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Light nuclei in heavy-ion collisions
d,t,3He

1

● The study of light (anti-)nuclei is very important:
 Production mechanism is not well understood

➢ How/when do they form?
• “early” at chemical freeze-out (thermal production) 
• or “late” at kinetic freeze-out (coalescence)?

➢ Do they suffer for the dissociation by rescattering?
 Low binding energy (few MeV) "Snowballs in hell": 

nuclei formation is very sensitive to chemical freeze-
out conditions and to the dynamics of the emitting 
source

 Baseline for searches for exotic bound states 

 Light nuclei measurements in high energy physics can 
be used to estimate the background of secondary 
anti-nuclei in dark matter search
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Particle production at LHC

● Particle production in pp, p-Pb, and Pb-Pb collisions shows an 
equal abundance of matter and anti-matter in the central rapidity 
region

● A large number of particles is produced: dN
ch

/dη ≈ 2000 (central 
Pb-Pb collisions)
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Particle production at LHC

≈ 80% of all charged particles are pions 
≈ 5% of all charged particles are protons

● Particle production in pp, p-Pb, and Pb-Pb collisions shows an 
equal abundance of matter and anti-matter in the central rapidity 
region

● A large number of particles is produced: dN
ch

/dη ≈ 2000 (central 
Pb-Pb collisions)

Phys. Rev. Lett.109, 252301
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Particle production at LHC

≈ 80% of all charged particles are pions 
≈ 5% of all charged particles are protons

● Particle production in pp, p-Pb, and Pb-Pb collisions shows an 
equal abundance of matter and anti-matter in the central rapidity 
region

● A large number of particles is produced: dN
ch

/dη ≈ 2000 (central 
Pb-Pb collisions)

Phys. Rev. Lett.109, 252301

● Even in heavy ion collisions, light (anti-)nuclei are rarely 
produced:

➢ (Anti-)nuclei up to A = 4 are in reach 

➢ For each additional nucleon the production yield at 
LHC decreases by a factor of about 350!
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A Large Ion Collider Experiment

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: 
specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and 
decay topology (V

0
, cascade).
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A Large Ion Collider Experiment

ITSITS

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: 
specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and 
decay topology (V

0
, cascade).

Inner Tracking System (ITS) :
 Primary vertex
 Tracking
 Particle identification via dE/dx

3



22/10/2019 EMMI Workshop - Ramona Lea /39

A Large Ion Collider Experiment

TPC

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: 
specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and 
decay topology (V

0
, cascade).

Time Projection Chamber (TPC): 
 Global tracking
 Particle identification via dE/dx

Inner Tracking System (ITS) :
 Primary vertex
 Tracking
 Particle identification via dE/dx
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A Large Ion Collider Experiment

TOF

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: 
specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and 
decay topology (V

0
, cascade).

Time Of Flight (TOF): 
 Particle identification via velocity 

measurement

Time Projection Chamber (TPC): 
 Global tracking
 Particle identification via dE/dx

Inner Tracking System (ITS) :
 Primary vertex
 Tracking
 Particle identification via dE/dx
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A Large Ion Collider Experiment

HMPID

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: 
specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and 
decay topology (V

0
, cascade).

High Momentum PID (HMPID): 
 particle identification via ring imaging 

Cherenkov

Time Of Flight (TOF): 
 Particle identification via velocity 

measurement

Time Projection Chamber (TPC): 
 Global tracking
 Particle identification via dE/dx

Inner Tracking System (ITS) :
 Primary vertex
 Tracking
 Particle identification via dE/dx
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ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 
1430044

V0A V0C

A Large Ion Collider Experiment

High Momentum PID (HMPID): 
 particle identification via ring imaging 

Cherenkov

Time Of Flight (TOF): 
 Particle identification via velocity 

measurement

Time Projection Chamber (TPC): 
 Global tracking
 Particle identification via dE/dx

Inner Tracking System (ITS) :
 Primary vertex
 Tracking
 Particle identification via dE/dx

2

V0 (A-C): Trigger, beam-gas event rejection, 
centrality, multiplicity classes

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: 
specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and 
decay topology (V

0
, cascade).
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Centrality of the collisions  

Centrality = degree of overlap of the 2 colliding nuclei

Central  collisions:
● small impact parameter b
● high number of participant nucleons →  high 

multiplicity

Peripheral collisions:
● large impact parameter b
● low number of participant nucleons →  low multiplicity

Centrality connected to observables via 
Glauber model

4

ALICE Collaboration, Phys. Rev. Lett. 106, 032301 (2011)
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Identification of nuclei 

● Nuclei identification via dE/dx measurement in the TPC:

➢ dE/dx resolution in central Pb-Pb collisions: around 6.5% 

➢ Excellent separation of (anti-)nuclei from other particles over a wide range of momenta

Low momenta: specific energy loss in the TPC

– Bethe-Bloch curves

(rigidity)ALICE Collaboration, Phys. Rev. C 93, 024917 (2016) 
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Identification of nuclei 

Higher momenta: time-of-flight measurement in the TOF

● Velocity measurement with the Time Of Flight detector is used to evaluate the m2 distribution
➢ Excellent TOF performance: σ

TOF
 ≈ 85 ps in Pb-Pb collisions

m2=
p2

c2 (
c2t 2

L2
−1)ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044
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Identification of nuclei 

Higher momenta: Cherenkov angle determination in the HMPID

● The particle identification in the HMPID detector is based on the measurement of the Cherenkov radiation 
(θ

Cherenkov
 ) which allows us to determine the square mass of the particle by the following formula:

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044

m2= p2(n2 cos2θCherenkov−1) cosθCherenkov=
1
nβ
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Deuteron p
T 
spectra in pp collisions

8

C. Tsallis, J. Stat. Phys. 52 , 479 (1988) 980
STAR Collaboration, Phys. Rev. C75, 064901 981 (2007)

Spectra are extracted in several multiplicity bins and fitted 
with Lévy-Tsallis function for the extraction of yields

ALICE Collaboration, Phys. Lett. B794 (2019) 50-63

⟨dNch/d ηlab⟩ = 17.47

⟨dNch/d ηlab⟩ = 3.30
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Deuteron p
T 
spectra in p-Pb collisions

Spectra are extracted in 
several multiplicity bins and 
fitted with m

T
-exponential 

function for the extraction 
of yields

9

ALICE Collaboration, arXiv:1906.03136
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Deuteron p
T 
spectra in Pb-Pb collisions

Spectra are extracted in several 
centrality bins and fitted with 

blast-wave function for the 
extraction of yields

ALICE-PUBLIC-2017-006

10

E. Schnedermann et al., Phys. Rev. C 48, 2462 (1993)
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t and 3He p
T 
spectra in pp collisions

First ever measurements of t and 3He nuclei in pp collisions

ALICE Collaboration, Phys. Rev. C 97, no.2, 024615 (2018)
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3He p
T 
spectra in p-Pb collisions

Spectra are extracted in two 
multiplicity bins and fitted with 

blast-wave function for the 
extraction of yields

12

ALICE Collaboration, arXiv:1906.03136
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3He p
T 
spectra in Pb-Pb collisions

Spectra are extracted in three 
centrality bins and fitted with 

blast-wave function for the 
extraction of yields

ALICE-PUBLIC-2017-006
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Anti-Matter production

14
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Anti-Matter production

● Anti-nuclei/nuclei ratios are consistent with unity 
(similar to other light particle species) in the 
measured p

T
 -interval

● Ratios are constant as a function of p
T
 and centrality

14
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4He production in Pb-Pb collisions

● Heaviest (anti-)nucleus observed (16 candidates in 
Pb-Pb at 5.02 TeV)

● Pre-selection using dE/dx measured in TPC
● ±3σ from the expected value for 4He
● Signal extraction from mass squared distribution 

obtained using TOF

15
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Hypernuclei

A hypernucleus is a nucleus which contains at least one hyperon (a baryon containing one or more 
strange quarks) in addition to nucleons

16
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Hypernuclei

Photographic emulsion M. Danysz and J.Pniewski, Phil. Mag. 44 (1953) 348

A hypernucleus is a nucleus which contains at least one hyperon (a baryon containing one or more 
strange quarks) in addition to nucleons

1952: first observation of hypernuclear decay 
from cosmic rays data

16
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Hypernuclei

http://wwwa1.kph.uni-mainz.de/Hyp2006/poster.html

Main goals of hypenuclear physics:

● Extension of nuclear chart

● Understand the baryon-baryon interaction in 
strangeness sector

● Study the structure of multi-strange systems

A hypernucleus is a nucleus which contains at least one hyperon (a baryon containing one or more 
strange quarks) in addition to nucleons

A

S

Z

3D nuclear landscape3D nuclear landscape

16
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Hypertriton (
Λ
H)

L

p n 3
Λ
H is the lightest known hypernucleus and is formed by (p,n,Λ).

● Mass = 2.991 GeV/c2

● B
Λ
 = 0.13 ± 0.05 MeV (B

d
 = 2.2 MeV, B

t
 = 8.5 MeV,  B

3He
 = 7.7 MeV) 

3
L
H → 3He + - (~25%)

3
L
H → 3He + 0 (~13%)

3
L
H → d + p + - (~41%)

3
L
H → d + n + 0 (~21%)

(3
Λ
H) 3

Λ
H  is unstable under weak decay. Possible decay modes:

● Branching ratios are not well known
● Only few theoretical calculations[1] available

[1] Kamada et al., Phys. Rev. C57(1998)4

L

3

3
L
H → 3He + + (~25%)

3
L
H → 3He + 0 (~13%)

3
L
H → d + p + + (~41%)

3
L
H → d + n + 0 (~21%)

17
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(3

L
H)3

L
H identification

L

3

Signal Extraction:
● Identify 3He and π
● Evaluate (3He,π) invariant mass
● Apply topological cuts in order to:

➢ identify secondary decay vertex 
➢ reduce combinatorial background

● Extract signal

H and 3

Λ
H  search via two-body decays into charged 

particles: 

● Two body decay: lower combinatorial background
● Charged particles: ALICE acceptance for charged 

particles higher than for neutrals

Λ

3

Λ

3

Decay ChannelsDecay Channels
3

Λ
H → 3He + π- 3

Λ
H → 3He+ π+

3

Λ
H →  H  + π0 3

Λ
H →  H+ π0

3

Λ
H →  d + p + π- 3

Λ
H → d + p+  π+

3

Λ
H → d + n + π- 3

Λ
H → d + n+ π+

Λ

3

Λ

3

Λ

3

Λ

3

Λ

3

Λ

3

Λ

3

Λ

3

L

3
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(3

L
H)3

L
H identification

L

3

H and 3

Λ
H  search via three-body decays into charged 

particles: 

● Higher combinatorial background
● Higher B.R. (~41%)
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L
H lifetime determination

Direct decay time measurement is difficult (~ps), 
but the excellent determination of primary and 
decay vertex allows measurement of lifetime via:

Where ct = mL/p 
With m  the hypertriton mass, L  the decay length 
and p  the total momentum

L

3

N (t )=N (0)exp(− L
βγ c t )

18
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L
H lifetime determination

● ALICE can be used also for hypernuclear 
physics measurements:
➢ the present data are one of the most 

precise measurement of 3
Λ
H life:

● More precision can be reached:
✔ increasing the statistics → another Pb-Pb 

data sample was collected in 2018 at the 
LHC → preliminary results show a 
lifetime closer to the free Λ one

✔ lifetime measured in the 3-body decay 
channel

● In the next future constraints also on the 

B.R. determination can be set

19

L

3
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Production of nuclei: coalescence modelProduction of nuclei: coalescence model

Are nuclei produced 
inside the hadron gas? 
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Coalescence model
● If baryons at freeze-out are close enough in phase space (i.e. geometrically and in momentum) 

and match spin state a (anti-)nucleus can be formed

20
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Coalescence model
● If baryons at freeze-out are close enough in phase space (i.e. geometrically and in momentum) 

and match spin state a (anti-)nucleus can be formed

● Usually, since the nucleus is larger w.r.t. the source, the phase space is reduced to the 
momentum space
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Coalescence model
● If baryons at freeze-out are close enough in phase space (i.e. geometrically and in momentum) 

and match spin state a (anti-)nucleus can be formed

● Usually, since the nucleus is larger w.r.t. the source, the phase space is reduced to the 
momentum space

● Assuming that p an n have the same mass and have the same p
T
 spectra, the yield of any nucleus 

can be determined as
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Coalescence model
● If baryons at freeze-out are close enough in phase space (i.e. geometrically and in momentum) 

and match spin state a (anti-)nucleus can be formed

● Usually, since the nucleus is larger w.r.t. the source, the phase space is reduced to the 
momentum space

● Assuming that p an n have the same mass and have the same p
T
 spectra, the yield of any nucleus 

can be determined as

00d  p∝ p 2

3He  p∝ p 3
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Coalescence parameter B
2

Measured deuteron p
T
-spectra Measured proton p

T
-spectra
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Coalescence parameter B
2

Measured deuteron p
T
-spectra Measured proton p

T
-spectra

pp p-Pb Pb-Pb
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Coalescence parameter B
2

Measured deuteron p
T
-spectra Measured proton p

T
-spectra

p
T
/A = 0.75 GeV/c

pp p-Pb Pb-Pb
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Coalescence parameter B
2

Simple coalescence model 
● Flat B

2 
vs p

T   
and no dependence on 

multiplicity/centrality
✔ Observed “small systems”: pp, p -Pb and 

peripheral Pb-Pb

22
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Coalescence parameter B
2

Simple coalescence model 
● Flat B

2 
vs p

T   
and no dependence on 

multiplicity/centrality
✔ Observed “small systems”: pp, p -Pb and 

peripheral Pb-Pb

More elaborated coalescence model takes into account 
the volume of the source:

● B
2
 scales like HBT radii

➢ decrease with centrality in Pb-Pb is explained as 
an increase in the source volume

➢ increasing with p
T
 in central Pb-Pb reflects the 

K
T
-dependence of the homogeneity volume (i.e. 

volume with similar flow properties) in HBT
✔ Qualitative agreement in central Pb-Pb collisions

22
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“More elaborated” coalescence model

● For “large” systems, the size of the emitting volume (V
eff

) 
has to be taken into account:

● the larger the distance between the protons and 
neutrons which are created in the collision, the less likely 
it is that they coalesce

● The source can be parameterized as rapidly expanding 
under radial flow (hydro)

● The coalescence process is governed by the same 
correlation volume (“length of homogeneity”) which can be 
extracted from HBT interferometry

● The source radius enters in the B
A
 and in the quantum-

mechanical correction ⟨CA⟩ factor that accounts for the size 
of the object being produced (d, 3He, …)

R. Scheibl, U. Heinz,  PRC 59 (1999) 1585-1602   
K. Blum et al., PRD 96 (2017) 103021

F.Bellini and A. P.Kalweit, arXiv:1807.05894 [hep-ph].

23
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Anti-nuclei in pp collisions

Searches for dark matter WIMP candidate decaying in d 
and 3He require estimate of expected secondary 
astrophysical background (secondary anti-nuclei 
produced in cosmic ray interactions)

Precise measurement of coalescence parameters at the 
LHC can provide constraints for models
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Anti-nuclei in pp collisions

Searches for dark matter WIMP candidate decaying in d 
and 3He require estimate of expected secondary 
astrophysical background (secondary anti-nuclei 
produced in cosmic ray interactions)

Precise measurement of coalescence parameters at the 
LHC can provide constraints for models

ALICE Collaboration, arXiv:1709.08522
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Light nuclei flow measurementLight nuclei flow measurement
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Light nuclei flow

Angular distribution of reconstructed charged particles can be 
expanded into a Fourier series w.r.t. symmetry plane         

 
:
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Light nuclei flow

 Elliptic flow (v
2
 ) is sensitive to the system evolution:

➢ It probes initial conditions and constrains particle production mechanisms 

Angular distribution of reconstructed charged particles can be 
expanded into a Fourier series w.r.t. symmetry plane         

 
:
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Light nuclei flow

 Elliptic flow (v
2
 ) is sensitive to the system evolution:

➢ It probes initial conditions and constrains particle production mechanisms 

Angular distribution of reconstructed charged particles can be 
expanded into a Fourier series w.r.t. symmetry plane         

 
:

 The measurement of light nuclei v
n
 will help in the understanding of particle production mechanisms

➢ Do light nuclei follow the mass ordering observed for lighter particles?

➢ Do light nuclei follow a quark/baryon number scaling (coalescence) or follow mass scaling (hydro)?
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Light nuclei flow measurement 

● A significant v
2
 is observed for deuterons and 3He. The value of v

2
 (p

T
) increases  

progressively from central to semi-central collisions
● v

3
 of (anti-)deuterons measured for the first measurement: effects of initial state 

fluctuations of energy density in the colliding nuclei visible also for (anti-)deuterons 
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A-scaling of v
n
 of (anti-)deuterons

● Simple coalescence approach:
● Scaling of v

n
 with the mass number A 

● Overestimates the data in all centrality ranges, even if smaller deviations in more peripheral collisions
● Mass number scaling seems to be approximately valid for v

3
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Blast-Wave model

● Blast-Wave model: simplified hydro model which can be used to describe spectra 
and flow at the same time

● The transverse mass spectrum can be expressed as

● Taking the azimuthal average over cos(2ϕp) [1]
● Blast-Wave fit matched data better after the STAR Collaboration[2] added a 

fourth parameter, s2 which takes into account the density modulation in the 
source

Blast-Wave model:
[1] P. Huovinen et al. Phys. Lett. B 503, 58-64 (2001), [2] STAR Collaboration, Phys. Rev. Lett. 87, 182301 (2001)
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Blast-Wave model

π
K
p

● The measured π, K and p p
T
 spectra and v

2
 (p

T
)fitted simultaneously (mass used as fixed par)

✔ Parameters from fit used to predict deuteron p
T
 spectra and v

2
(p

T
) 

π
K
p

30-40% 30-40% D
at

a 
fr

o
m

 [
1

,2
]

Fit range for the combined fit:
● [0.5-1,0] GeV/c for π
● [0.2-1.2] GeV/c for K 
● [0.3-1.7] GeV/c for p
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v
2
 of (anti-)deuterons vs Blast-Wave 

● Blast-Wave (BW) predictions for 
the (anti-)deuteron v

2
  

fromcombined fits of v
2
 and p

T 

spectra of π,K,p in the p
T
 ranges: 

● Consistent with the data in 
more central collisions

● Deviations in more peripheral 
collisions 
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Elliptic flow of 3He

● Blast-Wave prediction with parameters fixed to lighter species is better in the most central collisions 
● Simple coalescence expectation (green points) gets closer to the measured 3He for 40-60% 

centrality 
● More statistics in the next Pb-Pb run and in the Run3 and Run4 of LHC will help to better undestrand 

light nuclei production mechanism

31



22/10/2019 EMMI Workshop - Ramona Lea /39

v
2
 & v

3
 : iEBE-VISHNU + Coalescence

● Coalescence model with phase space distributions of nucleons generated by iEBE-VISHNU (PRC 98, 054905 (2018)):
● AMPT initial conditions ((1+2)d hydro (VISHNU) + UrQMD)
● Good description of the data in 0-40%

● no predictions for more peripheral collisions
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Production of nuclei: thermal modelProduction of nuclei: thermal model

Are nuclei produced with all 
the other particles at the 

chemical freeze-out?
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Thermal model

Nature 561 (2018) no.7723, 321-330 arXiv:1710.09425 [nucl-th]  

Statistical hadronization model: thermal emission 
from equilibrated source

Particle abundances fixed at chemical freeze-out

● Primordial yields modified by hadron decays:
● Contribution obtained from calculations based 

on known hadron spectrum 
● Excellent agreement with data with only 2 free 

parameters: T
chem

 , V
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Nuclei production in Pb – Pb collisions 

dN
dy

∝exp(−
m
T chem

)

Thermal model prediction:

● Nuclei follow nicely the exponential fall predicted 
by the thermal model

● Each added baryon gives a factor of  ~350 less 
production yield in Pb-Pb collisions, ~600 in p-Pb 
collisions, and ~1000 in pp collisions

p

d

p

3He

4He
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Thermal model fit to ALICE data

● The p
T
-integrated yields and 

ratios can be interpreted in 
terms of statistical (thermal) 
models

● Particle yields of light flavor 
hadrons (including nuclei) are 
described with a common 
chemical freeze-out temperature 
(T

chem
= 156 ± 2 MeV)

K* not included in the fit
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Light nuclei production: Nucleon to proton ratio

● Ratio increases with multiplicity going from pp to peripheral Pb-Pb : consistent with simple coalescence (d  p∝ p 2, 
3He  p∝ p 3)

● No significant centrality dependence in Pb-Pb : consistent with thermal model (yield fixed by T
chem

)
● Smooth transition: is there a single particle production mechanism?
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Light nuclei production: Nucleon to proton ratio

37

● Increasing trend at low and intermediate multiplicities 
● SHM: Canonical suppression, but tension for ALICE p/π
● Coalescence: increasing phase space 

● No dependence of the ratio on multiplicity for high multiplicities 
● In agreement with both SHM and coalescence 

● Coalescence prediction below data for 3He



22/10/2019 EMMI Workshop - Ramona Lea /39

Outlook – ALICE upgrade 

After the LS2 ALICE will be able to collect data with better performance at higher luminosity 
● Expected integrated luminosity: ~10 nb-1 ( ~ 8x109 collisions in the 0-10% centrality class)
● New ITS: less material budget and more precise tracking for the identification of hyper-nuclei
● All the physics which is now done for A = 2 and A = 3 (hyper-)nuclei will be done for A = 4 
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Conclusions
● Excellent ALICE performance allows for the detection of light (anti-)nuclei and (anti-)hypernuclei
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Conclusions
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Coalescence models which take into account the volume of the source can describe data

Coalescence models with rescattering seem to be able to describe data

● Excellent ALICE performance allows for the detection of light (anti-)nuclei and (anti-)hypernuclei

39

Canonical Standard Models are able to reproduce the increasing trend observed in data

Coalescence model with phase space distributions generated by iEBE-VISHNU and AMPT initial conditions is able to describe data
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● Light nuclei “puzzle”: deuteron yield and v
2
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T
) in Pb-Pb collisions suggest an early “freeze out”, while large 

effects of re-interactions (favoring late stage coalescence) should be expected
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Conclusions

Spectra and B
2 d/p vs. multiplicity Yield v

2
(p

T
)

pp, p-Pb Pb-Pb pp, p-Pb Pb-Pb pp, p-Pb Pb-Pb Pb-Pb

Simple Coalescence

Thermal model

Blast-Wave model

● Excellent ALICE performance allows for the detection of light (anti-)nuclei and (anti-)hypernuclei

● Light nuclei “puzzle”: deuteron yield and v
2
(p

T
) in Pb-Pb collisions suggest an early “freeze out”, while large 

effects of re-interactions (favoring late stage coalescence) should be expected
● New and more precise data are expected from the LHC on the presented topics in the next years. These will 

provide stricter constraints to the theoretical models
39

Coalescence models which take into account the volume of the source can describe data

Coalescence models with rescattering seem to be able to describe data

Canonical Standard Models are able to reproduce the increasing trend observed in data

Coalescence model with phase space distributions generated by iEBE-VISHNU and AMPT initial conditions is able to describe data
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H-Dibaryon (ΛΛ) and ΛN bound state 

L
L

L

n

H-Dibaryon : Hypothetical bound state of uuddss (ΛΛ) first predicted by Jaffe in a bag model 
calculation. Recent lattice calculations suggest a  bound state (20-50 MeV/c2 or 13 MeV/c2)

R.L. Jaffe, Phys. Rev. Lett. 38, 195 (1977), erratum ibid 38, 617 (1977)
Inoue et al.,  PRL 106,  162001 (2011) 
Beane et al., PRL 106, 162002 (2011)

If : m
H
< ΛΛ threshold

● weakly bound: measurable channel 
H →  Λpπ 

Bound state of Λn? HypHI experiment at GSI 
sees evidence of a new state: Λn  → d+ -

C. Rappold et al. (HypHI collaboration), Phys. Rev. C88, 041001(R) (2013)
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H-Dibaryon : Hypothetical bound state of uuddss (ΛΛ) first predicted by Jaffe in a bag model 
calculation. Recent lattice calculations suggest a  bound state (20-50 MeV/c2 or 13 MeV/c2)

R.L. Jaffe, Phys. Rev. Lett. 38, 195 (1977), erratum ibid 38, 617 (1977)
Inoue et al.,  PRL 106,  162001 (2011) 
Beane et al., PRL 106, 162002 (2011)

If : m
H
< ΛΛ threshold

● weakly bound: measurable channel 
H →  Λpπ 

Bound state of Λn? HypHI experiment at GSI 
sees evidence of a new state: Λn  → d+ -

C. Rappold et al. (HypHI collaboration), Phys. Rev. C88, 041001(R) (2013)

A. Andronic et al., Phys. Lett. B 697, 203 (2011)
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H-Dibaryon (ΛΛ) and ΛN bound state 

Invariant mass analyses of the two hypothetical particles lead to no visible signal 
→  Upper limits set

ALICE Collaboration: PLB 752, 267 (2016)

L
L

L

n
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Comparison to different models

● Search for a bound state of Λn and ΛΛ shows upper limits of signal 
➢set upper of limits for different lifetime assumptions of the hypothetic bound states

ALICE Collaboration, 
Phys. Lett. B 752, 267 (2016)
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Coalescence vs Blast-wave : <p
T
>

● <p
T
> is consistent with the coalescence model expectations in both p-Pb and pp collisions for 

all multiplicity classes.
● Blast-wave model fails to describe <p

T
> for deuterons using common kinetic freeze-out 

parameters used for pi, K, and p in both pp and p-Pb collisions 
● In contrast with the observation in Pb-Pb collisions.
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 v2 of light (anti-)nuclei vs. v2 of π, K and p

Mass ordering at low p
T
 & slower rise for heavier particles as expected from relativistic hydrodynamics 
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Coalescence + AMPT

● Phase-space distributions of p and n at kinetic freeze-out generated from iEBE-VISHNU hybrid model with AMPT 
initial conditions

● The coalescence model describes the v
2
 of d and 3He at RHIC 

and the LHC 

● There exists a discrepancy between the calculated and 
measured p

T
 spectrum of 3He in Pb + Pb collisions at √s

NN
 = 

2.76 TeV

● The reason for this discrepancy may be due 3He earlier 
formation than the deuteron in collisions at higher energies 

arXiv:1807.02813 [nucl-th]
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Identification of nuclei: secondaries

The measurement of nuclei is strongly affected by background from knock-out from material
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Identification of nuclei: secondaries

The measurement of nuclei is strongly affected by background from knock-out from material

➔ Rejection is possible via fitting the DCA
XY

 distributions with templates
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Identification of nuclei: secondaries

The measurement of nuclei is strongly affected by background from knock-out from material

➔ Rejection is possible via fitting the DCA
XY

 distributions with templates

Not relevant for anti-nuclei. 
However, larger systematic uncertainty 
from hadronic interaction cross section
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Precise mass measurement
● The precise measurement of the mass difference 

between nuclei and their anti-counterparts allows to 
probe any difference in the interaction between 
nucleons and anti-nucleons.

● Looking at the mass difference between nuclei and 
their anti-nuclei it is possible to test the CPT invariance 
of the residual QCD “nuclear force” 

ALICE Collaboration: Nature Phys. 11, 811 (2015) 

● Masses and binding energies of nuclei and anti-
nuclei are compatible within uncertainties

● Measurement confirms the CPT invariance for light 
nuclei 
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Flow analysis method

● v
2
 is measured using the scalar product method

 Hits measured by V0A (2.8 < η < 5.1) and V0C (-3.7 < η < -1.7) 
are used as reference particles 

 Deuteron candidates are the particles of interest (|η|<0.8)

● The yields NSig and NBkg are extracted from fits of 
the invariant mass distribution obtained with 
the TOF detector

● The contribution to the measured elliptic flow (v
2

Tot) due to misidentified deuterons 
(v

2
Bkg) was removed by studying the azimuthal correlations versus ∆M (∆M = m

TOF
 - m

d
)
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Coalescence Model and HBT

The size of the emitting volume (V
eff

) has to be taken into account: the larger the distance between 
the protons and neutrons which are created in the collision, the less likely is that they coalesce

In detail, it turns out [1] that the coalescence process is governed by the same “length of 
homogeneity in the source” which can be extracted from two particle Bose-Einstein correlation 
(HanburyBrown – Twiss (HBT) interferometry [2]):  → B

2
 ~ 1/V

eff 

The strong decrease of B
2
 with centrality in Pb-Pb collisions can be naturally explained as an 

increase in the emitting volume: particle densities are relevant and not absolute multiplicities

[1]R. Scheibl and U. Heinz, Phys.Rev. C59, 1585  (1999)
[2]A review can be found in :  U. Heinz, Nucl. Phys. A 610 , 264c (1996)

(small fireball) (large fireball)

B2=
3 

3 /2
⟨Cd ⟩

2mt ℜT
2
(mt)ℜp

2
(mt)

e
2(mt−m)(

1
T∗ p

−
1
T∗ d )
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Coalescence parameter B
3

ALICE Collaboration, arXiv:1709.08522

B
3
 of (t)t and (3He)3He measured in pp and Pb-Pb collisions 

First ever measurements of the B
3 
of t and 3He in pp collisions

Increasing trend with p
T
 and centrality observed in Pb-Pb collision

pp Pb-Pb

ALICE-PUBLIC-2017-006
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Anti-nuclei production

● Anti-nuclei/nuclei ratios are 
consistent with unity (similar to 
other light particle species) in 
the measured p

T
-interval

● Ratios are constant as a function 
of p

T
 and centrality 

ALICE-PUBLIC-2017-006
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Anti-nuclei production

● Anti-nuclei/nuclei ratios are 
consistent with unity (similar to 
other light particle species) in 
the measured p

T
-interval

● Ratios are constant as a function 
of p

T
 and centrality 

ALICE-PUBLIC-2017-006
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Centrality of the collisions: p-Pb and pp
Multiplicity estimator: slices in VZERO-A (V0A) amplitude

Correlation between impact
parameter and multiplicity is

not as straight-forward as in Pb-Pb

p Pb

Central collision

p
Pb

Peripheral collision
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Outlook – Run 2 data

● pp collisions at √s = 13 TeV: new results are expected soon for light (anti-)nuclei production
● p-Pb collisions at √s

NN
 = 5.02 TeV and √s

NN
 = 8 TeV collected at the end of 2016 → will provide new 

and more precise measurements
● Pb-Pb run at the end of 2018: expected a significant increase of statistics → more precise 

measurements
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