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3. Comparisons with kinetic theory 3.1 Exact solutions of RTA kinetic equation

Exact solutions of RTA kinetic equation

@ Boltzmann equation in the relaxation time approximation

» ., =1
p“ouf(x,p) = Clf(x,p)]  Clfl=p"u,
eq
Bhatnagar, Gross, Krook, Phys. Rev. 94 (1954) 511
@ background distribution (Boltzmann statistics)
eq __ gs _pll« UH
= e (57
@ boost-invariant variables
A. Bialas and W. Czyz, Phys. Rev. D30 (1984) 2371
w = tp| — ZE v =1tE - zp
@ for transversely homogeneous boost-invariant system
of _f9—f
0T Teq
2 2 2
. g w7+ ()
f (Ta Wa pl) - (27_[_)3 exp T
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3. Comparisons with kinetic theory 3.1 Exact solutions of RTA kinetic equation

Exact solutions of RTA kinetic equation

@ formal solution
G. Baym, Phys. Lett. B138 (1984) 18; Nucl. Phys. A418 (1984) 525¢c

d ! / e ’
frwp) = D(rm)fo(w,ps)+ [ = D(rr) (7, w.p1)
7'0 !
2 d "
D(72, =exp |— T
(72,71) p [ ’Teq(T”):|
T

@ initial condition (Romatschke-Strickland form)

o [_\/(1+§o)(W/TO)2+(m2+Pi)]

fO(W7 pJ_) = (277)3 exp Mo

& = &(70) - initial value of the anisotropy parameter
Ao = A(70) - initial transverse-momentum scale
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3. Comparisons with kinetic theory 3.1 Exact solutions of RTA kinetic equation

Exact solutions of RTA kinetic equation

@ ANISOTROPIC HYDRODYNAMICS in its simplest formulations assumes that
the RS form is a good approximation for non-equilibrium distribution function

% V(1 + € W/m0)2 + (2 + p2)
@n? ™|~ A7)

faniso (7_7 W7 pi)

&(7) - time dependent anisotropy parameter
A(T) - time dependent transverse-momentum scale

@ several generalisations possible (not discussed here)
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3. Comparisons with kinetic theory 3. 2 Massless case

Massless case

WF, R. Ryblewski and M. Strickland, Nucl. Phys. A916 (2013) 249; Phys.Rev. C88 (2013) 024903
m = 0, boost-invariant, transversally homogeneous system, (0+1) case AHO
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3. Comparisons with kinetic theory 3. 2 Massless case
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3. Comparisons with kinetic theory 3. 2 Massless case

Massless case

D. Bazow, U. W. Heinz, and M. Strickland, Phys.Rev. C90, 044908 (2014)

30 e eeee Exact Solution PR
— — — — vaHydro L
25 e aHydro . ]
] mmm———- 3"_order hydro
’:‘? 200 cemaeanns 2™ _order hydro == =]
£ s
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i 10 ‘;’ \. .
~ é ~
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anisotropic hydro AHO reproduces two limts:

perfect fluid (7 — 0) and free streaming (7 — o)
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3. Comparisons with kinetic theory 3.3 Massive case

Massive case

Various, second order hydro equations for the bulk pressure

il +n —%—1 n ! ¢, I

CX P “

MIS A. Muronga, Phys. Rev. C69 (2004) 034903; U. Heinz, H. Song, A.K. Chaudhuri, Phys. Rev. C73 (2006) 034904

. ¢ 4 1
nen = —>— Zmqn- B
i+ - 3Trl - (B)

truncated MIS A. Jaiswal, R. Bhalerao, S. Pal, Phys. Rev. C87 (2013) 021901

mi+n = -& (©)

|S U. Heinz, H. Song, A.K. Chaudhuri, Phys. Rev. C73 (2006) 034904
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3. Comparisons with kinetic theory 3.3 Massive case

Massive case

WF, E. Maksymiuk, R. Ryblewski, M.Strickland, Phys.Rev. C89 (2014) 054908

05
~=- 1st order VH To=600 MeV 25 To=600 MeV
0.4f--- 2nd order VH (A) m=300 MeV o
--- 2nd order VH (B)  Teq=0.5 fm/c 2003 m=300 Mev
_ 93} 2nd order VH (C) £=0 Teq=0.5 M/
T oo o LSE AN £7=100
E > £ NN
= = 10 \
. 0.1 =
00 T 05
! - 0.0
05 —exact
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exact solution and all 2nd order viscous hydrodynamics variations tend toward
the 1st order solution at late times

none of the 2nd order viscous hydrodynamics variations seems to qualitatively
describe the early-time evolution of the bulk viscous pressure in all cases

there is something incomplete in the manner in which 2nd order viscous
hydrodynamics treats the bulk pressure (neglected shear—bulk coupling)
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3. Comparisons with kinetic theory 3.3 Massive case

Massive case

Bulk viscous pressure evolution within DNMR hydrodynamics

with SHEAR-BULK COUPLING
G. Denicol, S. Jeon, C. Gale, Phys.Rev. C90 (2014) 024912

G. Denicol, R. Ryblewski, WF, M.Strickland, Phys.Rev. C90 (2014) 044905
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the shear-bulk couplings are extremly important for correct description of the
bulk viscous correction
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3. Comparisons with kinetic theory

Massive case

3.3 Massive case

Leonardo Tinti, Anisotropic matching principle for the hydrodynamic expansion, Phys.Rev. C94 (2016) 044902
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3. Comparisons with kinetic theory 3.4 Gradient expansion

Gradient expansion

M. P. Heller, R. A. Janik, M. Spalinski, P. Witaszczyk
Formal expansion of T# in gradients of hydrodynamic variables T and u*

™ = Ti + powers of gradients of T and u"

Formal tool to make comparisons between different theories and check their close to
equilibrium behaviour, no useful for finding approximate solutions of the theory, unless

completed as a transseries

underlying microscopic
model or theory underlying microscopic
model or theory

gradient expansion

gradient expansion gradient expansion

fixing parameters

fixing parameters
of hydrodynamic model

of hydrodynamic model
Knudsen and inverse Reynolds numbers expansion

hydrodynamic model

gradient expansion

gradient expansion

phenomenological
hydrodynamic model
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3. Comparisons with kinetic theory 3.4 Gradient expansion

Gradient expansion

Simple structures for boost-invariant flow with the relaxation time 7. = £,
for example, T is expanded around the Bjorken flow

\'
I

JOM IR

=1

0 = 2 (2) e ()"

\.

first lecture: it is better to use f(w)

_1dW _ _AP_ PH_PL_ 2
f=gg w=rT, A_T_sf_m(f—g)

The gradient expansion for boost-invariant flow takes the form of an expansion
f(W):if,,w’” fo = 2
n=0 7 3
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3. Comparisons with kinetic theory 3.4 Gradient expansion

Gradient expansion

RTA - gradient expansion for the RTA kinetic-theory model
M. P. Heller, Kurkela, Spalinski, arXiv:1609.04803

WF, R. Ryblewski, M. Spalinski, Phys.Rev. D94 (2016) 114025

values of f,
n RTA BRSSS DNMR MIS
0 2/3 2/3 2/3 2/3
1 4/45 4/45 4/45 4/45
2 16,/945 16/945 16,/945 8/135
3 | —208/4725 | —1712/99225 | -304/33075 | 112/2025
3 —0.044 —0.017 -0.009 0.055
MIS Tap = dn _4md ¢ ¢ — shear stress component
37 37
;o A Mg 4o
BRSS I =l
, — 4dn_387o
DNMR ¢ = 3r 21 7 ¢
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3. Comparisons with kinetic theory 3.4 Gradient expansion

Gradient expansion

RTA with 7= = ¢/ T, the n=1 term controlled by viscosity, /s = (9/4)f;

1) BRSS and DNMR equivalent up to n=2, n/s = ¢/5, agrees with the kinetic-theory
result

2) BRSS has two free parameters that are fitted to RTA

3) DNMR reproduces RTA, since the kinetic coefficients correspond to the RTA kinetic
equation

4) MIS good only for n=1, opposite sign for n=3

5) DNMR and BRSS differ for larger values of n and far away from equilibrium
— physics properties should be defined within a given framework
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3. Comparisons with kinetic theory 3.4 Gradient expansion

Gradient expansion

n RTA BRSSS AH AHTI
0 2/3 2/3 2/3 2/3

1 4/45 4/45 4/45 4/45

2| 16/945 16/945 8/945 16/945

3 | —208/4725 | —1712/99225 | —184/4725 | —176/6615
3| -—0.044 —0.017 —0.039 —0.027

1) AH1, for n=2 too small (by a factor of two) but for n=3 quite close to RTA
2) AH2 reproduces exactly the first three terms of RTA, not too bad for n=3
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3. Comparisons with kinetic theory 3.4 Gradient expansion

Gradient expansion

the series f,, has vanishing radius of convergence, the Borel transform of f is
introduced, analytic continuation using diagonal Padé approximants of order 70 is
done

= f,
n .n
gs(6) = > e, (1)
n=0
35
4
30
25 2|
20 <
e R E——
515 -
10 -2,
5
-4
0
0 20 40 60 80 100 120 140 1 2 3 4 5

n Re(§)
the cut along the real axis indicates the presence of a single nonhydrodynamic mode,

which is is purely decaying, as in MIS theory (Romatschke, Heller).
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3. Comparisons with kinetic theory 3.4 Gradient expansion

Gradient expansion

1. Suppose that we treat RTA results on the kinetic coefficients as experimentally
measured data, the constructed hydro series does not converge and is bad
approximation for real solutions (lack of non hydrodynamic modes) — this case shows
the limits of using hydro without any information from the underlying microscopic
theory

2. Hydrodynamics tailored to a given microscopic theory has certain advantages —
includes non hydrodynamic modes specific for a given theory and can be treated as a
good approximation for the original theory. Anisotropic hydro is an example of a
hydrodynamic approach that is adjusted to reproduce the RTA kinetic theory.
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3. Comparisons with kinetic theory 3.4 Gradient expansion

4. Relativistic fluid dynamics with spin

WF, Bengt Friman, Amaresh Jaiswal, Enrico Speranza, arXiv:1705.00587
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4. Relativistic fluid dynamics with spin 4.1 Motivation

Motivation

@ Non-central heavy-ion collisions create fireballs with large global angular
momenta which may generate a spin polarization of the hot and dense matter
(Einstein-de Haas and Barnett effects)

@ Much effort has recently been invested in studies of polarization and spin
dynamics of particles produced in high-energy nuclear collisions, both from
the experimental and theoretical point of view

L. Adamczyk et al. (STAR), (2017), arXiv:1701.06657 [nucl-ex], to appear in
Nature

Global A hyperon polarization in nuclear collisions:

evidence for the most vortical fluid

www.sciencenews.org/article/smashing-gold-ions-creates-most-swirly-fluid-ever
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4. Relativistic fluid dynamics with spin 4.2 Local distribution functions

Local distribution functions

Our starting point: phase-space distribution functions for spin-1/2 particles and
antiparticles in local equilibrium. In order to incorporate the spin degrees of freedom,
they have been generalized from scalar functions to two by two spin density
matrices for each value of the space-time position x and momentum p, F. Becattini
et al., Annals Phys. 338 (2013) 32

1

F(00) = o TP)X uslp). 1 () = — 5 ()X vi(p)

Following the notation used by F. Becattini et al., we introduce the matrices
X* = exp[££(X) — Bu(x)p"] ME
where

M* = exp {i%ww(x)f:“”]
Here we use the notation g* = u*/T and ¢ = 1/ T, with the temperature T, chemical
potential 1. and four velocity u**. The latter is normalized to v = 1. Moreover, w,,,, is
the spin tensor, while >*" is the spin operator expressed in terms of the Dirac gamma
matrices, X" = (i/4)[v",~"].
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4. Relativistic fluid dynamics with spin 4.3 Spin/polarization tensor

Spin/polarization tensor

W = Kully — KUy, + €05, U° W7,
We can assume that both k,, and w,, are orthogonal to u",i.e, k-u=w-u=0,

K, = wul’, w,= 5 Cuvas WP,
It is convenient to introduce the dual spin tensor &,, = %eumgw‘lﬁ.

One finds Jw,,w"” =k -k —w-w and 1@,,w"” = 2k - w. Using the constraint

kK-w=20
we find the compact form
M* = cosh(¢) + Si”;g(o R 2)
where
(= VK kv 3)

We now assume also that k - kK — w - w > 0, which implies that (.is real.
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4. Relativistic fluid dynamics with spin 4.4 Charge current

Charge current

The charge current [S. de Groot, W. van Leeuwen, and C. van Weert]

NH = / b [tr(XH) — te(X )] = nu”
2(27)°E,
where ‘tr’ denotes the trace over spinor indices and n is the charge density
n = 4 cosh(¢) sinh(&) ny (T) = 2 cosh(¢) (95 - e’g) oy (T)

Here ny)(T) = ((u - p))o is the number density of spin 0, neutral Boltzmann particles,
obtained using the thermal average

3
<...>0;/(;ﬁ(...)e—5ﬂ’

where E, = /m? + p2.
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4. Relativistic fluid dynamics with spin 4.5 Energy-momentum tensor

Energy-momentum tensor

The energy-momentum tensor for a perfect fluid then has the form

A _
7 YT + — Mo v g
T _/72(27T)3Epp p” [tr(X") + tr(X7)] = (e + P)u"u” — Pg"",

where the energy density and pressure are given by

e = 4 cosh(¢) cosh(&) eoy(T)
and

P = 4 cosh(¢) cosh(&) Py (T),

respectively. In analogy to the density n(T), we define the auxiliary quantities
e)(T) = ((u-p)*)o and Poy(T) = —(1/3)([p- p — (u- P)*])o-
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4. Relativistic fluid dynamics with spin 4.6 Entropy current

Entropy current

The entropy current is given by an obvious generalization of the Boltzmann
expression

+ 1 - -
/2 27)E, P tr [X*(INX* = 1)] + tr [X~(InX 1)])
This leads to the following entropy density

E+P—pun—Qw
T )
where Q is defined through the relation ¢ = Q/T and

s=u,S" =

w = 4 sinh(¢) cosh(€) ny

This suggests that Q should be used as a thermodynamic variable of the grand
canonical potential, in addition to T and u. Taking the pressure P to be a function of
T, and Q, we find

op
oT

oP

_ 9P _oP
~ 0|,

S = , =
1,Q Oplrq
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4. Relativistic fluid dynamics with spin 4.7 Basic conservation laws

Basic conservation laws

The conservation of energy and momentum requires that
0, T =0.

This equation can be split into two parts, one longitudinal and the other transverse
with respect to u*:

dP
W[(E+PW'] = uv'o.P= o
au* pa W o
(5+P)F == (g —uu )aaP. (4)
Evaluating the derivative on the left-hand side of the first equation we find
T, (su") + pou(nu') + Qo (wu") = 0. (5)
The middle term vanishes due to charge conservation,
Ou(nut) =0. (6)

Thus, in order to have entropy conserved in our system (for the perfect-fluid
description we are aiming at), we demand that

O (wu*) = 0. (7)
Consequently, we self-consistently arrive at the equation for conservation of entropy,
du(su*) = 0.
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4. Relativistic fluid dynamics with spin 4.8 Spin dynamics

Spin dynamics

Since we use a symmetric form of the energy-momentum tensor T+", the spin tensor
SMH satisfies the conservation law,

NSM =0.
For SM* we use the form taken from the textbook by deGroot,

A
wut

d®p e
A, v A +_ 127
S _/7,0 tr[(x X7)s }_—%w

2(27)3E,
Using the conservation law for the spin density and introducing the rescaled spin
tensor w"” = w"” /(2¢), we obtain

— v
Ao —p dw
u dA oM =

dr

:O,

with the normalization condition @, @"" = 2.
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4. Relativistic fluid dynamics with spin 4.9 Vortex solution

Vortex solution 1

The hydrodynamic flow is defined by the four-vector u* with the components
UOZ’Yv U1:—’yﬁy, UZZ’YQX, USIO,

where 2 is a constant, v = 1/1/1 — ©2r2, and r denotes the distance from the center
of the vortex in the transverse plane, r> = x* + y2. Due to limiting light speed, the
assumed flow profile may be realised only within a cylinder with the radius R < 1/f2.
The total time (convective) derivative takes the form

d — 1ty = —~0O g _ g
E_uau_ ny<y6X XBy)'
Equation (8) can be used to find the fluid acceleration

” ~
a = C;LT = _7292(07)(7}/’ 0)

As expected the spatial part of the four-acceleration points towards the centre of the
vortex, as it describes the centripetal acceleration.
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4. Relativistic fluid dynamics with spin 4.10 Vortex solution

Vortex solution 1

It is easy to see that the equations of the hydrodynamic background are satisfied if T,
wand Q are proportional to the Lorentz-~ factor

T=Toy, p=pmy, 2=,

with Ty, uo and Qo being constants. One possibility is that the vortex represents
an unpolarized fluid with w,., = 0 and thus, with Q, = 0.

Another possibility is that the particles in the fluid are polarized and Q¢ # 0. In
the latter case we expect that the spin tensor has the structure

0 o0 0 0
0o 0 -Q/T, ©
0 Q/T 0 0|’
0 0 0 0

Wy =

where the parameter Ty has been introduced to keep w,,,, dimensionless. This form
yields k* = (2(v/Ty) (0, x, y,0) and w* = Q(7/To) (0,0, 0, 1). As a consequence, we
find ¢ = Q/(2T,), which, for consistency with the hydrodynamic background
equations, implies

Q=2Q.
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4. Relativistic fluid dynamics with spin 4.11 Historical remarks

Historical remarks

works on fluids with spin started in Krakow in 1930s

Jan Weyssenhoff (1889-1972), professor of physics in Wilno, Lwow, and Krakow,
supervisor of Andrzej Bialas

Myron Mathisson (1897-1940), brought by Weyssenhoff from Kazan to Krakow in
1935, left for France and England in 1939, Dirac edited his last papers

Jozef Lubanski (1914-1946) worked with Mathisson and Weyssenhoff in Krakow in
about 1937, later worked in Holland with Kramers, Belinfante and Rosenfeld, known
from Pauli-Lubanski four-vector

Antoni Raabe (1915-1941) brought by Weyssenhoff from Lwow to Krakow in 1940,
perished at Auschwitz
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4. Relativistic fluid dynamics with spin 4.11 Historical remarks

5. Summary
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5. Summary

1. Enormous progress in the field of relativistic hydrodynamics
2. No fast thermalisation required to describe (most of) the data
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