

Terrestrial experiments to understand what is inside neutron stars

L. Fabbietti

Technische Universität München Excellence Cluster "Origin and Structure of the Universe" <u>http://www.denseandstrange.ph.tum.de</u>

EMMI Colloquium, 24 May 2017

© Mark A. Garlick / space-art.co.uk

Facts about Neutron Sta

R ~ 10−15 km M ~ 1.5 M⊙

additionally the study of strangeness has some impact on the modelling of neutron stars.

Scenarios with antikaon condensate is disfavoured but actually this strongly depends on the real antikaon-nucleon interaction

but there are other possibilities

- Very high density in the interior
- Strong magnetic fields

density

- Rotating object emitting Synchrotron radiation in Radio-Frequency (Pulsar character)
- Mass measured in binary systems with White Dwarfs (Shapiro Delay, WD Spectroscopy)
- Radius Measurement very difficult
- Masses ranging from 1.4 M_(•) to 2 M_(•)

What is inside Neutron Stars??

Speculations about Neutron Stars

- Hadron composition
 - Only Nucleons
 - Antikaons-Nucleons condensate
 - Nucleons and Hyperons
- Nuclear Pasta
 - lasagne
 - spaghetti
- <u>Quark star</u> (Color super-conducting strange quark matter)

1) Equation of State (EoS): Dependency of the pressure upon the density

2) Given an object with a certain density the internal pressure must be compensated by gravity

3) From P(R)=0 -> the relation M(R) can be determined for each EOS as a function of the assumed density

$Q = 2^{-8} Q_0$??

It is not so easy to fix the density but the EOS must cross the measured values of the masses!

Strange Hadron Production in NS

Chemical Potential $\mu = E_F + mass$

If the density increases also the Fermi Energy increases and hence the chemical potential

In order to have chemical equilibrium $\mu_{neutron} = \mu_{\Lambda}$

In this case it is energetically favourable to convert neutrons into hyperons

Chemical Potential $\mu = E_F + mass$

Strange Hadron Production in NS

Also in this case it can be energetically favourable to convert electrons into AntiKaons. Furthermore: AntiKaons are bosons and hence they dont undergo Pauli blocking

Scenario Nr. 1: Kaon Condensate

Since hadrons interact with each others if the 'in-medium' mass of K- drop within dense nuclear matter it is even more favorable to produce strangeness

 $1f m_{K^{-*}} < \mu_{e^{-}}$

 $e^- \to K^- + \nu_e$ $n \to K^- + p$

No Pauli Blocking!

J. Schaffner and I. N. Mishustin Phys. Rev. **C 53**, 3 (1996)

Large Masses Issue and Strangeness in NS

Radius (km)

- Production of strangeness is energetically favourable
- It relieves the Fermi pressure of neutrons and protons
- But... a decrease of the pressure softens the EOS
- Decrease of the maximum mass of neutron stars
- $2 M_{\odot}$ neutron star measured
- EOS cannot be too soft
- Some EOS are disfavoured, for example Antikaon condensate

This scenario might also be problematic since the hyperon appearance implies new degree of freedom and hence a softening of the EOS

J. Haidenbauer, S. Petschauer et al., Nucl. Phys. A 915 (2013) 24

Ap scattering length extracted from scattering data and hypernuclei data for average Ap potential

It all depends upon the Λ -N and Λ -NN interaction and whether or not it has a repulsive core This repulsive core could stiffen again the EOS allowing for heavy neutron stars

EOS with Hyperons

 Λ-N, Λ-NN Interaction, in particular the short range repulsive part determines the fate of heavy hyperon stars.

Equation of state of dense hadron matter

Study of the strange-hadron properties within nuclear matter Still a puzzle with many missing pieces

Knowledge of the interaction is needed to etract an EOS with neutrons and strange hadrons.

Equation of state of dense hadron matter

Study of the strange-hadron properties within nuclear matter

Still a puzzle with many missing pieces Knowledge of the interaction is needed to etract an EOS with neutrons and strange hadrons.

Λ -Nucleon Λ -Nucleon-Nucleon

The ALICE Experiment

Experiment at the LHC Collider

+

p+p at $\sqrt{s} = 7, 13 \,\mathrm{TeV}$

Very good Particle Identification Energy Loss measurement in the large Volume Time Projection Chamber Measurement of the time of flight + Excellent secondary vertex reconstruction capability

It all depends upon the Λ -N and Λ -NN interaction and whether or not it has a repulsive core This repulsive core could stiffen again the EOS allowing for heavy neutron stars

Experimental Evidences

Λ Hypernuclei and $\Lambda\text{-}p$ scattering

Λ -Nucleon Potential

U~ -30 MeV (attractive) from Hypernuclei No idea yet about the momentum and density dependence

Σ -Nucleon Potential

No Idea at all

Femtoscopy in p+A/p+p reactions

Surface where particles are emitted from Kinematic Freeze-out surface

Attractive Λ p Interaction

Repulsive Λp Interaction

Femtoscopy in p+A/p+p reactions

Attractive Λ p Interaction

Repulsive Λp Interaction

- We can measure Λp pairs, their momentum and hence the distribution of the momentum difference.
- The source properties are taken from simulations.
- -> By looking at the distribution of the relative momentum we can infer on the final state interaction among the two particles

Correlation Function

$$C(k^*) = \mathcal{N}\frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)} \quad \frac{k^* = \frac{1}{2}|\mathbf{p}_1^* - \mathbf{p}_2^*|}{\mathbf{p}_1^* + \mathbf{p}_2^* = 0}$$

Theoretical Function

F. Wang, and S.Pratt, Phys. Rev. Lett. 83 (1999) 3138

$$C(\vec{p}_{a},\vec{p}_{b}) = \frac{\mathcal{P}(\vec{p}_{a},\vec{p}_{b})}{\mathcal{P}(\vec{p}_{a})\mathcal{P}(\vec{p}_{b})} \approx \frac{\int d^{4}x_{a} d^{4}x_{b} S(p_{a},x_{a}) S(p_{b},x_{b}) |\phi_{rel}(\vec{p}_{b}-\vec{p}_{a})|^{2}}{\int d^{4}x_{a} d^{4}x_{b} S_{a}(\vec{p}_{a},x_{a}) S_{b}(\vec{p}_{b},x_{b})}$$

The theoretical function can be expressed in terms of the scattering parameters assuming that the source can be parametrised by f.e. a Gaussian function and that the correlation function does not provide information about the short-range part of the interaction.

The Experimental Data

p+p/A at 7 TeV RUN1

6 Particles/Evt

2000 Particles/Evt

only 200.000 Λ/Σ but "clean" environment better knowledge of the emitting source

p+p/A at 3.2 GeV

sfb 1258 neutrinos darkmatter messengers

large Λ and Σ statistics (~ 3 Mevt) but more complicated source to be described

The Experimental Data

Examples of Correlations from Calculations

F. Wang and S. Pratt, Phys. Rev. Lett. 83, 3138 (1999).

Strong Attraction C(k)>1

Coulomb Repulsion C(k)<1

Sources from UrQMD

30

Sources from UrQMD

Source extraction from transport theory (UrQMD) - LCMS:

L

p-p correlation in p+Nb collisions at 3.5 GeV

1.2 Billions evts

Information about the source – proton proton correlation function:

Extract source size: $C^{ab}(k) = N \int d^3 r' S_{\mathbf{P}}(\mathbf{r}') |\phi(\mathbf{k},\mathbf{r}')|^2$

scattering length values in the Lednicky's model.

sfb 1258 neutrinos darkmatter messengers

Substitute scattering data!!

ALICE data

p+p 7 TeV, RUN 1 ~250 Millions Events

Excellent Purity for Λ

p - p Correlation

Minijets background present for Baryon-Antivaryon correlation Not there for Baryon-Baryon correlation

p+p at much larger energ

systematic error only on the experimental data and extracted paprameters, radius in this case Lines represent the fit for the standard case

p+p at much larger energies (7 TeV)

p-p Correlation

Ap Correlation

RUN1 Statistics Factor 5 more available from RUN2 Statistics (middle of 2017) Extension to $\Sigma^0 / \Sigma^+ / \Xi - p$ correlations

p+p at much larger energies (7 TeV)

p-p Correlation

Ap Correlation

RUN1 Statistics Factor 5 more available from RUN2 Statistics (middle of 2017) Extension to $\Sigma^0 / \Sigma^+ / \Xi - p$ correlations

Our Afterburner

Idea:

- Event generator (UrQMD or EPOS) or Gaussian distribution for the source sampling
- Schrödinger equation solver

$$C(\kappa) = \int S(r) |\phi(r,\kappa)|^2 d^3x$$

Source
Model:
UrQMD
EPOS
SE Solver

Output: Theoretic

Theoretical correlation function to be compared with the experimental data

Correlation Analysis Tool using the Schrödinger equation

CATS

Exact solution, no asymptotic solution (large distances) as in CRAB*

* http://www.pa.msu.edu/~pratts/freecodes/crab/home.html

Source in EPOS

Cauchy Function:

$$f(x) = \frac{1}{\pi(1+x^2)}$$

The EPOS generator does not deliver a Gaussian source!

CATS and ALICE data

k [MeV]

L

$\Lambda - \Lambda$ Correlation

CATS and HADES data

Summary and Outlook

- Hadron-Hadron interactions have to be understood in detail to compute a realistic EOS for neutron stars
- New tools to study Hyperon-Nucleon interaction:Femtoscopy in elementary reactions
- pp and Lambda-p correlations studied with the HADES and ALICE data.

Bundesministerium für Bildung und Forschung

The Group

http://www.denseandstrange.ph.tum.de

