Jet fragmentation within and without a medium

Boris Kopeliovich Valparaiso

Hard parton collision

High-pt parton scattering leads to formation of 4 cones of gluon radiation: (i) the color field of the colliding partons is shaken off in forward-backward directions.

(ii) the scattered partons carry no field up to transverse momenta kt<pt.

The final state partons are regenerating the lost color field by radiating gluons and forming the up-down jets.

In terms of the Fock state representation all radiated gluons pre-exist in the initial bare parton, and are liberated on mass shell later on in accordance with the coherence length/time of gluon radiation

$$\mathbf{l_c} = \frac{\mathbf{2E} \mathbf{x} (\mathbf{1} - \mathbf{x})}{\mathbf{k_T^2} + \mathbf{x^2m_q^2}} \approx \frac{\mathbf{2}\,\omega}{\mathbf{k_T^2}}$$

First are radiated gluons with small longitudinal and large transverse momenta.

SIDIS: testing hadronization models

Semi-inclusive deep-inelastic processes (SIDIS) can be used as a testing ground for the models describing final-state attenuation of high-pT hadrons produced of nuclear collisions

Similar kinematics

Jet quenching in DIS

Two-step picture

Two sources of jet quenching: (i) energy loss of the parton prior production of a pre-hadron (no absorption); (ii) attenuation of the pre-hadron in the medium (absorption)

Testing the model in SIDIS

Vacuum energy loss

6

How much energy is radiated over the path length L? $\Delta E(L) = E \int dk^2 \int dx x \frac{dn_g}{dx dk^2} \Theta(L - l_c)$ $\frac{dn_g}{dx\,dk^2} = \frac{2\alpha_s(k^2)}{3\pi\,x}\,\frac{k^2[1+(1-x)^2]}{[k^2+x^2m_a^2]^2}$

Dead-cone effect: gluons with $k^2 < x^2 m_q^2$ are suppressed. Heavy quarks radiate less energy than the light ones.

Another dead cone: soft gluons cannot be radiated at short path length

This is why heavy and light quarks r at short time scales
$$L\lesssim {Ex(1-x)\over x^2m_q^2}$$

 $k^2 > \frac{2Ex(1-x)}{r} - x^2m_a^2$

radiate with similar rates

Peculiar features of high-p_ jets $\label{eq:Energy conservation:} \ l_{\bf p} \lesssim \frac{E}{dE/dl}(1-z_{\bf h}) \quad \mbox{(in vacuum)}$

Energy and scale dependences of the production length in SIDIS: (i) Energy dependence at fixed Q^2 $\langle dE/dl\rangle$ is fixed, so $l_{\rm p}\propto E$ (ii) Scale dependence at fixed energy $\langle dE/dl\rangle$ rises with $~Q^2$,so $~l_p(Q^2)$ is falling

Specifics of high-pT jets: the energy and scale strongly correlate:

7

 $\label{eq:E} \begin{array}{c} {\bf F} = {\bf p_T} \\ {\bf Q}^2 \sim {\bf p_T^2} \end{array} \qquad \begin{array}{c} \text{Is the pT-dependence of $l_p(p_T)$ rising or falling?} \\ {\bf - the answer is not obvious...} \end{array}$

Hadronízatíon ín vacuum

Perturbative hadronization at large z 9-00000

The mean value $\langle z_{\downarrow} \rangle$

Test with phenomenological FF, KKP and BKK

E. Berger, PLB 89(1980)241

t_p -dependent fragmentation function $\partial \mathbf{D}_{\pi/\mathbf{q}}(\mathbf{z_h},\mathbf{E})$ ∂t_p

 $\langle t_{\mathbf{p}}(\mathbf{z_h},\mathbf{E})
angle = rac{1}{D_{\pi/\mathbf{q}}} \int dt_{\mathbf{p}} t_{\mathbf{p}} rac{\partial D_{\pi/\mathbf{q}}(\mathbf{z_h},\mathbf{E^2})}{\partial t_{\mathbf{p}}}$

Production time/length

Why the Lorentz factor does not make l_p longer at large p_T ?

Jet features depend on two parameters, the hard scale Q^2 and jet energy E.

Energy and scale dependences of $l_{\rm D}$ in SIDIS:

(i) Energy dependence at fixed Q^2 $\langle dE/dl\rangle$ is fixed, so $~l_{\rm p}\propto E$

(ii) Scale dependence at fixed energy $\langle dE/dl\rangle$ rises with $Q^2_{\textrm{, so}}$ so $l_{\rm p}(Q^2)$ is falling

For high-pT jets: $\mathbf{E} = \mathbf{p_T}$ $\mathbf{Q^2} = \mathbf{p_T^2}$

- For the leading hadron energy conservation constraint: $l_p \lesssim \frac{E}{dE/dl}(1-z_h)$

Quenching of high-p hadrons

11

As far as l_p is short, the in-medium attenuation of the produced dipoles becomes the main source of the observed suppression of high-P₋ hadrons.

 R_{AA} rises with $p_{\rm T}$ due to color transparency

 $\hat{q}(l, \vec{b}, \vec{\tau}) = \frac{\hat{q}_0 \, l_0}{l} \, \frac{n_{part}(\vec{b}, \vec{\tau})}{n_{part}(0, 0)}$

BK,,I.Potashnikova, I.Schmidt Phys.Rev.C83(2011)021901

BK, J.Nemchik, I.Potashnikova, I.Schmidt Phys.Rev. C86(2012)054904

Quenching of high-p_heavy flavored hadrons

BK, J.Nemchik, I.Potashnikova, I.Schmidt arXiv:1701.07121

Large z are enhanced in the fragmentation function of heavy flavors, b->B, c->D.

On the contrary, large z fragmentation of light quarks is strongly suppressed.

As far as we are able to calculate $\Delta z(L)$, we can extract the production length l_p of B-mesons directly from data for $\mathbf{D}_{\mathbf{b}/\mathbf{B}}(\mathbf{z})$

Remarkably, the mean value of l_p shrinks with rising P_T

Attenuation in a hot medium

The light quarks in the B-meson carries a tiny fraction of the momentum, ${
m x} \sim {
m m_q}/{
m m_b} pprox 5\%$

Therefore, even if the produced b-q dipole has a small transverse separation, its size expands with a high speed, enhanced by 1/x. The formation time of the B-meson wave function (in the medium rest frame) is very short,

$$t_{f}^{B}=\frac{\sqrt{p_{T}^{2}+m_{B}^{2}}}{2m_{B}\omega} \qquad \mbox{(w=300MeV)} \label{eq:tf}$$

The mean free path of such a meson in a hot medium is very short $\lambda_{
m B}\sim rac{1}{\hat{a}\,\langle r_{
m T}^2
angle}$, where $\langle r_{
m T}^2
angle = rac{8}{3}\,\langle r_{
m ch}^2
angle$

B meson is nearly as big as a pion, $\ \langle r_{ch}^2 \rangle_B = 0.378 \, {\rm fm}^2$ E.g. at $\hat{q} = 1 \, \text{GeV}^2/\text{fm}$ $\lambda_B = 0.04 \, \text{fm}$, i.e. the b-quark propagates through the hot medium, picking up and losing light quarks. Meanwhile the b-quark keeps losing energy with a rate, enhanced by medium-induced effects. Eventually the detected B-meson is formed and survives in the dilute medium at the surface.

[Ch.-W. Hwang (2001)]

Where the nuclear suppression comes from?

A high-pT b-quark, produced in pp collisions, starts radiating so intensely, that loses 20-30% of its initial energy on a very short distance, then picks-up a light antiquark. The produced colorless B-meson stops radiating and retains its fractional momentum z.

If, however, the b-quark is produced in a dense environment, it has to propagate a long distance up to the medium surface, where the final B-meson can survive. All this long path the quark keeps losing energy and eventually produces a B-meson with reduced fractional momentum z, which is suppressed by the fragmentation function.

$$\frac{d\sigma(\mathbf{pp} \to \mathbf{BX})}{d^2 \mathbf{p_T}} = \int d^2 \mathbf{p_T^b} \frac{d\sigma(\mathbf{pp} \to \mathbf{bX})}{d^2 \mathbf{p_+^b}} \frac{1}{\mathbf{z}} \mathbf{D_{b/B}}(\mathbf{z})$$
$$\frac{\sigma(\mathbf{AA} \to \mathbf{BX})}{d^2 \mathbf{p_T}} = \int d^2 \mathbf{p_T^b} \frac{d\sigma(\mathbf{pp} \to \mathbf{bX})}{d^2 \mathbf{p_T^b}} \frac{1}{\mathbf{z_{AA}}} \mathbf{D_{b/B}}(\mathbf{z_{AA}})$$

$$\mathbf{S}(\mathbf{l_p^{AA}}) = \exp \left[-\int_{\mathbf{l_p^{AA}}}^{\infty} \frac{d\mathbf{l}}{\lambda_{\mathbf{B}}(\mathbf{l})}\right]$$

Interplay between energy loss & absorption

While in vacuum a B-meson is produced on a very short length $l_p \ll 1 \, \mathrm{fm}$, in a hot medium strong absorption pushes the production point to the dilute medium surface. However, energy loss on a longer $l_p^{AA} \gg l_p$ causes a large shift down to small z, suppressed by D(z).

Thus, the two sources of suppression act in opposite directions

- Energy loss in the medium: radiational vacuum and induced, collisional, string.
 - In vacuum: gluon radiation plus string $dE_{string}/dl = -\kappa \approx -1 \, {\rm GeV}/{
 m fm}$
 - String tension is falling with temperature:

$$\kappa(\mathbf{T}) = \kappa \left(\mathbf{1} - \mathbf{T}/\mathbf{T_c}\right)^{1/3}$$

H.Ichie, H.Suganuma & H.Toki(1996)

Results

 $q_0 = 2 \, \mathrm{GeV}^2 / \mathrm{fm}$ $(1.6 \, \mathrm{GeV}^2/\mathrm{fm})$

fixed by quenching of pions at LHC (RHIC)

Different sources of time-dependent energy loss should be added up. Medium-induced energy loss is much smaller than the vacuum one, and should not produce a dramatic effect. They are particularly small for heavy flavors (Yu. Dokshitzer & D. Kharzeev (2001)

J.Nemchik, I.Potashnikova, I.Schmidt & B.K. PRC 86(2012)054904

Results

c-quarks radiate in vacuum much more energy than b-quarks, while the effects of absorption of c-q and b-q dipoles in the medium are similar. Therefore D-mesons are suppressed in AA collisions more than B-mesons.

J/Y in a hot medium: melting or absorption?

No signal of J/Psi melting has been observed so far

The main flaws of the melting scenario

 Once a bound level disappears, the charmonium dissociates and is terminated.

Screening of the potential is the only reason for charmonium disintegration in a dense medium.

Most of charmonia at RHIC-LHC have large $\langle p_T^2 \rangle \approx 4-16\,GeV^2$, so they move with relativistic velocities and the Schrödinger equation and lattice results cannot be applied.

Charmonium propagation through a medium

Path integral technique B. Zakharov & B.K. PRD44(1991)3466

 $\mathbf{ReV}_{\bar{\mathbf{q}}\mathbf{q}}(\mathbf{z},\mathbf{r})$ corresponds to the binding potential, which is known only in the rest frame of the dipole.

The imaginary part of the light-cone potential describes color-exchange interaction of the dipole with the surrounding medium, missed in previous consideractions.

$${
m Im} {
m V}_{ar{f q} {f q}}({f z},{f r}_{ot}) = -rac{1}{4}\,{f \hat q}({f z})\,{f r}_{ot}^2$$

 $igg[irac{d}{dz} - rac{m_{\mathbf{c}}^2 - \Delta_{\mathbf{r}_\perp}}{E_{\Psi}/2} - V_{ar{\mathbf{q}}\mathbf{q}}(\mathbf{z},\mathbf{r}_\perp) igg] G_{ar{\mathbf{q}}\mathbf{q}}(\mathbf{z}_1,\mathbf{r}_{\perp 1};\mathbf{z},\mathbf{r}_\perp) = \mathbf{0}$

The Green function $G_{\bar{q}q}(z_1, r_1; l_2, r_2)$ describes propagation of the dipole.

Transport coefficient $\ \hat{q} \approx 3.6 \ T^3$ is to be adjusted to data.

Survival of an unbound cc

Even in the extreme case of lacking any potential between c and \bar{c} (T $\rightarrow \infty$), still the J/ Ψ can survive.

I.Potashnikova, I.Schmidt, M.Siddikov & B.K. PRC91 (2015) 2,024911

Path-integral description of J/Ψ attenuation

$$|\mathbf{S}(\mathbf{L})|^{2} = \frac{\mathbf{m_{c}^{2} p_{\psi}}}{16\pi^{2} \mathbf{L}} \left(1 + \frac{\omega}{2\mathbf{m_{c}}}\right) \frac{8\pi^{2}}{\mathbf{m_{c}^{2}}} \left[\omega^{2} \mathbf{m_{c}^{2}} + \frac{\mathbf{p_{\psi}^{2}}}{4\mathbf{L}^{2}} \left(1 + \frac{\omega}{2\mathbf{m_{c}}}\right) \frac{\pi^{2}}{\mathbf{m_{c}^{2}}}\right]$$

20

Lorentz boosted Schrödinger equation

E.Levin, I.Schmidt, M.Siddikov & B.K. arXiv:1501.01607, PRD(2015)

The light cone fractional momentum distribution of quarks in a charmonium sharply peaks around x=1/2. With a realistic potential

$$\langle \lambda^{f 2}
angle \equiv \left\langle \left({f x} - {f 1} \over {f 2}
ight)^{f 2}
ight
angle = {\langle {f p}_{
m L}^2
angle \over 4 {f m}_{
m c}^2} =$$

Introducing a variable ζ Fourier conjugate to λ , $ilde{\Psi}_{ar{\mathbf{c}}\mathbf{c}}(oldsymbol{\zeta},\mathbf{r}_{\perp}) = \int rac{\mathrm{d}\mathbf{x}}{2\pi} \Psi_{ar{\mathbf{c}}\mathbf{c}}(\mathbf{x},\mathbf{r}_{\perp})$

and making use of smallness of λ and of the binding energy, we arrive at the boost-invariant Schrödinger equation for the Green function

$$\frac{\partial}{\partial \mathbf{z}^{+}} + \frac{\boldsymbol{\Delta}_{\perp} + (\partial/\partial \zeta)^{2} - \mathbf{m}_{\mathbf{c}}^{2}}{\mathbf{p}_{\psi}^{+}/2} - \mathbf{U}(\mathbf{r}_{\perp}, \zeta) \Bigg] \mathbf{G}(\mathbf{z}^{+}, \zeta, \mathbf{r}_{\perp}; \mathbf{z}_{1}^{+}, \zeta_{1}, \mathbf{r}_{1\perp}) = \mathbf{0}$$

$$+rac{1}{4}\langle {v_L}^{oldsymbol{2}}
angle pprox oldsymbol{0}.017$$

$$_{\perp})\,\mathbf{e^{2im_c}}^{\zeta(\mathbf{x}-\mathbf{1/2})}$$

Lorentz boosted binding potential

Debye screening of the potential for J/Ψ at rest relative to the medium can be modeled,

$$\mathbf{V}_{\bar{\mathbf{c}}\mathbf{c}}\left(\mathbf{r} = \sqrt{\mathbf{r}_{\perp}^{2} + \zeta^{2}}\right) = \frac{\sigma}{\mu(\mathbf{T})}\left(\mathbf{1} - \mathbf{e}^{-\mu(\mathbf{T})\mathbf{r}}\right) - \frac{\alpha}{\mathbf{r}}\mathbf{e}^{-\mu(\mathbf{T})\mathbf{r}}$$

$$\mu(\mathbf{T}) = \mathbf{g}(\mathbf{T})\mathbf{T}\sqrt{1 + \frac{\mathbf{N_f}}{6}}, \quad \mathbf{g}$$

F. Karsch, M. Mehr and H. Satz, Z.Phys.C37(1988)617

V(r) is not Lorentz invariant r is 3-dimensional

The procedure of Lorentz boosting of the Schrödinger equation was developed recently in E.Levin, I.Schmidt, M.Siddikov & B.K. arXiv:1501.01607, PRD2015

 $\mathbf{g}^{2}(\mathbf{T}) = rac{\mathbf{24}\pi^{2}}{\mathbf{33}\ln\left(\mathbf{19T}/\Lambda_{\mathrm{N}\overline{\mathbf{T}}\mathrm{S}}
ight)}$

However, most of J/Ys are fast moving, at the LHC $\langle p_\psi^2
angle = \langle p_T^2
angle pprox 10\,GeV^2$

Results for J/Y

Survival probability

$$\begin{split} \mathbf{S_{J/\Psi}^2}(\mathbf{b}) = \int_{0}^{2\pi} \frac{d\phi}{2\pi} \int \frac{d^2 \mathbf{s} \, \mathbf{T_A}(\tilde{\mathbf{s}}) \mathbf{T_B}(\tilde{\mathbf{b}} - \tilde{\mathbf{s}})}{\mathbf{T_{AB}}(\mathbf{b})} \\ \frac{\mathbf{T_{AB}}(\mathbf{b})}{\mathbf{T_{AB}}(\mathbf{b})} \\ \frac{\mathbf{T_{AB}}(\mathbf{b})}{\int d^2 \mathbf{r} d\zeta \, \Psi_f^{\dagger}(\zeta_2, \tilde{\mathbf{r}}_2) \mathbf{G}(\infty, \zeta_2, \tilde{\mathbf{r}}_2; \mathbf{l}_0, \zeta_1, \tilde{\mathbf{r}}_1) \Psi_{in}(\zeta)}{\int d^2 \mathbf{r} d\zeta \, \Psi_f^{\dagger}(\zeta, \tilde{\mathbf{r}}) \, \Psi_{in}(\zeta, \tilde{\mathbf{r}})} \end{split}$$

Calculations are done for central Pb-Pb collisions with realistic nuclear density. No ISI effects are added.

I.Potashnikova, I.Schmidt, M.Siddikov & B.K. PRC91 (2015) 2, 024911

X

1. Net melting: $\operatorname{ReU} \neq 0$; $\operatorname{ImU} = 0$. 2. Net absorption: ReU = 0; $ImU \neq 0$. **3. Total suppression:** $\operatorname{ReU} \neq 0$; $\operatorname{ImU} \neq 0$.

Charmoníum with high

from χ

direct J/Ψ .

Color singlet mechanism

E.Berger & D.Jones PRD 23(1981)1521 R.Baier & R.Ruckl PLB102(1981)364

P.

F. Abe et al., PRL 79(1997)572

Charmonium with high p

Color-singlet model fails, because the strong kick from the target breaks-up the c-cbar pair.

Color-octet model: the projectile gluon can easily accept a strong kick, and then fragment to J/ψ via production of a color-octet c-cbar. Fragmentation is assumed to happen on a long time scale, by a soft mechanism, which cannot be calculated, but fitted.

However, we demonstrated that energy conservation restricts the time of color neutralization and the colorless c-cbar dipole is produced promptly, in the perturbative regime. Therefore this contribution can be evaluated in pQCD.

Gluon fragmentation

S. Baranov & B.K. 2017

Perturbative fragmentation

 $\mathbf{g} \rightarrow \mathbf{J}/\psi + 2\mathbf{g}$

00000000

A single high-pT c-quark can fragment into J/ψ similar to $q \rightarrow \pi q$ transition

Gluon vs quark fragmentations

Although the quark to J/ψ FF is much larger than gluon FF, gluons win because the cross section of gluon production is much higher.

Nevertheless altogether they essentially underestimate data.

Challenging fragmentation

Full calculation of 36 LO graphs for $g+g-> J/\psi+g+g$

No severe disagreement remains

Fragmentation of high-pT quarks expose nontrivial features.

The FF of pion production at large z in the Berger's mechanism, dressed by gluon re-summation, complies with data.

A high-p jet with virtuality equal to its energy dissipates energy so intensively, that has to produce a leading hadron (colorless dipole) with large z promptly, on a very short time scale, which does not rise with p.

Heavy and light quarks produced in high-pT partonic collisions radiate differently. Heavy quarks regenerate their stripped-off color field much faster than light ones and radiate a significantly smaller fraction of the initial energy.

This peculiar feature of heavy-quark jets leads to a specific shape of the fragmentation functions. Differently from light flavors, the heavy quark fragmentation function strongly peaks at large fractional momentum z, i.e. the produced heavy-light meson, B or D, carry the main fraction of the jet momentum. This is a clear evidence of a short production time of a heavy-light mesons.

- Contrary to the propagation of a small $q-\overline{q}$ dipole, which survives in the medium due to color transparency, a \bar{q} -Q dipole promptly expands to a large size. Such a big dipole has no chance to survive intact in a hot medium. On the other hand, a breakup of such a dipole does not suppress the production rate of \bar{q} -Q mesons, differently from light qq mesons.
- Melting of a charmonium in QGP does not lead to its disappearance. The survival probability is still high and rises with pT.
- Another source of charmonium suppression is color-exchange interaction with the medium, which breaks-up the colorless dipole.
 - A novel procedure for boosting the Schrödinger equation to a moving reference frame is proposed.
 - A high-p J/ψ appears to result from perturbative fragmentation of either a gluon, or a quark

BACKUPS

Results

BACKUPS

Quenching of high-p_hadrons

HAI AI 0 RAA 0 RAA

32

0

BACKUPS

Azímuthal asymmetry

Azimuthal asymmetry $\mathbf{v_2}(\mathbf{b}) = \frac{1}{\mathbf{S_{J/\Psi}^2}(\mathbf{b})} \int_0^{2\pi} \frac{d\phi}{2\pi} \cos(2\phi) \int \frac{d^2 s \mathbf{T_A}(s) \mathbf{T_B}(\mathbf{b}-s)}{\mathbf{T_{AB}}(\mathbf{b})}$ $\times \left| \frac{\int d^2 r_1 d^2 r_2 d\zeta_1 d\zeta_2 \Psi_{\mathbf{f}}^{\dagger}(\zeta_2, \tilde{\mathbf{r}}_2) \mathbf{G}(\infty, \zeta_2, \tilde{\mathbf{r}}_2; \mathbf{l}_0, \zeta_1, \tilde{\mathbf{r}}_1) \Psi_{\mathbf{in}}(\zeta_1, \tilde{\mathbf{r}}_1)}{\int d^2 r d\zeta \, \Psi_{\mathbf{f}}^{\dagger}(\zeta, \tilde{\mathbf{r}}) \, \Psi_{\mathbf{in}}(\zeta, \tilde{\mathbf{r}})} \right|^2$

Results for *Y***'**

Projecting to the wave function of $\Psi(2S)$ one gets a stronger suppression

