Shedding light on hadron structure with ultra-peripheral collisions

Evgeny Kryshen (Petersburg Nuclear Physics Institute, Russia)

> EMMI NQM Seminar 7 February 2019

LHC as a $\gamma\gamma$, γp and γPb collider

Ultra-peripheral (UPC) collisions: b > R₁+R₂

 \rightarrow hadronic interactions strongly suppressed

High photon flux

 \rightarrow well described in Weizsäcker-Williams

approximation (quasi-real photons)

- \rightarrow flux proportional to Z²
- \rightarrow high cross section for γ -induced reactions

Pb-Pb UPC at LHC can be used to study γ- γ, γ-p, γ-Pb interactions at higher center-of-mass energies than ever before

Recent reviews on UPC physics: A.J. Baltz et al, Phys. Rept. 458 (2008) 1 J.G. Contreras, J.D. Tapia Takaki. Int.J.Mod.Phys. A30 (2015) 1542012

From typical hadronic interaction...

to ultra-peripheral collisions

- Experimental signature: few signal tracks in an otherwise empty detector
- Wide acceptance coverage is important to ensure event emptiness
- Zero degree calorimeters (ZDC) serve to veto hadronic interactions

$\gamma\gamma \rightarrow dileptons$

Light-by-light scattering

- Forbidden in classical electrodynamics
- Possible channel to study anomalous gauge couplings and contributions from BSM particles

Evidence for light-by-light scattering in UPCs in agreement with SM predictions 4.1σ (CMS) and 4.4σ (ATLAS) significance

ATLAS, Nature Physics 13, 852 (2017)

Vector meson photoproduction in UPC

Exclusive vector meson production cross section in UPC can be factorized in two parts:

- QED: photon flux
- QCD: vector meson photoproduction: $\sigma(W_{yp})$

J/ψ photoproduction in UPC

 $\mathbf{2}$

LO pQCD: exclusive J/ψ photoproduction cross section is proportional to the **square of the gluon density in the target**:

$$\frac{d\sigma_{\gamma A \to J/\psi A}}{dt}\Big|_{t=0} = \frac{M_{J/\psi}^3 \Gamma_{ee} \pi^3 \alpha_s^2(Q^2)}{48\alpha_{\rm em} Q^8} \Big[xg_A(x,Q^2) \Big]$$

- J/ ψ mass serves as a hard scale: $Q^2 \sim \frac{M_{J/\psi}^2}{4} \sim 2.5 \ {
 m GeV}^2$
- Bjorken $x \sim 10^{-2} 10^{-5}$ accessible at LHC:

$$x = \frac{M_{J/\psi}^2}{W_{\gamma p}^2} = \frac{M_{J/\psi}}{2E_p} \exp(\pm y)$$

Vector meson photoproduction in UPC allows one to probe poorly known **gluon distributions at low** *x*

ALICE: exclusive J/ ψ in p-Pb UPC

Wide energy range in ALICE extends HERA coverage:

- 2 beam configurations (p-Pb and Pb-p)
- 3 options to measure dilepton J/ψ decays

both muons in the muon arm

one muon in the muon arm, the other in the barrel

both leptons in the barrel

J/ψ photoproduction off a proton

- Nice agreement between HERA in ep, LHCb in pp and ALICE in p-Pb
- Energy dependence well described with a power law fit
 → no clear signs of saturation

p-Pb @ 8.16 TeV

- x10 more stat at high $W_{\gamma p} \approx 0.7$ -1.4 TeV
- Aim to study exclusive and proton-dissociative cross section behaviour at high W_{vp}

Predictions for protondissociative cross section

Cepila, Contreras, Takaki: PLB766 (2017) 186

Can we use this data to constrain gluon PDFs?

Caveats:

- J/ψ photoproduction probes generalized gluon distributions (two gluons have different x values)
 - Connected with collinear PDFs via Shuvaev transform:
 PRD 60 (1999) 014015
- Scale uncertainty $\mu^2 \sim 2.4-3 \text{ GeV}^2$ is a reasonable choice
 - Guzey, Zhalov: JHEP 1310 (2013) 207
- Large NLO contributions
 - Y measurements reveal importance of NLO effects

J/ψ photoproduction on Pb target

Coherent J/ ψ photoproduction cross section is proportional to the square of the gluon density in nuclei

$$\frac{d\sigma_{\gamma A \to J/\psi A}}{dt}\Big|_{t=0} = \frac{M_{J/\psi}^3 \Gamma_{ee} \pi^3 \alpha_s^2(Q^2)}{48\alpha_{\rm em} Q^8} \Big[xg_A(x,Q^2)\Big]^2$$

J/ψ photoproduction in Pb-Pb UPC (lead target) provides information on **gluon shadowing in nuclei at low x**

$$R_g^A(x,Q^2) = \frac{g_A(x,Q^2)}{Ag_p(x,Q^2)} - \mathbf{g}\mathbf{I}$$

gluon shadowing factor

Nuclear shadowing = suppression of cross section on a nucleus compared to sum of cross sections on individual nucleons. Explained by destructive interference among amplitudes for interaction with 1, 2 and more nucleons

Parton distributions in nuclei (nPDFs)

nPDFs are fundamental QCD quantities for the description of DIS, pA, AA collisions

- determine initial state in heavy ion collisions
- required for quantitative estimates for the onset of saturation

Determination of nPDFs:

EPPS16 : EPJ C (2017) 77

Resulting nPDFs have rather large uncertainties, especially for small-x gluons due to:

- Limited kinematics
- Indirect extraction of gluons via Q² evolution

Coherent and incoherent photoproduction

ALICE. Eur. Phys. J. C73 (2013) 2617

Two types of photoproduction processes:

- Coherent:
 - photon couples coherently to all nucleons
 - $-\langle p_{\rm T}\rangle \sim 1/R_{\rm Pb} \sim 60 \,{\rm MeV/c}$
- Incoherent:
 - photon couples to a single nucleon
 - $-\langle p_{\rm T}\rangle \sim 1/R_{\rm p} \sim 450 \,{\rm MeV/c}$
 - usually accompanied by neutron emission
- Other contributions: J/ψ from coherent and incoherent ψ' decays and $\gamma\gamma \rightarrow II$

Coherent J/ ψ photoproduction: results from Run 1

Several competing approaches:

- Empirical shadowing parameterizations: AB, PRC85 (2012) 044904
- Shadowing in leading twist approximation (LTA): RSZ, PLB 710 (2012) 252
- Color dipole model + saturation: GM: PRC84 (2011) 011902, CSS: PRC86 (2012) 014905, LM: PRC87 (2013) 032201

Good agreement with EPS09 and LTA shadowing

Gluon shadowing from photoproduction data

Nuclear suppression factor:

$$S(W_{\gamma p}) \equiv \left[\frac{\sigma_{\gamma Pb \to J/\psi Pb}^{\exp}(W_{\gamma p})}{\sigma_{\gamma Pb \to J/\psi Pb}^{IA}(W_{\gamma p})}\right]^{1/2}$$

Experimental cross section in Pb-Pb UPC divided by the photon flux

Impulse approximation:

forward photoproduction cross section off proton (HERA) times integral over squared Pb form-factor

- Nuclear suppression factor S gives direct access to R_g(x,μ~2.4 GeV)
- First direct evidence of large gluon nuclear shadowing: R_g(x,µ~2.4 GeV) ~ 0.6
- Many complications (skewness, NLO, scale uncertainty and higher-twist corrections) are likely minimized – S factor can be used in global nPDF fits

First run 2 results (Pb-Pb 2015)

• 90-95% contribution of high-*x*: 0.7-3 x 10⁻²

 Back-of-the-envelope calculation (neglect low-x):

Data/Impulse approximation ~ 0.6 => shadowing factor ~ $\sqrt{0.6}$ ~ 0.8

+ J/ ψ in central barrel

access to x ~ 0.5 x 10⁻³

у

First observation in UPC: $J/\psi \rightarrow p\bar{p}$

Continuum $\gamma\gamma \rightarrow p\bar{p}$ might be also interesting, e.g. Kłusek-Gawenda, Lebiedowicz, Nachtmann, Szczurek: PRD96 (2017) 094029

News from Pb-Pb2018

Delivered Luminosity 2018

Ultimate goal: access gluon shadowing at x~10⁻⁵

• Two terms in vector meson photoproduction cross section in UPC:

Ultimate goal: access gluon shadowing at x~10⁻⁵

Two terms in vector meson photoproduction cross section in UPC:

Neutron-differential cross sections may help to decouple low-x and high-x cross sections:

known fluxes measured $\sigma_{\gamma \mathrm{Pb}}(+y)\sigma_{\gamma \mathrm{Pb}}(+y) + n_{0\mathrm{N0N}}(-y)\sigma_{\gamma \mathrm{Pb}}(-y),$ $\sigma_{0N0N}(y)$ no neutrons: $n_{0NXN}(+y)\sigma_{\gamma Pb}(+y) + n_{0NXN}(-y)\sigma_{\gamma Pb}(-y)$ $\sigma_{0NXN}(y)$ neutrons on one side:

Effective flux in J/ ψ photoproduction is modified in presence of additional photon exchange

unknown photoproduction cross sections

Run3-4 projections (Pb-Pb)

Expected statistics in Run 3-4 (13 /nb):

Yellow report on Run3-4: 1812.06772

PbPb								
	σ	All	Central	Central	Forward	Forward		
Meson		Total	ALICE	CMS, ATLAS	ALICE	LHCb		
$\rho \to \pi^+ \pi^-$	5.2b	68 B	5.5 B	21B	4.9 B	13 B		
$\rho' \to \pi^+ \pi^- \pi^+ \pi^-$	730 mb	9.5 B	210 M	2.5 B	190 M	1.2 B		
$\phi \to K^+ K^-$	0.22b	2.9 B	82 M	490 M	15 M	330 M		
$J/\psi \to \mu^+ \mu^-$	2.5 mb	32 M	3.0 M	15 M	1.2 M	3.3 M		
$\psi' \to \mu^+ \mu^-$	64µb	830 K	82 K	410 K	31 K	79 K		
$\Upsilon(1S) \to \mu^+ \mu^-$	$2.6 \mu b$	33 K	4.0 K	20K	880	2.0 K		

Main goals for Run3-4:

- access to gluon shadowing at low x
- probe gluon distribution in transverse plane

Guzey, Strikman, Zhalov PRC95 (2017) 025204

Run3-4 projections (p-Pb)

Expected statistics in Run 3-4 (2/nb):

Yellow report on Run3-4: 1812.06772

6

4

y=-3.5 p+Pb \rightarrow Pb+p+J/ low energy $\gamma A \rightarrow AJ/\psi$ high energy $\gamma p \rightarrow pJ/\psi$

pPb - lead shine, γp								
	σ	A	Central	Central	Forward	Forward	Backwarc	Backward
Meson		Tot	ALICE C	MS, ATLAS	ALICE	LHCb	ALICE	LHCb
$\rho \to \pi^+ \pi^-$	35 mb	70 B	3.9 B	15 B	2.0 B	5.5 B	850 M	2.0 B
$\phi \to K^+ K^-$	$870~\mu b$	1.7 B	65 M	290 M	22 M	120 M	9.7 M	52 M
$J/\psi \to \mu^+\mu^-$	$6.2 \ \mu b$	12 M	1.0 M	5.2 M	260 K	800 K	180 K	430 K
$\psi(2S) \to \mu^+ \mu^-$	134 nb	270 K	22 K	110 K	6.0 K	18 K	3.2 K	7.7 K
$Y(1S) \rightarrow \mu^+ \mu^-$	5.74 nb	11 K	1.1 K	5.4 K	310	880	41	100

pPb - proton shine, γA									
	σ	А	Central	Central	Forward	Forward	Backwarc	Backwar	d 🍕
Meson		Tot	ALICE C	MS, ATLAS	ALICE	LHCb_	ALICE	LHCb	j
$\rho \to \pi^+ \pi^-$	531µb	1.1 B	83 M	360 M	20 M	44 M	56 M	150 M	-
$\phi \to \mathrm{K}^+\mathrm{K}^-$	23 µb	46 M	1.3 M	8.0 M	120 K	1.7 M	210 K	3.9 M	•
$\mathrm{J}/\psi ightarrow \mu^+\mu^-$	333 nb	670 K	55 K	290 K	14K	36 K	15 K	41 K	
$\psi(2S) \to \mu^+ \mu^-$	8.9 nb	18 K	1.5 K	7.9 K	380	990	380	1.0 K	
$Y(1S) \rightarrow \mu^+ \mu^-$	0.43 nb	860	93	460	14	34	14	30	

Main goals:

Precision measurements on vector meson photoproduction off proton

Access gluon shadowing at 10⁻⁵ with proton-shine gamma off lead

Guzey, Zhalov: JHEP 1402 (2014) 046

0.0 0.2 0.4 0.6 0.8 1.0

pt, GeV

Coherent J/ ψ in hadronic collisions?

- Data shows an excess of J/ψ at low $p_T < 200 \text{ MeV/c} (R_{AA} \sim 7)$
- Possible interpretation: coherent photoproduction on nuclear fragments

Coherent J/ ψ in hadronic collisions: news from Run2

ALI-PREL-309948

Low-x gluons with coherent J/ ψ in hadronic collisions?

Summary

- Continuum $\gamma\gamma \rightarrow$ I+I- cross sections consistent with LO predictions — Validate photon fluxes obtained with EPA
- Photoproduction of vector mesons in UPC at LHC allows one to study gluon distributions at unprecedently high energies
- Coherent J/ ψ photoproduction cross sections in UPC shows direct evidence of large gluon shadowing R(x=10⁻³) ~ 0.6
- Unexpected discoveries: coherent J/ψ in hadronic events
- Expect lots of high precision data on photoproduction of vector mesons in UPC in Run3-4

On nuclear shadowing

Glauber shadowing (modeling of several consequent interactions):

$$\sigma_{\rm tot}^{\pi D} = 2 \, \sigma_{\rm tot}^{\pi N} - \frac{(\sigma_{\rm tot}^{\pi N})^2}{4\pi} \left\langle \frac{1}{r^2} \right\rangle_D$$

shadowing = destructive interference
between single and multiple interactions

Gribov shadowing (coherent interaction via intermediate diffractive states):

$$\sigma_{\rm tot}^{\pi D} = 2\sigma_{\rm tot}^{\pi N} - 2\int d\vec{k}^2 \rho \left(4\vec{k}^2\right) \frac{d\sigma_{\rm diff}^{\pi N}(\vec{k})}{d\vec{k}^2}$$

Leading twist shadowing (generalization of Gribov shadowing to the parton level):

$$\begin{split} xf_{j/A}^{(b)}(x,Q^2) &= -8\pi A(A-1) \Re e \frac{(1-i\eta)^2}{1+\eta^2} \int_x^{0.1} dx_{\mathbb{P}} \beta f_j^{D(4)}(\beta,Q^2,x_{\mathbb{P}},t_{\min}) \\ &\times \int d^2 \vec{b} \int_{-\infty}^{\infty} dz_1 \int_{z_1}^{\infty} dz_2 \, \rho_A(\vec{b},z_1) \rho_A(\vec{b},z_2) e^{i(z_1-z_2)x_{\mathbb{P}}m_N}. \end{split}$$

shadowing is expressed via diffractive PDFs

Photoproduction cross-section from ALICE data

V. Guzei, E. Kryshen, M. Strikman, M. Zhalov. Phys. Lett. B726 (2013) 290

 J/ψ photoproduction cross section from ALICE data:

$$\sigma_{\gamma P b \to P b J/\psi}(W_{\gamma p} = 19.6 \,\text{GeV}) = 6.1^{+1.8}_{-2.0} \,\mu\text{b}$$

 $\sigma'_{\gamma P b \to P b J/\psi}(W_{\gamma p} = 92.4 \,\text{GeV}) = 17.2 \pm 2.1 \,\mu\text{b}$

Photoproduction cross-section in the Impulse Approximation

 $\sigma_{\gamma Pb \to PbJ/\psi}^{IA}(W_{\gamma p} = 92.4 \,\text{GeV}) = 47.7 \pm 2.6 \,\mu\text{b}$

300

Estimation of the nuclear suppression factor

V. Guzei, E. Kryshen, M. Strikman, M. Zhalov. Phys. Lett. B726 (2013) 290

• J/psi photoproduction cross section measured by ALICE:

$$\sigma_{\gamma Pb \to PbJ/\psi}(W_{\gamma p} = 19.6 \,\text{GeV}) = 6.1^{+1.8}_{-2.0} \,\mu\text{b}$$

$$\sigma_{\gamma Pb \to PbJ/\psi}(W_{\gamma p} = 92.4 \,\text{GeV}) = 17.2 \pm 2.1 \,\mu\text{b}$$

• J/psi photoproduction cross section in the Impulse Approximation:

$$\sigma_{\gamma Pb \to PbJ/\psi}^{IA}(W_{\gamma p} = 19.6 \,\text{GeV}) = 11.1 \pm 0.6 \,\mu\text{b}$$

$$\sigma_{\gamma Pb \to PbJ/\psi}^{IA}(W_{\gamma p} = 92.4 \,\text{GeV}) = 47.7 \pm 2.6 \,\mu\text{b}$$

• Nuclear suppression factor:

$$S(W_{\gamma p}) \equiv \left[\frac{\sigma_{\gamma P b \to J/\psi P b}(W_{\gamma p})}{\sigma_{\gamma P b \to J/\psi P b}^{IA}(W_{\gamma p})}\right]^{1/2}$$

$$S(W_{\gamma p} = 19.6 \text{ GeV}) = 0.74^{+0.11}_{-0.12}$$

 $S(W_{\gamma p} = 92.4 \text{ GeV}) = 0.61^{+0.05}_{-0.04}$