

New Step II.:  Analytic solution by cluster expansion!  

with M.Fromm, J.Langelage, S.Lottini, M.Neuman, J.Glesaaen

Check in SU(2):  Scior, von Smekal 15 

(Numerical versions:  Greensite et al. ; Bergner et al.    )

⇠ 1

g2
,
1

mq



The Effective Lattice Theory
Pure gluon contributions

t

y

x

Integrate over all spatial gauge links

L

L ⇤

1/4

The Effective Lattice Theory
Pure gluon contributions
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x

What remains is an interaction between Polyakov Loops

L

L ⇤

1/4

Effective one-coupling theory for SU(3) YM

u(�) =
�

18
+ . . . < 1, ⇥ =

1
2am + 8

Character expansion:       LO 3d effective theory for lattice YM

Effective one-coupling theory for SU(3) YM

u(�) =
�

18
+ . . . < 1, ⇥ =

1
2am + 8

Character expansion:       

larger distances between loops, higher powers of loops

higher representations of loops

decorations of LO graphs by additional plaquettes

Polonyi, Szachlanyi 82

Strong coupling expansion (pure gauge)

Wilson action: Plaquette action

Character expansion: 

Character of rep. r:

group element representation matrix of group element

dimension of rep. matrix

Expansion coefficients: combinations of modified Bessel fcns. for SU(N)

all others can be expressed by fundamental one

12

Wilson 74: static potential, string tension Münster, Seo 80-82: glueball masses, 
Polonyi, Szachlanyi 82: strong coupling limit of free energy, effective action, Green 83: finite T string
Langelage, Münster, O.P. 08: strong coupling series for finite T
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Starting point:  Wilson’s lattice Yang-Mills action
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Numerical results for SU(3), one coupling
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Continuum limit feasible!

-error bars: difference between last two orders in strong coupling exp.

-using non-perturbative beta-function (4d T=0 lattice)

-all data points from one single 3d MC simulation!
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Including heavy, dynamical Wilson fermions

Accuracy ~5%, predictions for Nt=6,8,... available!

� �2
NLO:

12

Deconfinement transition for heavy quarks



The fully calculated deconfinement transition
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The deconfinement transition for heavy quarks

Including heavy, dynamical Wilson fermions

Accuracy ~5%, predictions for Nt=6,8,... available!
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NLO:

The critical point
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Continuum:
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Cold and dense QCD 
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Cold and dense:  onset to nuclear matter

Silver blaze property  
 
no dependence on chem. pot.  
until onset  

Lattice saturation  
 
Pauli principle, cut-off effect!  
 

Screening of Polyakov loop 
 
But no deconfinement!

baryon density



Continuum approach
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Figure 3. Continuum approach of the baryon number.

extending the range where our effective action is reliable. Fig. 2 (right) shows the same
exercise for the largest  considered in this work, this time increasing the orders of the
character expansion. We observe good convergence up to � ⇠ 6, which is a sufficiently
weak coupling to allow for continuum extrapolations. It is interesting to note that the
convergence properties are not determined by the size of the expansion parameters alone.
Even though the u(�)-values far exceed the -values employed in the figures, convergence
in u(�) appears to be faster. The gain in convergence region by the additional orders in
the effective action can be exploited to study the systematics of our effective theory.

3.2. Continuum approach

An important question for any lattice investigation concerns the continuum limit. Fig. 3
(left) shows the baryon number as a function of chemical potential and highlights a severe
issue of lattice QCD at finite baryon density, irrespective of the sign problem or the accuracy
of effective actions: cut-off effects at finite density cause not only quantitative systematic
errors, but alter the qualitative behaviour of the system. Because of the finite number
of lattice sites available, the Pauli principle leads to a saturation density of nsat

B

= 2N
f

baryons per site, which does not exist in the continuum. Once lattice saturation is reached,
a further increase of chemical potential makes no sense. Thus lattices have to be made
finer before higher densities can be addressed. On finer lattices the saturation density in
physical units grows and in the continuum limit moves to infinity. This lattice artefact
starts to make itself felt already quite early, as is also apparent in the numerical behaviour
of the Polyakov loop [8] and related to the half-filling symmetry of the static action [15].

The difficulty is also reflected in Fig. 3 (right), where the slopes of the continuum ap-
proach rapidly increase with growing chemical potential, such that a continuum extra-
polation is increasingly difficult to control. The figure shows results from our previous
simulations obtained with the 4 action at two values of µ > µ

c

, i.e. beyond the nuclear
onset transition, and compares it with the new 8 action. The baryon density just about
reaches the domain with leading cut-off effects linear in a, which are expected for standard
Wilson fermions. In this context it should prove particularly valuable to work with an im-

– 7 –

Continuum approach  ~a  as expected for Wilson fermions  

Cut-off effects grow rapidly beyond onset transition

Finer lattice necessary for larger density to avoid saturation 



Cold and dense, interacting:  onset to nuclear matter

Onset transition to cold nuclear matter 

... with very heavy quarks

continuum limit with 5-7 lattice spacings per point
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The equation of state for nuclear matter
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Binding energy per nucleon 
ϵ/
m

B

µB/mB

� =
e� nBmB

nBmB
=

e

nBmB
� 1

� � 10�3

... to be continued...

consistent with the location of the onset transition 

Minimum:  access to nucl. binding energy, nucl. saturation density!

24



Nuclear physics

~100 years old, still no fundamental description, Bethe-Weizsäcker droplet model: 

Z

N

Binding energy per nucleon

QFT descriptions: Fetter-Walecka model, Skyrme model, ...

Ab initio Hamiltonian descriptions

New computational avenues in LQCD:

CPU GPU

Here, very old-fashioned approach: BPU!

Biological Processing Unit!

Large densities?     Effective theories!

The effective lattice theory approach I

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  split temporal and spatial link integrations:     

Spatial integration after analytic strong coupling and hopping expansion
                                                                           

Result: 3d spin model of QCD, infinitely many couplings, ordered parametrically

Truncation: valid for heavy quarks, sufficiently close to the continuum

Step II:  sign problem milder: Monte Carlo, complex Langevin

Numerical simulations in 3d without fermion matrix inversion,  very cheap! 

Z =
�

DU0DUi det Q eSg[U ] �
�

DU0e
�Seff [U0] =

�
DL e�Seff [L]
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Lighter quarks:  first order + endpoint!
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Perturbation theory possible in effective theory!

n
B
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analytical
simulatedEffective couplings small

Linked cluster expansion  
in effective couplings 

Error bars systematic:  
difference between orders 
in effective action

Binding energy per nucleon: shrinks with growing quark mass
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Figure 2. The onset transition in lattice units, eq. (3.4), for κ = 0.01,β = 0 and different

Nτ (left) and for Nτ = 10,β = 0 and different κ (right).

in the original QCD action, is still contained in z0. Another limit of interest is that
of zero temperature. In this case we have

lim
T→0

a4p =

{

0, µ < m
2Nc(aµ− am), µ > m

,

lim
T→0

a3n =

{

0, µ < m
2Nc, µ > m

. (3.7)

Thus we find the so-called silver blaze property, i.e. the thermodynamic functions stay

zero as the chemical potential is raised until it crosses the constituent quark mass.
Then it is possible to excite baryons and the onset phase transition to nuclear matter
takes place. In the static strong coupling limit, this transition is a step function

from zero to saturation density. This step function gets immediately smeared out
to a smooth crossover as soon as a finite temperature (Nτ < ∞) or coupling h2 is

switched on, cf. figure 2.
We can unambiguously identify this transition as baryon condensation by also

looking at the energy density. Away from the static limit, there are non-vanishing

attractive quark-quark (and hence baryon-baryon) interactions parametrised by h2.
These are identified by the quantity

ϵ ≡
e− nBmB

nBmB

=
e

nBmB

− 1 , (3.8)

which gives the energy per baryon minus its rest mass in units of mB. For tem-
peratures approaching zero, this is the binding energy per baryon. In perturbation
theory, the result is

ϵ = −
4

3

1

a3nB

(

z3
z0

)2

κ2 = −
1

3

1

a3nB

(

z3
z0

)2

e−amM , (3.9)
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Experimentally established phase diagram:

B

Nuclear liquid gas transition with critical end point

Tc  ~ Nuclear binding energy

Nuclear matter

decreases with growing quark mass

Perturbation theory also possible!
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Nτ (left) and for Nτ = 10,β = 0 and different κ (right).
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lim
T→0

a4p =

{

0, µ < m
2Nc(aµ− am), µ > m

,

lim
T→0

a3n =

{

0, µ < m
2Nc, µ > m

. (3.7)

Thus we find the so-called silver blaze property, i.e. the thermodynamic functions stay

zero as the chemical potential is raised until it crosses the constituent quark mass.
Then it is possible to excite baryons and the onset phase transition to nuclear matter
takes place. In the static strong coupling limit, this transition is a step function

from zero to saturation density. This step function gets immediately smeared out
to a smooth crossover as soon as a finite temperature (Nτ < ∞) or coupling h2 is

switched on, cf. figure 2.
We can unambiguously identify this transition as baryon condensation by also

looking at the energy density. Away from the static limit, there are non-vanishing

attractive quark-quark (and hence baryon-baryon) interactions parametrised by h2.
These are identified by the quantity

ϵ ≡
e− nBmB

nBmB

=
e

nBmB

− 1 , (3.8)

which gives the energy per baryon minus its rest mass in units of mB. For tem-
peratures approaching zero, this is the binding energy per baryon. In perturbation
theory, the result is

ϵ = −
4

3

1

a3nB

(

z3
z0

)2

κ2 = −
1

3

1

a3nB

(

z3
z0

)2

e−amM , (3.9)
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EoS fitted by polytrope, non-relativistic fermions!

Can we understand the pre-factor?   Interactions, mass-dependence… 

Equation of state of heavy nuclear matter, continuum 
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The effective lattice theory approach II

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  integrate over gauge links in strong coupling expansion, leave fermions  

                                                                           

Result: 4d “polymer” model of QCD (hadronic degrees of freedom!)
Valid for all quark masses (also m=0!), at strong coupling (very coarse lattices)                                    

Step II:  sign problem milder: Monte Carlo with worm algorithm

Numerical simulations without fermion matrix inversion,  very cheap! 

de Forcrand, Langelage, O.P., Unger
Phys.Rev.Lett. 113 (2014) 152002
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Wolff; Karsch, Mütter



From strong coupling limit to finite coupling

QCD phase diagram from the lattice at strong coupling Wolfgang Unger
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Figure 1: The Phase diagram in the strong coupling limit (left), as measured in a Monte Carlo
simulation, compared to the standard expectation of the continuum QCD phase diagram (right).
Both diagrams are for massless quarks.

the Grassmann constraint:

nx + Â
n̂=±0̂,...,±d̂

✓
kn̂(x)+

Nc

2
|`n̂(x)|

◆
= 3. (2.2)

This constraint restricts the number of admissible configurations {kb,nx,`} in Eq. (2.1) such that
mesonic degrees of freedom always add up to 3 and baryons form self-avoiding loops not in contact
with the mesons. The weight w(`,µ) and sign s(`) = ±1 for an oriented baryonic loop ` depend
on the loop geometry. The partition function Eq. (2.1) describes effectively only one quark flavor,
which however corresponds to four flavors in the continuum (see Sec. 4). It is valid for any quark
mass. We will however restrict here to the theoretically most interesting case of massless quarks,
mq = 0. In fact, in this representation the chiral limit is very cheap to study via Monte Carlo,
in contrast to conventional determinant-based lattice QCD where the chiral limit is prohibitively
expensive.

For staggered fermions in the strong coupling limit, there is a remnant of the chiral symmetry
U55(1) ⇢ SUL(Nf )⇥ SUR(Nf ). This symmetry is spontaneously broken at T = 0 and is restored
at some critical temperature Tc with the chiral condensate hȳyi being the order parameter of this
transition. As shown in Fig. 1 (left), we find that this transition is of second order. This is analogous
to the standard expectation in continuum QCD with Nf = 2 massless quarks, where the transition is
also believed to be of second order. Moreover, both for our numeric finding at strong coupling and
for the expectation in the continuum, the transition turns into first order as the chemical potential is
increased. Thus the first order line ends in a tricritical point, which is the massless analogue of the
chiral critical endpoint sought for in heavy ion collisions.

In fact, at strong coupling, the zero temperature nuclear transition at µB,c ' mB is intimately
connected to the chiral transition, and they coincide as long as the transition is first order. The
reason for this is the saturation on the lattice due to the Pauli principle: in the nuclear matter

3

QCD phase diagram from the lattice at strong coupling Wolfgang Unger
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Figure 3: Phase boundary in the µ-T plane extended to finite b . The backplane corresponds to the
strong coupling limit b = 0. The second order phase boundary is lowered by increasing b . We
do not observe a shift of the chiral tricritical point. However, the nuclear critical endpoint (CEP),
determined from the baryon density, moves down along the first order line (extrapolated to T = 0
to guide the eye) as b is increased.

1. Baryons are point-like in the strong coupling limit, the lattice spacing is too coarse to re-
solve the internal structure of the baryon. Including the gauge correction, baryons become
extended objects, spread over one lattice spacing.

2. The nuclear potential in the strong coupling limit is of entropic nature, where two static
baryons interact merely by the modification of the pion bath. With the leading order gauge
correction, pion exchange is possible as the Grassmann constraint is relaxed: on excited
plaquettes, the degrees of freedom in Eq. (2.2) add up to 4 instead of 3.

These features will have an impact on the phase boundary. In Fig. 3, the effect of the gauge
corrections is shown. We find that the second order phase boundary is lowered, as expected because
the critical temperature in lattice units drops as the lattice spacing is decreased with increasing b .
However, we find the chiral tricritical point and the first order transition to be invariant under the
O(b ) corrections. We want to stress that there are actually two end points, which split due to
the gauge corrections: the second order end point of the nuclear liquid-gas transition is traced by
looking at the nuclear density as an order parameter. We expect the nuclear and the chiral first
order transition to split, such that at T = 0 there are three different phases instead of two phases (as

5
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The effective lattice theory approach II

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  integrate over gauge links in strong coupling expansion, leave fermions  

                                                                           

Result: 4d “polymer” model of QCD (hadronic degrees of freedom!)
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Strong coupling limit: � = 0 Including leading gauge corrections

Unrooted staggered fermions: Nf=4

Nucl. and chiral transition coincide!



Possibilities for continuum Nf=4 phase diagram:

QCD phase diagram from the lattice at strong coupling Wolfgang Unger

(A) (B) (C)
T /m

B

μ/m
B

β Chiral Transition Nuclear Transition

1
st
 order

2
nd

order

T /m
B

μ/m
B

β Chiral Transition Nuclear Transition

1
st
 order

2
nd

order

T /m
B

μ/m
B

β Chiral Transition Nuclear Transition

1
st
 order

2
nd

order

Figure 4: Top row: Various scenarios for extending the phase diagram in the strong coupling limit
(b = 0) toward the the continuum limit (b ! •). All three scenarios assume that the nuclear and
chiral transition split, and that at µ = 0 the chiral transition is of first order (since in the continuum
Nf = 4). In the strong coupling limit, the chiral transition at µ = 0 is second order (corresponding
to Nf = 1 and the doublers decoupled), hence there must be a tricritical point at some b (µ=0)

tric . It
is an open question whether the tricritical point at strong coupling is connected to this tricritical
point at b (µ=0)

tric (left), or connected to the speculated tricritical point in the continuum (center) or
terminates at some finite b at T = 0 (right).
Bottom row: the corresponding scenarios for the finite temperature chiral transition in the µ �Nf

phase diagram, showing the possible relation of the tricritical point at Nf = 4 with those at Nf =

2+1, assuming the chiral limit for the light quarks and a physical strange quark mass. The µ-Nf

is limited by the line µc(T = 0), beyond which chiral symmetry is restored. Left: For Nf = 4, the
transition is of first order for all values of µ . Center: The tricritical point at Nf = 4 is is connected
to the tricritical point at Nf = 2+ 1. This would be evidence for the existence of the critical end
point in the QCD phase diagram for physical quark masses. Right: The Nf = 4 first order region
does not extend to Nf = 2+ 1, where it remains second order. This second order transition turns
into a crossover immediately as mu,md > 0, so in this scenario there is no chiral critical end point
at physical quark masses.

Figure 5: The Columbia plot with the assumption mphys
s >mtric

s ,
which implies that the chiral transition is second order for
Nf = 2. The arrow points towards the Nf = 2+ 1 chiral light
quark masses and physical strange quark mass as denoted in the
bottom row of Fig. 4 in between Nf = 2 and Nf = 3.

7

Nf=4 is known to have first order transition at zero density



Conclusions

Growing control over phase diagram in generalised parameter space:   
 
Nf, quark mass, imaginary chemical potential, lattice spacing 

“Physical” QCD:  finite T transition is crossover that softens with density  

Complete phase diagram + baryon matter directly from QCD for:  
 
-Heavy dense QCD near continuum with fully analytic methods 
 
-Chiral dense QCD on coarse lattices   


