

The ALICE upgrade program

Silvia Masciocchi, GSI

EMMI NQM seminar, GSI, November 16, 2016

- What comes after what ALICE measured with run 1 data and what is being recorded during run 2?
- Heavy-ion collisions at the LHC in runs 3 and 4
- Upgrades to the experiment
- ALICE physics program
- Summary

Heavy ions at the LHC: run 1

year	system	√s _{NN} (TeV)	L _{int}
2010	Pb-Pb	2.76	~ 10 μb⁻¹
2011	рр	2.76	~ 250 nb⁻¹
2011	Pb-Pb	2.76	~ 150 μ b ⁻¹
2013	p-Pb	5.02	~ 30 nb⁻¹
2013	рр	2.76	~ 5 pb⁻¹

In 2011, LHC already reached the nominal Pb-Pb luminosity: 5x10²⁶ cm⁻²s⁻¹ (interaction rates around 5-6 kHz)

3

Heavy ions at the LHC: run 2

Higher collision energy: Pb-Pb at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ p-Pb at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ and 8 TeV

Goal of run 2 for ALICE: ~ 1-2 nb⁻¹ integrated luminosity (Pb-Pb) x 10 wrt run 1 Including rare triggers

• AMAZING PERFORMANCE!

- In 2015, luminosity exceeded the design value:
 - First it reached 10²⁷ cm⁻²s⁻¹ (2 x design) using the highest achieved intensity of ions in the 426 bunches filled from the injectors (PS and SPS)
 - Then reached 3 x design having up to 518 bunches in the LHC (thanks to the reduced rise time of the SPS injection kicker array)
 - Many important limits of LHC with heavy ions tested!!
- Machine already running at (safety) limits
- Luminosity leveling used at ALICE in 2015

Why beyond the planned 1 nb⁻¹?

HI at the LHC: the precision era

More statistics is needed: example 1

- D⁺_s (cs) compared to average of D^{0,+,*+}
- Sensitive to strangeness production
- and to the hadronization mechanism of charm quarks
- Need statistics and precision
- Reach 0 p_{T}

ALICF

S.Masciocchi@gsi.de

ALICE upgrade, November 16, 2016

Charm production cross section needed with good precision!

Forward rapidity

Mid rapidity

 J/ψ nuclear modification factor versus centrality, run 1 data

Comparison to statistical hadronization and two transport models

8

More statistics is needed: example 2

Discrimination between different charmonium production mechanisms:

- Transport models: in-medium destruction and generation
- Statistical hadronization: generation at phase boundary

will be possible with high statistics $\psi(2S)$ measurements

limited statistics, no central collisions

S.Masciocchi@gsi.de

JHEP 1605 (2016) 179

ALICE upgrade, November 16, 2016

Focus on low transverse momentum

... the place where most of the interesting action takes place

- Significantly higher integrated luminosity

 → possibly a factor 100 more than run 2 (n. events)
- Interest focused on soft probes and hard probes down to 0 $p_{_{\rm T}}$
 - \rightarrow only possible with minimum bias data

How can this be achieved?

- Higher interaction rates of heavy ions at the LHC: 50 kHz after LS2
- Minimum bias data
- Adapt detectors and data processing to allow recording of all interactions (continuous readout, online data reduction, etc)
- Optimize experimental setup for high resolution at low p_{T}

LHC heavy-ion beams from 2021 on

- Increase total number of lead nuclei stored in the LHC
 - Reducing bunch spacing at the PS
 - Decreasing the SPS kicker rise time
- Upgrade of LHC collimators
- Peak luminosity exceeding 6x10²⁷ cm⁻²s⁻¹ (→ 50 kHz int. rate)
- Foreseen integrated luminosity of 2.85 nb⁻¹ per year

LHC heavy-ion beams from 2021 on

Goal for run 3 and 4 (2021 – 2029):

- 4 heavy-ion periods \rightarrow 10 13 nb⁻¹ integrated luminosity
- Minimum bias \rightarrow 8x10⁹ events
- Reference pp and p-Pb runs

Upgrade program: an overview

 Full replacement of the Inner Tracking System (ITS) with 7 layers of monolithic active pixels (MAPS)

 \rightarrow higher resolution in all coordinates, lower material budget, higher precision in tracking and vertexing

- Replacement of the beam pipe (smaller radius)
 - \rightarrow lower material budget, higher precision
- Addition of a Muon Forward Tracker (MFT, pixels as ITS)

 \rightarrow augment the muon spectrometer with vertexing, to strengthen all aspects of heavy-flavor physics

 Replacement of the TPC MWPC (+ gating grid) with GEM chambers and new readout electronics

 \rightarrow continuous readout

• Upgrade of readout systems of all detectors

 \rightarrow higher readout speed

Development of a new online + offline system O²

 \rightarrow data compression, online processing, allow 50 kHz "minimum bias"

New trigger detectors

The LS2 ALICE upgrades

50kHz PbPb event rate

TOF, TRD, ZDC
 Faster readout

New Trigger Detectors (FIT)

5 Technical Design Reports

ALICE

Upgrade of the

Readout & Trigger System

• Approved by the LHCC, the Upgrade Cost Group, the Research Board

ALICE

Upgrade of the

Time Projection Chamber

 4 of 5 Memorandum of Understandings signed (GSI: Readout and Trigger, TPC, O² coming soon)

۲

ALL PROJECTS ON THE WAY

ALICE

Upgrade of the

Online - Offline computing system

۲

16

ALICE

Muon Forward Tracker

0

ALICE

Upgrade of the

Inner Tracking System

The ALICE Time Projection Chamber

- ~ 90 m³ gas volume (Ne-CO₂(-N₂) \rightarrow Ar-CO₂), equipped with **MWPC**
- Half a million readout pads
- Ions from the amplification region are prevented from reaching the drift volume by a gating grid
- Full readout time ~(100+200) μ s \rightarrow maximum readout rate of 3 kHz

The ALICE Time Projection Chamber

- ~ 90 m³ gas volume (Ne-CO₂(-N₂) \rightarrow Ar-CO₂), equipped with **MWPC**
- Half a million readout pads
- Ions from the amplification region are prevented from reaching the drift volume by a gating grid
- Full readout time ~(100+200) μ s \rightarrow maximum readout rate of 3 kHz

S.Masciocchi@gsi.de

- Continuous readout to cope with the 50 kHz Pb-Pb interaction rate and record all minimum bias events
- New readout electronics: FE ASIC SAMPA:
 - direct readout mode (continuous, can be triggered)
- Signal processing at CRU Common Readout Unit:
 - Common mode correction, zero suppression, etc.
- 5 MHz ADC sampling frequency

TPC upgrade

Significant data compression required!

 \rightarrow 1-3 TBytes/s

TPC upgrade

Continuous readout to cope with the 50 kHz Pb-Pb interaction rate and record all minimum bias events

 → New readout chambers, no gating grid
 GEM: Gas Electron Multiplier foils. Offer opportunity to reach low ion back-flow (IBF) in multiple GEM stacks

TPC upgrade: GEM chambers

- Low IBF (<1%) is achieved combined 4 GEM foil
- Momentum resolution and particle identification performance is preserved: dE/dx resolution <12%

TPC upgrade: performance

- Pad Response Function optimized for MWPC: narrower for GEMs, help by diffusion → only slightly worse overall resolution (space point)
- Slightly worse for TPC only tracks, restored for ITS-TPC tracks
- @50 kHz Pb-Pb \rightarrow on average 5 overlapping events
- Track reconstruction efficiency and momentum resolution preserved
- Only moderate worsening of dE/dx resolution
- Space-charge density from IBF produce distortions: electric field (Poisson) → space points (Langevin)
- Distortions up to dr ≈ 20cm and drφ ≈ 8cm
- Fluctuations at the 3% level, dominated by event and multiplicity fluctuations
- Online calibration of distortions. Update interval O(5ms)
- Strategy in place restores full performance (2nd stage)

S.Masciocchi@gsi.de

ALICE upgrade, November 16, 2016

New Inner Tracking System

- 7-layer barrel geometry based on CMOS sensors: ~10 m², 12.5 G-pixel
- ALPIDE pixel chip
- Radius: 23 400 mm (smaller beam pipe radius)
- 3 Inner Barrel layers (IB)
 4 Outer Barrel layers (OB)
- |η| < 1.22 for tracks from 90% most luminous region
- Radiation load: TID: ~ 2.7 Mrad
 NIEL: ~1.7x10¹³ 1MeV n_{eq} / cm²

Ultra-light vertex detector: material / layer: 0.3 % X₀ (IB) 1 % X₀ (OB)

ALICE

ITS upgrade: ALPIDE pixel chip

CMOS pixel sensor: TowerJazz 0.18 µm CMOS image processing

- High-resistivity (>1 kΩ cm) p-type epitaxial layer (18-30 µm), on p-type substrate
- Small n-well diode (2 μ m diameter), ~100 times smaller than pixel \rightarrow low capacitance
- (moderate) reverse bias to substrate to increase depletion zone around n-well diode
- Deep p-well shields n-well of PMOS transistor to allow for full CMOS circuitry within active area

ALICE

ITS upgrade: details and sources

Monolithic Active Pixel Sensors (MAPS)

- ALPIDE chip: 30 mm x 15 mm
- Pixel matrix: 1024 col x 512 rows
- Pixel pitch: 29 μm x 27 μm
- Ultra-low power: ~30 mW/cm²

ITSU Conceptual Design Report: CERN-LHCC-2012-013 ITSU Technical Design Report: CERN-LHCC-2013-024

Muon Forward Tracker (MFT)

5 layers before muon absorber same pixel sensors (0.4 m², 5% of ITS) CERN-LHCC-2015-001

ALICE upgrade, November 16, 20

ITS: projected performance

Tracking efficiency (ITS standalone)

Impact parameter resolution

~ 40 μ m at p_{τ} = 500 MeV/*c*

Silicon sensor + readout electronics: Only 20% of the total material budget

Active cooling

ALICE upgrade, November 16, 2016

Open heavy flavors

high precision measurements of R_{AA} and v_n of charm and beauty, with exclusive decay reconstruction, to study the dynamics of heavy quarks in the medium

• Charmonium

understand the production mechanism, infer properties of the phase transition

Light nuclei and exotic states

hadronization mechanism, production of heavy and loosely bound states, search for exotica

• Di-lepton spectrum

thermal radiation, temperature of the medium, chiral symmetry, heavy-flavor cross section

Open heavy flavors

30

S.Masciocchi@gsi.de

ALICE upgrade, November 16, 2016

31

Open heavy flavor: current results

Charm

Exclusive reconstruction of hadronic decays of D mesons $D^0 \rightarrow K^- \pi^+, \quad D^+ \rightarrow K^- \pi^+ \pi^+, \quad D^{*+} \rightarrow D^0 \pi^+, \quad D_s^+ \rightarrow \phi \pi \rightarrow K^+ K^- \pi^+$

Nuclear modification factor R_{AA}

Elliptic flow coefficient v_2

Beauty: nuclear modification factor R_{AA}

Semi-leptonic decays: electrons from beauty hadrons at mid-rapidity

ALICE upgrade, November 16, 2016

Study:

- Parton mass and color-charge dependence of in-medium energy loss
 - p_{T} and centrality dependence of R_{AA} for D and B mesons separately
- Thermalization of heavy quarks in the medium
 - Azimuthal-flow anisotropy of charm and beauty hadrons
 - Determination of the baryon-to-meson ratio for charm and beauty hadrons

Higher precision and statistics make new channels accessible:

- $B \rightarrow D^0 + X$, $B^+ \rightarrow D^0 + \pi^+$
- $B \rightarrow J/\psi$ (ee,µµ) + X
- $B \rightarrow e/\mu + X$

• $\Lambda_c \rightarrow p K \pi$ • $\Lambda_b \rightarrow \Lambda_c \pi$

34

Nuclear modification factor: projections

ALICE

- Integrated luminosity 10 nb⁻¹ \rightarrow 8.5 x 10⁹ events
- Projected statistical uncertainty of the measurement of R_{AA}

- Reach $p_{T}=0$, more precision in centrality dependence
- Mass dependence

Elliptic flow: projections

• Integrated luminosity 10 nb⁻¹ \rightarrow 8.5 x 10⁹ events

- Reach 0 (low) p_{T} for c (b \leftarrow new!)
- Hadronization mechanism

Stiller CERN-THESIS-2016-037

Hadronization

- Current hints that charm might recombine in-medium:
 - Dv_2 (LHC) and DR_{AA} (RHIC) better described with recombination?
 - $D_s R_{AA}$ larger than D R_{AA} ?
 - J/ ψ production at low p_{T} ?
- Can be studied via precise measurements of D_s vs D, and baryons vs mesons

 $D_{2} \rightarrow KK\pi$

Good precision for

 p_{τ} > 2 GeV/*c*

 $\Lambda_{b} \rightarrow \Lambda_{c} \pi$

Accessible for $p_{T} > 7 \text{ GeV/}c$ Λ_{h} significance

 $\Lambda_{c} \rightarrow pK\pi$

Good precision for

 $p_{\tau} > 2 \text{ GeV/}c$

S.Masciocchi@gsi.de

ALICE upgrade, November 16, 2016

Charmonium

39

Charmonium: production mechanism

Discrimination between different charmonium production mechanisms (models) will be possible with high statistics ψ(2S) measurements

J.Phys. G41 (2014) 087001 LHCC-I-022-ADD-1 EPJ C76 (2016) 3, 107

REMINDER

Discrimination between different charmonium production mechanisms:

- Transport models: in-medium destruction and generation
- Statistical hadronization: generation at phase boundary

will be possible with high statistics $\psi(2S)$ measurements

limited statistics, no central collisions

S.Masciocchi@gsi.de

JHEP 1605 (2016) 179

ALICE upgrade, November 16, 2016

J/ψ elliptic flow

- Crucial observable to test the regeneration scenario
- Limited precision, in run $1 \rightarrow 10$ times better precision with upgrade!

(Hyper-)nuclei, exotica

43

ALICE upgrade, November 16, 2016

Nuclei: goals and current status

- Test production mechanisms, e.g. statistical hadronization versus coalescence
- Implications of low binding energy of these extended objects
- Explore QCD and QCD-inspired models predicting multi-baryon states

Hyper-nuclei: projections

Higher statistics and resolution will allow precision measurements for hyper-triton including:

- Lifetime
- Branching ratios

The physics we can now do for A=2 and A=3 will become possible for

Di-lepton spectrum

47

Photons and di-leptons

- Electromagnetic thermal radiation spectrum of hot QCD matter
- Produced at all stages of the collisions
- Leave the system without Final State Interactions

hard photons

thermal QGP

thermal hadronic

hadronic decays

- QGP temperature
- Generation of hadron masses, chiral symmetry restoration
- Space-time evolution of the system
- Heavy-flavor production cross section

Di-leptons in run 3-4

- Significantly reduced material in ITS: fewer conversions and mult. scat.
- Higher resolution and efficiency at low p_T
- Plan for 3 nb⁻¹ recorded at ALICE B=0.2 T (vs 0.5 T)

Much improved pair acceptance

Di-leptons in run 3-4

- High rate: increase statistical significance by factor 10 (continuous readout)
- Spatial resolution: reject charm via DCA cuts –
- Projection: current detectors \rightarrow 2.5 x 10⁷ ev
- upgraded detectors: ITS, TPC
 2.5 x 10⁹ ev

Physics program: summary

- 50 kHz Pb-Pb collisions at the LHC (≥ 2021)
- New ITS and GEM TPC → continuous readout, improved spatial resolution and vertexing, comparable PID
- Faster readout and new Online-Offline system (O²)

will provide 100 times the Pb-Pb statistics of run 2 (10+3 nb⁻¹ integrated luminosity) with we will study properties of the QGP via:

- Heavy flavors
- Charmonium
- Nuclei
- Di-leptons

I did not discuss

- Muon forward tracker MFT
- Readout & trigger system
 - New trigger detectors FIT
 - New, faster readout electronics
- Online-Offline system O²
- FOCAL
- related jet physics program

CERN-LHCC-2015-001 CERN-LHCC-2013-019

CERN-LHCC-2015-006

Outlook

ALICE Collaboration is SUPER BUSY:

- Still publishing from run 1 data
- Full immersion in run 2 (2015-2018): data taking and preparation, analysis
- Construction of new detectors (Production Readiness Reports, test beams, etc.)

p-Pb Nov 2016 √s_№ = 5.02 TeV

Fantastic potential for current and future physics program

Spares

ALICE upgrade, November 16, 2016

Pb-Pb 2015 ALICE

Pb-Pb 2015 LHC (J. Jowett)

Expect to achieve LHC "first 10-year" baseline Pb-Pb luminosity goal of 1 AA nb⁻¹ = 43 NN pb⁻¹ in Run 2 (=2015+2018)

Goal of the first p-Pb run was to match the integrated nucleon-nucleon luminosity for the preceding Pb-Pb runs but it already provided reference data at 2015 energy.

$$\sqrt{s_{NN}} = 5.02 \text{ TeV}$$
$$\Rightarrow E_b = \begin{cases} 6.37Z \text{ TeV} & \text{in Pb-Pb} \\ 4 Z \text{ TeV} & \text{in p-Pb} \end{cases}$$

But annual 1-month runs are getting shorter and more complicated ... 2015 included p-p reference data and included LHCb.

2012 pilot p-Pb run not shown (1 fill but major physics output)

GSİ

J.M. Jowett, LHC Performance Workshop, Chamonix, 28/1/2016

- Result derived in 5 B⁺ p_T bins, from 7 to 50 GeV in lyl < 2.4 inclusive centrality (0~100%)
- Suppression of B meson production rate is observed in PbPb collision
- B meson R_{AA} ~ 0.3 to 0.6 with no obvious trend observed within statistical and systematic uncertainty

CMS-PAS-HIN-16-011

CMS-PAS-HIN-12-014

B⁺ p_T 10~15 GeV → J/ψ p_T 8~10 GeV

· Results compatible with each other within uncertainty

CMS-PAS-HIN-12-014

B⁺ p_T 10~15 GeV → J/ψ p_T 8~10 GeV

· Results compatible with each other within uncertainty

 Comparison with the D⁰ meson [1] and charge hadron [2] R_{AA}

[2] CMS-PAS-HIN-15-015

Ta-Wei Wang (MIT), B meson production in HI collisions in CMS, Hard Probe 2016 (Wuhan, China)