

QM highlights heavy flavour

Andrea Dubla

02/12/19

- initial stages of the collisions via hard scattering processes
- \Rightarrow They experience the full evolution of the system \rightarrow sensitive probes of the properties of the QGP

- → Hadronization: fragmentation vs coalescence

A. Dubla

Why heavy quarks?

Why heavy quarks?

Charm baryons: a tool to study hadronisation

 \rightarrow Moderate enhancement from pp to Pb-Pb collisions at intermediate p_T within the uncertainties

A. Dubla

- ALI-PREL-325749
- → Compatible with model that include coalescence
- → Statistical hadronization accounts for the peak Phys Lett B797 (2019) 134836

3

Charm baryons: a tool to study hadronisation

 $\rightarrow \Lambda_c/D_0$ shows a significant increase from low multiplicity to high multiplicity \rightarrow Alternative description that does not require the presence of a equilibrated medium \rightarrow But challenge our interpretation of recombination!

A. Dubla

 \rightarrow large increase from e+e- to pp \rightarrow tiny increase from pp to central PbPb - Local recombination?!

Charm baryons: a tool to study hadronisation

Another player in this game

 \rightarrow Ratio with heavier baryons Ξ^{0}_{c} : - expected larger enhancement

 \rightarrow Clear and significant peaks in the $p_{\rm T}$ interval 3-8 GeV/c

- Both charm and beauty flow in AA!

A. Dubla

Collectivity - small systems

- Charm flows in high multiplicity pPb events
- Beauty: precision to be improved and need measurements at higher pT

A. Dubla

- Charm flows also in pp collisions at high mult
- **Beauty**: precision to be improved and need measurements at higher pT

Idea proposed before LHC started:

- (re)generation of charmonia
- requires abundance of charm quarks and deconfinement!

A. Dubla

smaller suppression at mid rapidity w.r.t. forward rapidity — further support for (re)generation scenario!

Quarkonia

- \rightarrow Large model uncertainties: shadowing, open charm cross section
- \rightarrow Progress on theory (and also experiment) needed for further conclusion

A. Dubla

- \rightarrow Suppression at high p_{T} but not at low p_{T}
 - expected from (re)generation scenario
 - captured by models implementing dissociation and (re)generation

- → Charm quarks help in investigating different hadronization scenario
- → First measurements with good precision about beauty flow in large an small systems
- \rightarrow **Regeneration** important to explain J/ Ψ R_{AA}

- → Charm quarks help in investigating different hadronization scenario
- → First measurements with good precision about beauty flow in large an small systems
- \rightarrow **Regeneration** important to explain J/ Ψ R_{AA}

Thank you for your attention

Backup

Heavy flavour: a tool to study electromagnetic fields

 \rightarrow First measurements of charge dependent directed flow of light and heavy-flavour particles

- 3 orders of magnitude difference between charged particles and heavy flavours predicted by theory are also experimentally accessible
- effect of the early time magnetic field and it will constrain fundamental and unexplored properties of the QGP (e.g. conductivity)

