The beauty of heavy ion collisions

Giuseppe E Bruno Politecnico and INFN – Bari –Italy CERN - Switzerland

23rd August 2017, GSI

The beauty of heavy ion collisions

Giuseppe E Bruno Politecnico and INFN – Bari –Italy CERN - Switzerland

Outline:

- Introduction to heavy ion collisions
- hard probes
 - open heavy flavour: focus on beauty
- □ future
- summary

Confinement: a crucial feature of QCD

But we cannot get free quarks out of hadrons: "colour confinement"

Confinement: a crucial feature of QCD

The QCD phase transition

Lattice QCD calculations indicate that, at a *critical* temperature around 170 MeV, strongly interacting matter undergoes a phase transition to a new state where the quarks and gluons are no longer confined into hadrons

How hot is a medium of T \sim 170 MeV?

100,000 times hotter than the Sun core

The phase diagram of water

EXPONENTIAL HADRONIC SPECTRUM AND QUARK LIBERATION

N. Cabibbo and G. Parisi, Phys. Lett. B59 (1975) 67

The exponentially increasing spectrum proposed by Hagedorn is not necessarily connected with a limiting temperature, but it is present in any system which undergoes a second order phase transition. We suggest that <u>the "observed"</u> exponential spectrum is connected to the existence of a different phase of the vacuum in which quarks are not confined.

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

The phase diagram of QCD, today

Lattice QCD: results

- Transition to QGP phase is a prediction of the lattice QCD
 - In the order of the transition depends on μ_B

Lattice QCD: results

- Transition to QGP phase is a prediction of the lattice QCD
 - the order of the transition depends on μ_B

S. Borsanyi et al., JHEP (2012)

Lattice QCD: results

- Transition to QGP phase is a prediction of the lattice QCD
 - the order of the transition depends on μ_B

How do we study *bulk* QCD matter?

We can heat and/or compress a large volume of QCD matter
Done in the lab by colliding heavy nuclei at high energies

Exploring the QCD phase diagram

regime of "transparency LHC@CERN Quark-Gluonvery high T, Plasma RHIC@BNL µ_b≅0 LHC and top **RHIC** energy FAIR@GSI emperature high density NICA@JINR freeze-out regime: partial stopping of the Hadron-Gas nucleons in collisions nuclear matter vacuum physics of neutron stars FAÍR@GSI **Chemical potential**

Hard probes of A-A collision

Hard probes in nucleusnucleus collisions:

- produced at the very early stage of the collisions in partonic processes with large Q²
- traverse the hot and dense medium
- can be used to probe the properties of the medium
- no extra production at hadronization
- \rightarrow probes of fragmentation
 - e.g.: independent string fragmentation vs recombination

In reference pp collisions pQCD can be used to calculate cross sections

20

Giuseppe E. Bruno

from pp to Pb-Pb collisions at LHC

Pb-Pb Collisions ($\sqrt{s_{NN}} = 2.76, 5 \text{ TeV}$)

- Core business: create and characterize the QGP
- Centrality

- pp Collisions ($\sqrt{s} = 0.9 13$ TeV)
- Reference data

p-Pb Collisions ($\sqrt{s_{NN}} = 5, 8 \text{ TeV}$)

- Control experiment
- "Cold nuclear matter" effects (e.g. modifications to PDF)

Nuclear modification factor

Without nuclear effects, the production of hard probes in A-A is expected to scale with the number of nucleon-nucleon collisions N_{coll} (**binary scaling**) PbPb measurement

Observable: nuclear modification factor П

$$R_{AA} = \frac{1}{N_{coll}} \frac{dN_{AA} / dp_{T}}{dN_{pp} / dp_{T}} = \frac{1}{T_{AA}} \frac{dN_{AA} / dp_{T}}{d\sigma_{pp} / dp_{T}} \sim \frac{\text{QCD medium}}{\text{QCD vacuum}} \bigvee_{pp}$$

- Effects from the hot and deconfined medium created in the collision \rightarrow breakup of binary scaling $\rightarrow R_{AA} \neq 1$
 - Parton energy loss via gluon radiation and collisions in the medium
- But also initial state effects (e.g. nuclear modification) of PDFs) may lead to $R_{\Delta\Delta} \neq 1$
 - Need control experiments: p-A collisions + medium-blind probes (photons, W, Z)

Nuclear modification of unidentified particles

The easiest way to study "jet quenching"

GSI 23-8-17

Giuseppe E. Bruno

Nuclear modification of identified particles

light flavour vs. charm vs. beauty hadrons (or jets)

quenching vs. colour charge of partons
 heavy flavour hadron comes from quark (C_R = 4/3)
 light flavour from (p_T-dep) mix of quark and gluon (C_R = 3) jets

quenching vs. mass of partons
 heavy flavour predicted to suffer less energy loss
 gluonstrahlung (dead cone effect)
 collisional loss

beauty vs charm

□ Expectations: $\Delta E_g > \Delta E_q > \Delta E_c > \Delta E_b \rightarrow$ naively: $R_{AA}^h < R_{AA}^D < R_{AA}^B$ considering different p_t distributions and fragmentations:

 $R_{AA}^{h} \approx R_{AA}^{D} < R_{AA}^{B}$

GSI 23-8-17

A+A

Azimuthal anisotropy

M. Gehm, S. Granade, S. Hemmer, K, O'Hara, J. Thomas - Science 298 2179 (2002)

Flow of unidentified charged particles

PRL 105 25230 (2010) ; PRL 116, 132302 (2016) 0.15 ALICE Pb-Pb Hydrodynamics > 0.08 5.02 TeV, Ref.[27] 5.02 TeV 2.76 TeV $||v_2| \{2, |\Delta\eta| > 1\}$ $||v_3| \{2, |\Delta\eta| > 1\}$ ₂ {2, |Δη|>1} v_{2} {2, $|\Delta \eta| > 1$ } $\int v_3^2 \{2, |\Delta \eta| > 1\}$ v₂ {2, |Δη|>1} $\langle v_{\Lambda} \{2, |\Delta \eta| > 1\}$ $v_{A} \{2, |\Delta \eta| > 1\}$ 0.06 $V_{2}{4}$ **€** ∰ {4} $v_{2}^{-}{6}$ 0.1 0.04 $\frac{1}{8}$ ALICE ☆ STAR 0.02 PHOBOS 0.05 PHENIX 0 NA49 -0.02CERES (a) + E877 -0.04Hydrodynamics, Ref.[25] 1.1 Batio EOS n/s(T), param1 -0.06E895 FOPI -0.081.1 gatio 10² 10^{3} 10^{4} 10 \s_{NN} (GeV) 80 Ō 10 20 30 40 50 60 70 Centrality percentile

The flow increases by about 30% w.r.t. RHIC. The system produced at the LHC behaves as a very low viscosity fluid (a perfect fluid)

constraints dependence of η /s versus temperature

Heavy quark and the medium

- Study the QGP thermalization and collectivity via heavy quark hadronization and flow
 - Are the quenched heavy quarks thermalized in the system ?
 - Do they carry "elliptic flow" ?
 - Do they hadronize via recombination ?

thermalization

Indications of light quark thermalization: constituent quark scaling of elliptic flow v2

 Goal: measure this in the heavy quark sector
 e.g. Λ_c and D flow starting from 2-3 GeV/c (splitting of baryon and meson)

GSI 23-8-17

Giuseppe E. Bruno

recombination

Indications of light quark recombination: baryon / meson enhancement in central collisions (p/π, Λ/K)

(C.M.Ko et al. PRC79) Λ_c / D^0 $\Lambda_{h}/\overline{B}^{0}$ $\Lambda/K_{\rm s}^0$ З 12.0 Pb-Pb at vs. = 2.76 TeV, |y|<0.75 ree-auark mode (C) 2.5 diquark model diauark mode (C) centrality 10.0 60-80% centrality 1.5 data points include stat. errors 2 estimated syst. error ~10 % 8.0 Preliminary STAR: Au-Au 200 GeV × λ/Λ with 10% feed-down correction 1.5 0-5% centrality 60-80% centrality 1.0 6.0 4.0 0.5 2.0 0.5 -⊔ 0.0 6 0.0 0 3 5 2 3 5 4 2 3 5 6 p_T (GeV) p_{τ} (GeV) p_T (GeV/c)

Goal: measure this in the heavy quark sector
 e.g. Λ_c/D starting below 3 GeV/c (maximum of Λ/K)

Open Heavy Flavour in Heavy Ion collisions

GSI 23-8-17

The four main LHC experiments

Giuseppe E. Bruno

Open HF at the LHC

peculiarities of the 4 LHC experiments CMS and ATLAS exploit great muon reconstruction capabilities $B \rightarrow J/\psi + X; B \rightarrow J/\psi + K (J/\psi \rightarrow \mu^+\mu^-)$ no pid (so far) for charged particle very high B field: min p_t of about 7 -10 GeV/c Iarge acceptance calorimeters well suited for b-jet physics LHCb excellent at forward rapidity joined only recently the heavy ion programme ALICE PID with several detectors very low material budget

 \Box low p_t coverage

STAR and PHENIX at RHIC

since few years equipped with silicon micro-vertex detectors

- STAR Pixel detector (since 2014) – first application of MAPS technology in collider experiments
 - ALICE upgrade, CBM, sPHENIX MVTX, EIC detector R&D, NA61?
 - **VTX** installed in 2011
 - |y|<1.2, φ~2π
 - 4 layers (2 pixels + 2 strips)
 - **FVTX** installed in 2012
 - 1.2<|y|<2.2, φ=2π</p>
 - 4 layers

GSI 23-8-17

Giuseppe E. Bruno

Key Instruments – Pixel Silicon Detector

	ALICE	ATLAS	CMS	LHCb	PHENIX	STAR
Sensor tech.	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	MAPS
Pitch size (μm ²)	50x425	50x400	100x150	200x200	50x425	20x20
Radius of first layer (cm)	3.9	5.1	4.4	N/A	2.5	2.8
Thickness of first layer	1%X ₀	2 %X ₀	2 %X ₀	~1%X ₀	1%X ₀	0.4%X ₀

Evidence of charm energy loss at LHC and RHIC

Evidence of charm flowing with the medium at LHC

final results from ALICE

- much improved with respect to RUN2 data
- in agreement with CMS results (covering higher pt range)
- D⁰ V_2 < charged particle V_2
Evidence of charm flowing with the medium at LHC and RHIC

- Significant v₂(D)>0 at RHIC!
- Mass "ordering" and m_T-m₀ ordering suggest hydro-dynamic behavior!

Constraining the models in the

charm sector

- stringent constraint to models aiming at describing both R_{AA} and v₂
 - strict interplay between radiative energy loss (e.g. needed to describe the high p_T region) and collisional one

Beauty

How ? so far:

- semi-inclusive channels
 - B→e+X
 - B→J/ψ +X
- exclusive channels (high p_t only)
- fully reconstructed b-jets

HF electrons $(B \rightarrow e + X)$

hint of smaller suppression for electrons from beauty than electrons from charm

GSI 23-8-17

non –prompt J/ ψ (B \rightarrow J/ ψ +X)

ALICE Run1 data (2.76 TeV) ample room for improvement with Run2 data ! precise preliminary results from CMS with run2 min. p_t of ~ 7 GeV/c

beauty vs. charm (vs. pions)

beauty vs. charm: models

Examples of 2 models describing the mass dependence of the energy loss in the QGP

GSI 23-8-17

Exclusive B⁺ meson

- first measurement ever in AA collisions
- □ Strong suppression (R_{AA}~0.4) observed in 0-100% Pb-Pb collision for p_T>7 GeV/c
 - Well described by theoretical calculations that include radiative energy loss

beauty jets

pQCD calculations with a jet-medium coupling (g^{med}) in the range of 1.8–2 describe data

similar value found for inclusive jets

beauty jets

pQCD calculations with a jet-medium coupling (g^{med}) in the range of 1.8–2 describe data

similar value found for inclusive jets

in the explored p_t range, b-jet suppression is found to be qualitatively consistent with that of inclusive jets

beauty jets at lower pt

GSI 23-8-17

Beauty Energy loss at LHC: summary

first evidence/hints of mass effect in the energy loss in the intermediate p_t region (5-10 GeV/c)
lowest p_t region still to be explored

GSI 23-8-17

PHENIX at RICH: e^{HF} with IP fit

charm more suppressed in 0-10% than in MB collisions

less suppression of beauty component at low p_t

Beauty vs charm R_{AA} with STAR

Beauty suppression using three different analyses techniques
again hint of R_{AA}(B)>R_{AA}(D)
in two cases pp reference from theory (FONLL)

GSI 23-8-17

Collective behavior of beauty ?

quite likely only Run3 and Run4 of LHC could address this question

GSI 23-8-17

ALICE after Run-2

Key Instruments – Pixel Silicon Detector

	ALICE	ATLAS	CMS	LHCb	PHENIX	STAR
Sensor tech.	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	MAPS
Pitch size (μm ²)	50x425	50x400	100x150	200x200	50x425	20x20
Radius of first layer (cm)	3.9	5.1	4.4	N/A	2.5	2.8
Thickness of first layer	1%X ₀	2 %X ₀	2 %X ₀	~1%X ₀	1%X ₀	0.4%X ₀

Key Instruments – Pixel Silicon Detector

	ALICE UPGRADE	ATLAS	CMS	LHCb	PHENIX	STAR
Sensor tech.	MAPS	Hybrid	Hybrid	Hybrid	Hybrid	MAPS
Pitch size (μm ²)	15x30	50x400	100x150	200x200	50x425	20x20
Radius of first layer (cm)	2.2	5.1	4.4	N/A	2.5	2.8
Thickness of first layer	0.3% X ₀	2 %X ₀	2 %X ₀	~1%X ₀	1%X ₀	0.4%X ₀

□ B→D⁰+X (barrel) and B→ J/ ψ +X (barrel & MFT)

fully reconstructed beauty mesons

fully reconstructed beauty mesons

□ HF baryons

Summary

- LHC Run2 data and RHIC experiments with Silicon Microvertex detectors are providing precise measurements in the charm sector
 - stringent constraints on the models describing the properties of the system (e.g., transport coefficients, η/s) and its dynamical evolution

□ Beauty

- First evidences of mass dependence of energy loss
- Run3 and Run4 of LHC will allow a detailed study in the beauty sector thanks to the detector upgrades

SPARES

Global characterization of the system

Centrality definition

Charged multiplicity & energy density

- $dN_{ch}/d\eta / (N_{part}/2)$ increases with \sqrt{s}
 - pp: ~*s*^{0.103} in
 - central A+A: ~ s^{0.155}
 - ~20% increase going from 2.76 to 5.02 TeV similar centrality dependence as at RHIC

$$\varepsilon \tau_0 = \frac{J \left\langle dE_T \,/\, d\eta \right\rangle}{c \pi R^2}$$

 $J = 1.12 \pm 0.06$

central collisions $\varepsilon \tau_0 \approx 12.5 \pm 1.0 \text{ GeV/fm}^2 / c$

$$\varepsilon_c \tau_0 \approx 21 \pm 2 \text{ GeV/fm}^2 / c$$

Initial energy density at LHC (and RHIC) well above $\varepsilon_{crit} \approx 0.5$ GeV/fm³

GSI 23-8-17

System size

Identified particle spectra

even nuclei described by hydro

Collective Transverse Expansion

 p_T distributions described as combined result of thermal motion (**T**) and collective transverse expansion (β_T) at freeze-out

- Strong radial flow: β≈ 0.65 for most central collisions, 10% higher than at RHIC
- Freeze-out temperature of about 100 MeV

$$\frac{\mathrm{d}^2 N_j}{n_T \mathrm{d}y \mathrm{d}m_T} = \int_0^{R_G} A_j m_T \cdot K_1 \left(\frac{m_T \cosh \rho}{T}\right) \cdot I_0 \left(\frac{p_T \sinh \rho}{T}\right) r dr$$
$$\rho(r) = \tanh^{-1} \beta_{\perp}(r) \qquad \beta_{\perp}(r) = \beta_S \left[\frac{r}{R_G}\right]^{n(=1)} r \leq R_O$$

 $m_T = \sqrt{m^2 + p_T^2}$

Schnedermann, Sollfrank, Heinz, PRC48 (1993) 2462

GSI 23-8-17

Hadro-chemistry

relative abundances of hadron species can be described by statistical distributions

thermodynamic interpretation of model parameters in high energy A+A collisions:

$$T_{chem} = T_C$$

Chemical Equilibrium at LHC?

GSI 23-8-17

Elliptic flow of identified particles

main scaling with constituent quark number

- at small (mt-mo)/nq the scaling in the data resemble the scaling as observed in hydrodynamics
- pion, kaon (and strange baryons) v₂ are described rather well with hydrodynamic predictions
 - for protons hadronic cascade important

Elliptic flow of identified particles

main scaling with constituent quark number

- at small (mt-m0)/nq the scaling in the data resemble the scaling as observed in hydrodynamics
- pion, kaon (and strange baryons) v2 are described rather well with hydrodynamic predictions
 - for protons hadronic cascade important

Elliptic flow of identified particles

main scaling with constituent quark number

- at small (mt-m0)/nq the scaling in the data resemble the scaling as observed in hydrodynamics
- pion, kaon (and strange baryons) v2 are described rather well with hydrodynamic predictions
 - for protons hadronic cascade important

The "Fireball" at LHC

- system created at LHC is consistently larger, denser, more excited than at lower energy (RHIC)
- multiplicity, transverse energy: "initial" energy density

$$(\varepsilon_i \cdot \tau_i)_{2.76 \text{ TeV}} \approx 15 \text{ GeV/fm}^2 c \approx 3(\varepsilon_i \cdot \tau_i)_{0.2 \text{ TeV}}$$

□ pion interferometry: freeze-out size and lifetime $V_{fo}(2.76 \text{ TeV}) \approx 2V_{fo}(0.2 \text{ TeV})$

$$\tau_{fo}(2.76 \text{ TeV}) \approx 1.4 \tau_{fo}(0.2 \text{ TeV})$$

identified transverse momentum spectra: transverse expansion

$$\left< \beta_{fo} \right>_{2.76 \text{ TeV}} \approx 1.15 \left< \beta_{fo} \right>_{0.2 \text{ TeV}}$$
Heavy flavour

- From "discovery phase" to detailed characterization of the QGP properties
- Hard probes (jets, heavy-quarks, quarkonia)
 → "resolve" medium constituents
- Microscopic description of the medium

QGP tomography with heavy quarks

QGP tomography with heavy quarks

QGP tomography with heavy quarks

participation in collective motion → azimuthal anisotropy of produced particle

v_2 : comparison with models

Model references in backup

- v₂ at low p_T better described by models including mechanisms that transfer to charm quarks the elliptic flow induced during the system expansion of the medium (collisional energy loss, recombination)
- Highlight importance that models include a realistic description of the medium evolution and of initial conditions

- v₂ at low p_T better described by models including mechanisms that transfer to charm quarks the elliptic flow induced during the system expansion of the medium (collisional energy loss, recombination)
- Highlight importance that models include a realistic description of the medium evolution and of initial conditions
- v_2 and R_{AA} measurements over a wide p_T range can set stringent constraints to model

ALICE Upgrade

Main upgrades relevant for the Heavy-Ion physics (LS2:2019-2020)

- LHC collimator upgrades: target L $\approx 6 \times 10^{27}$ cm⁻² s⁻¹ for Pb-Pb
- Major ALICE and LHCb upgrades, important upgrades for ATLAS and CMS

New all-pixel trackers: ITS and MFT

Both trackers fully based on Monolithic Ac **Active Pixel Sensors** (MAPS) Ν In Pip Absorber -La FIT • th MFT Sp res Ma rea

	Pres. ITS	New ITS	MFT
ceptance	η <0.9	η <1.5	-3.6<ŋ<-2.3
Layers	6	7	5
ner radius	3.9 cm	2.3 cm	/
pe radius	2.94 cm	1.86 cm	/
yer ickness	~1.1%X ₀	0.3-0.8% X ₀	0.6%X ₀
atial solution	12x100 μm ² 35x20 μm ² 20x830 μm ²	~5x5 µm²	~5x5 µm²
ax. Pb-Pb adout rate	1 kHz	100 kHz	100kHz

ITS Outer Barrel

ITS Inner Barrel

ITS: CERN-LHCC-2013-024 MFT: CERN-LHCC-2015-001

Tracking precision

ITS: pointing resolution x3 better in transverse plane (x6 along beam) MFT: pointing resolution better than 100 µm for pT > 1 GeV/c

TPC with GEM readout chambers

Current MWPC: readout limited by ion backflow
 New readout chambers (GEM): readout up to 50 kHz
 preserve momentum resolution for TPC + ITS tracks
 preserve particle identification via dE/dx

GSI 23-8-17

Giuseppe E. Bruno

Online-Offline (O²) System

- □ Pb-Pb at 50 kHz \rightarrow 1.1 TB/s of data (90% from the TPC)
- □ The O² will integrate in a single infrastructure the present DAQ, HLT and Offline (reconstruction) systems
- A large computing farm close to the detector will process the data online, calibrate the TPC, and reject detector noise
- □ The overall reduction factor is ~13 → ~85 GB/s to tape
 Projection based on experience with present HLT system

Model references

B ≜ ALICE 1.8 0-10% Pb-Pb, √s_{NN} = 2.76 TeV--AMU elastic Average D⁰, D⁺, D^{*+} lyl<0.5 – POWLANG: EPJ C 75 (2015) 121; QIN, Bass 1.6 HDG rad+col O with pp p_-extrap. reference - TAMU: arXiv:1401.3817; AC@sHQ+EPOS /itev, Rad+dissoc /itev, Rad 1.4 - MC@HQ+EPOS: PRC 89 (2014) 014905; POWI ANG BAMPS el. – WHDG: Nucl. Phys. A 872 (2011) 256; 1.2BAMPS el.+rad CUJET3.0 - BAMPS: PLB 717 (2012) 430; arXiv:1310.3597v1[hep-ph]; - Cao, Quin, Bass: PRC 88 (2013); 0.8 - Vitev:: PRC 80 (2009) 054902; 0.6 - Djordjevic: PRL 737 (2014) 298 0.4- CUJET 3.0: Chin. Phys. Lett. 32 no. 9, (2015) arXiv:1411.3673 [hep-ph]. 0.2 - PHSD: arXiv:1512.00891 5 15 20 25 30 35 40 р_т (GeV/*c*) ALI-DER-102423

Evidence of charm flowing with the medium at LHC

- Enhancement of Λ_c/D^0 ratio compared to PYTHIA prediction
- The Λ_c/D^0 ratio is similar to that of light-flavor hadrons

• Coalescence model with thermalized charm quarks consistent with our data <u>Outlook:</u> In run 2016, collected 2 billion Au+Au events. We will study R_{cp} for the ratio of Λ_{CP}/D^0 . <u>Giuseppe E. Bruno</u> 87

cc and bb with dileptons

e^{HF} : model comparison

GSI 23-8-17

Azimuthal Anisotropy

- Quantify anisotropy: Fourier decomposition of particle azimuthal distribution relative to the reaction plane $(\Psi_{RP}) \rightarrow coefficients v_{2}, v_{3}, v_{4}, ..., v_{n}$
- Elliptic flow (v2): spatial anisotropy pressure gradients leads to momentum anisotropy hydrodynamics
- \square Higher order flow: bring additional constraints on the initial conditions, η/s , EoS, freeze-out conditions...

