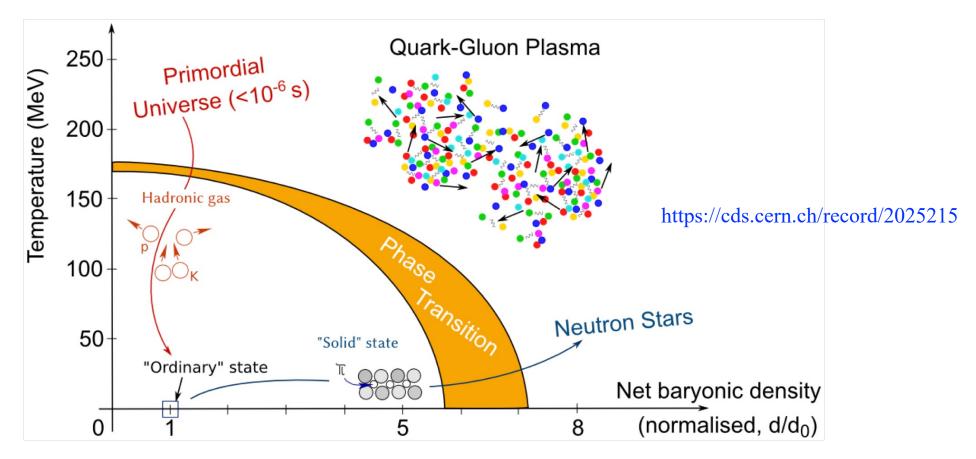
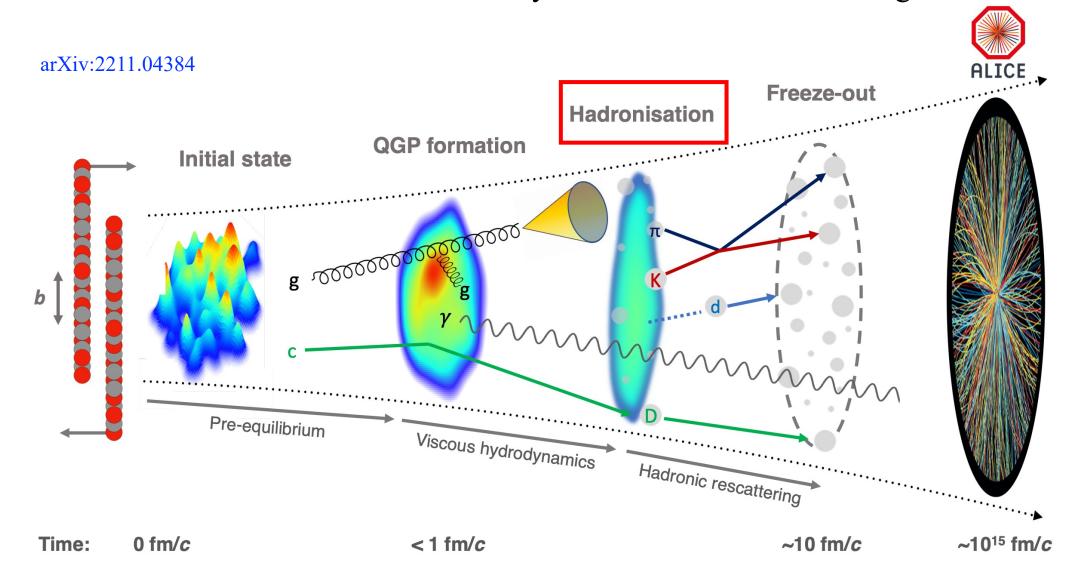
Heavy-flavour production and hadronization with ALICE at the LHC

Jianhui Zhu (on behalf of ALICE)
INFN Padova



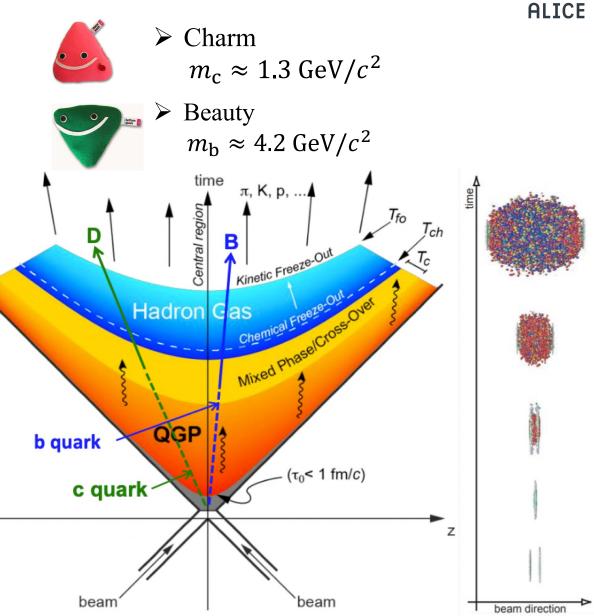
The phase diagram of quantum chromodynamics (QCD)

- Quark-gluon plasma (QGP): deconfined phase of quarks and gluons
- > Phase transition at LHC is a smooth crossover
 - Similar to early universe (~few μs after the Big Bang)



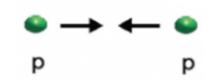
Heavy-ion collisions

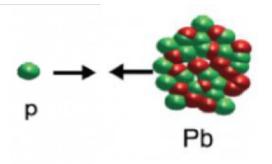
> Time evolution of ultra-relativistic heavy-ion collisions at LHC energies

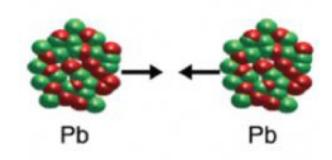


Heavy flavour: golden probes of the medium

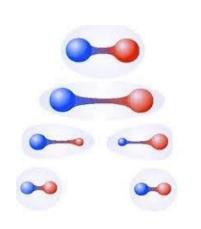
- Charm and beauty quarks: golden probes of the medium
 - $m_{\rm Q} \gg \Lambda_{\rm QCD}$
 - Enable the evaluation of their production cross sections within pQCD
 - $m_{\rm Q} \gg T_{\rm QGP}$
 - Produced mainly in initial hard scatterings (high Q^2) at early stage of heavy-ion collisions
 - $\tau_{\text{prob}} \approx \frac{1}{2m_{\text{q}}} \approx 0.1_{q=c} (0.03)_{q=b} \text{ fm/}c <$ $\tau_{\text{OGP}} (\approx 0.3 1.5 \text{ fm/}c)$
 - Experience the full evolution of the QGP

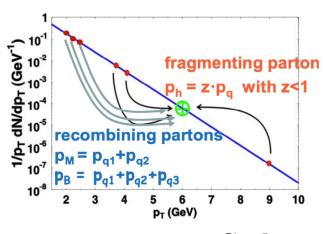


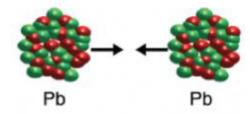



Physics motivations in different collision systems

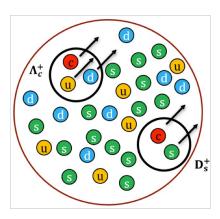
- > pp collisions
 - Tests for pQCD calculations
 - Reference for heavy-ion collisions
- > p-Pb collisions
 - Cold nuclear matter effects
 - Modification of parton distribution functions (PDF) in bound nucleons
- ➤ Pb-Pb collisions
 - Hot nuclear matter effects
 - Energy loss in the QGP
 - Collective motion of the system
 - Modification of hadronization mechanisms




Heavy-flavour hadron formation in e⁺e⁻ and Pb-Pb



$$e^+$$
 $e^ \bullet$


- ➤ "Point-like" object interaction
- ➤ Pure fragmentation

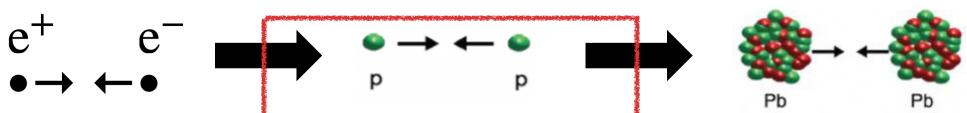
- ➤ QGP: complex large-size system
- > Parton degrees of freedom
- ➤ Modification of hadronization mechanisms

Fragmentation

Eur.Phys.J.C 78 (2018) 11, 983

- Hard scattering $e^+e^- \rightarrow q\bar{q}$
- Color-potential string between q and \bar{q}
- Hadronization via multiple string breaking and formation of quark-antiquark pairs

Coalescence

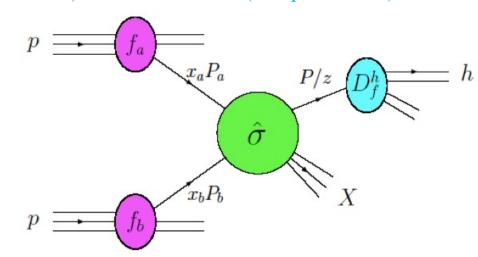

Phys.Lett.B 68 (1977) 459, Phys.Lett.B 73 (1978) 504 (erratum)

- Heavy quarks produced in hard scattering coalesce with light (di-) quarks from the system
- Expected to increase baryon production at low and intermediate p_T
- QGP: interplay coalescence (low p_T) vs. fragmentation (high p_T)

Heavy-flavour hadron formation in pp collisions

- ➤ "Point-like" object interaction
- > Pure fragmentation

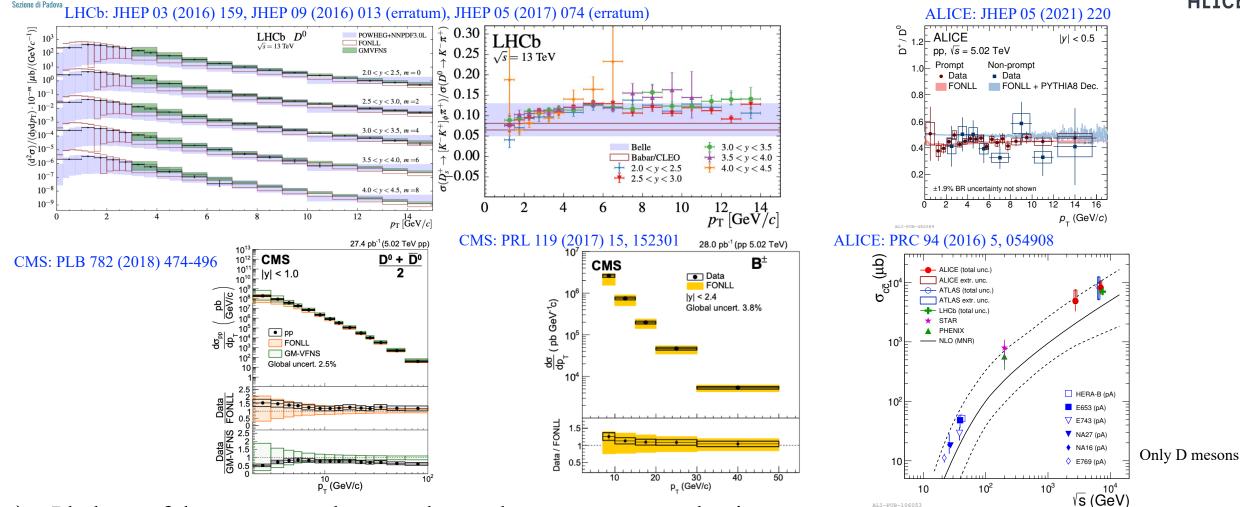
- ➤ Superposition of many "point-like object" collisions?
- ➤ MPI and color reconnection modify hadronization ?
- ➤ QGP: complex large-size system
- > Parton degrees of freedom
- ➤ Modification of hadronization mechanisms


$$\frac{\mathrm{d}\sigma^{\mathrm{D}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{D}}}(p_{\mathrm{T}};\mu_{\mathrm{F}};\mu_{\mathrm{R}}) = PDF(x_{\mathrm{a}},\mu_{\mathrm{F}})PDF(x_{\mathrm{b}},\mu_{\mathrm{F}}) \otimes \frac{\mathrm{d}\sigma^{\mathrm{c}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{c}}}(x_{\mathrm{a}},x_{\mathrm{b}},\mu_{\mathrm{R}},\mu_{\mathrm{F}}) \otimes D_{\mathrm{c}\to\mathrm{D}}(z=p_{\mathrm{D}}/p_{\mathrm{c}},\mu_{\mathrm{F}})$$

parton distribution function (PDF) (non-pertubative)

partonic cross section (pertubative)

hadronization by fragmentation (non-pertubative)


- Standard description of heavy-quark hadronization based on a factorisation approach
 - Ratios of particle species → ratios of fragmentation fractions
 - Sensitive to HF quark hadronisaton
 - Fragmentation fractions assumed universal among collision systems and constrained from e⁺e⁻ and e⁻p collisions

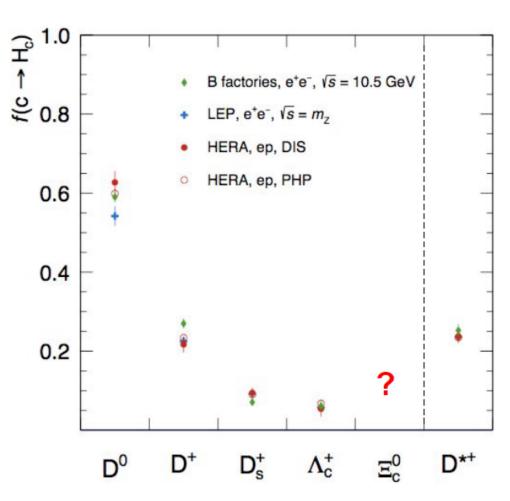
Factorization: a very successful framework

- > Plethora of data on open-charm and open-beauty meson production
 - vs. p_T and y (wide range)
 - In different collision energies
 - Relative abundance of charm meson species

Described by pQCD calculations relying on factorization

ALI-PUB-106053

Charm fragmentation measured in e⁺e⁻ and ep

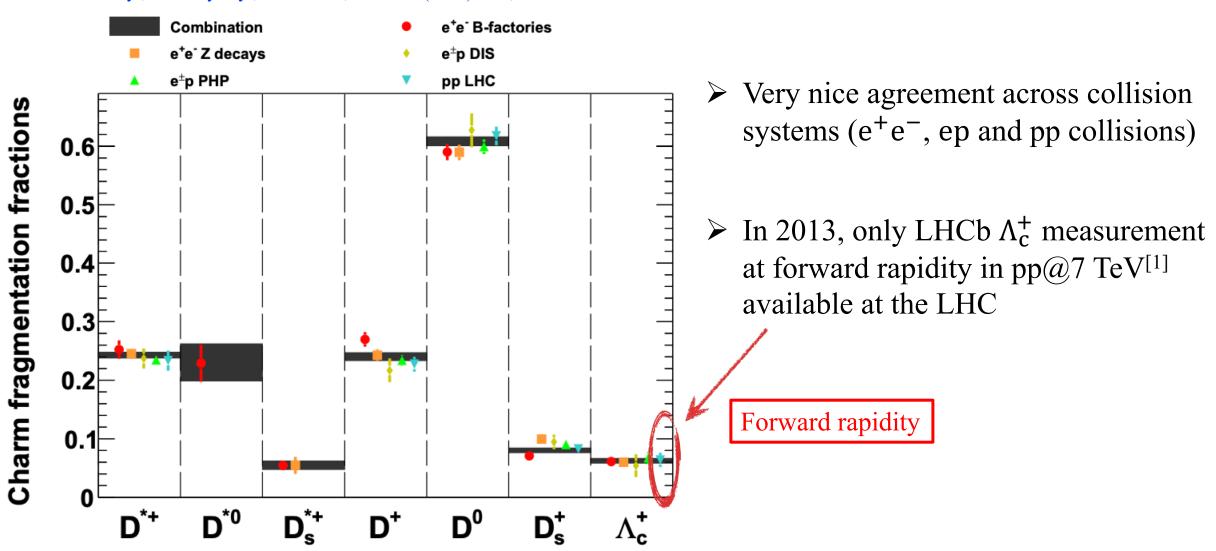


- > Charm fragmentation fractions (FF)
 - $f(c \to H_c) = \sigma(H_c)/\sigma(c) = \sigma(H_c)/\sum_{w.d.} \sigma(H_c)$ (w.d.: weakly decaying)
 - Inputs used in a standard factorisation approach
- \triangleright Production cross section of $\Xi_c^{0,+}$ are calculated under assumptions^[1]:

•
$$f(c \to \Xi_c^0)/f(c \to \Lambda_c^+) = f(s \to \Xi^-)/f(s \to \Lambda) \approx 0.004$$

Average LEP FF	H_c	$f(c \to H_c) \ [\%]$
-	D^0	$54.2 \pm 2.4 \pm 0.7$
	D^+	$22.5 \pm 1.0 \pm 0.5$
	D_s^+	$9.2 \pm 0.8 \pm 0.5$
	$arLambda_c^+$	$5.7 \pm 0.6 \pm 0.3$
	D^{*+} , rate	$23.4 \pm 0.7 \pm 0.3$
L. Gladilin, EPJC 75 (2015) 19	D^{*+} , double-tag	$24.4 \pm 1.3 \pm 0.2$
	D^{*+} combined	$23.6 \pm 0.6 \pm 0.3$

Sum of $f(c \rightarrow H_c)$ for D^0,D^+ , D_s^+ and Λ_c^+ : [91.6 \pm 3.3(stat \oplus syst) \pm 1.0(BR)]%


- [1] M. Lisovyi, et al., EPJC 76 (2016) no.7, 397
- [2] B factories: EPJC 76 no. 7, (2016) 397
- [3] LEP: EPJC 75 no. 1, (2015) 19
- [4] HERA: EPJC 76 no. 7, (2016) 397

Universality confirmed at the LHC in 2013

M. Lisovyi, A. Verbytskyi, O. Zenaiev, EPJC 76 (2016) no.7, 397

[1] LHCb: Nucl.Phys.B 871 (2013) 1-20

Indication of non-universality by ALICE in 2017

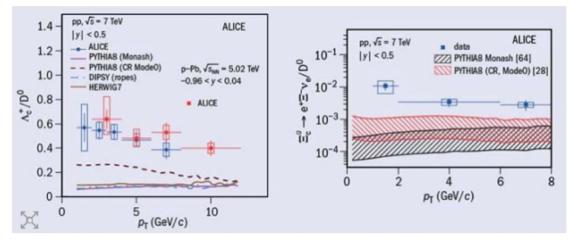
https://cerncourier.com/a/alice-investigates-charm-quark-hadronisation

Reporting on international high-energy physics

Physics ▼

Technology ▼

Community **▼**


In focus Magazine

STRONG INTERACTIONS | NEWS

ALICE investigates charm-quark hadronisation

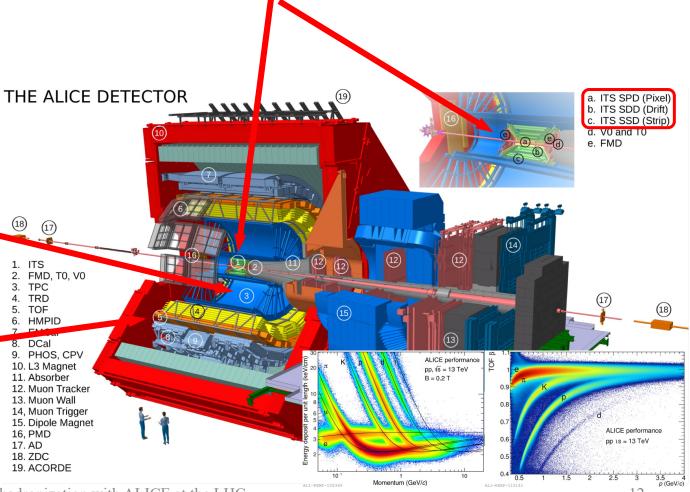
16 February 2018

(Left) The Λ^+_c/D^0 baryon-to-meson ratio measured in pp and p-Pb collisions as a function of transverse momentum, compared with different event generators for pp collisions. (Right) The ratio of the p_T differential cross-sections of Ξ^0_{c} baryons (multiplied by the branching ratio into e⁺ $v_e \Xi^-$) as a function of transverse momentum, showing the large uncertainty on the $\Xi^0_c \to e^+ v_e \Xi^$ branching ratio (shaded bands).

- \triangleright Measurements of $\Lambda_c^+/D^{0[1]}$ and $\Xi_c^0/D^{0[2]}$ from ALICE in 2017 much higher than calculations based on fragmentation fractions tuned on e⁺e⁻ data
 - Indicate fragmentation of charm quark NOT well understood
 - Charm baryon studies suggested that charm hadronization might be not universal and depends on collision system

Central rapidity

[1] ALICE: JHEP 04 (2018) 108 [2] ALICE: PLB 781 (2018) 8-19


A Large Ion Collider Experiment (ALICE)

System	Year(s)	$\sqrt{s_{ m NN}}$ (TeV)	$L_{\rm int}$ (MB)
200	2017	5.02	~ 19 nb ⁻¹
pp	2016-2018	13	~ 33 nb ⁻¹
p-Pb	2016	5.02	$\sim 0.3 \text{ nb}^{-1}$
Pb-Pb (0-10%)	2019	5.02	$\sim 0.13 \text{ nb}^{-1}$
Pb-Pb (30-50%)	2018	5.02	$\sim 0.056 \text{ nb}^{-1}$

- > Time Projection Chamber (TPC)
 - $|\eta| < 0.9$
 - Tracking, PID
- > Time-Of-Flight (TOF)
 - $|\eta| < 0.9$
 - Tracking, PID

- Inner Tracking System (ITS)
 - $|\eta| < 0.9$
 - Tracking, vertex, particle identification (PID), multiplicity

Charm-hadron reconstruction

- > Particle identification of decay tracks
- > Selections on the displaced decay topology
- Machine-learning (ML) techniques used

$$D^0: D^0 \longrightarrow K^-\pi^+$$

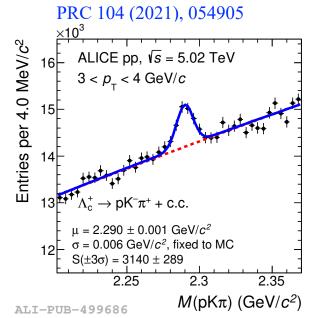
$$D^+: D^+ \longrightarrow K^-\pi^+\pi^+$$

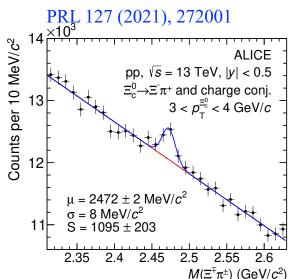
$$D^{*+}: D^{*+} \to D^0 \pi^+ \to K^- \pi^+ \pi^+$$

$$D_s^+: D_s^+ \longrightarrow \phi \pi^+ \longrightarrow K^+K^-\pi^+$$

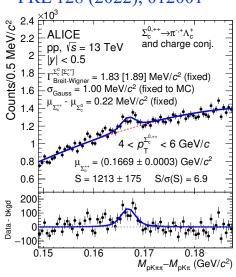
$$\Lambda_c^+: \Lambda_c^+ \longrightarrow pK^-\pi^+, \Lambda_c^+ \longrightarrow pK_s^0$$

$$\Sigma_c^{0,++} \colon \Sigma_c^0 \longrightarrow \Lambda_c^+ \pi^-, \Sigma_c^{++} \longrightarrow \Lambda_c^+ \pi^+$$

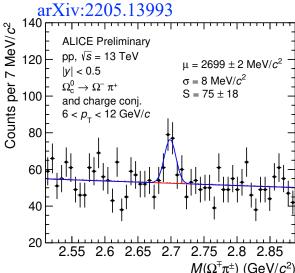

$$\Xi_c^0:\Xi_c^0\longrightarrow\Xi^-\pi^+,\Xi_c^0\longrightarrow e^+\Xi^-\nu_e$$


$$\Xi_c^+ \colon \Xi_c^+ \longrightarrow \Xi^- \pi^+ \pi^+$$

$$\Omega_c^0:\Omega_c^0 \longrightarrow pK^-\pi^+, \Omega_c^0 \longrightarrow e^+\Xi^-\nu_e$$


Charm mesons

Charm baryons



PRL 128 (2022), 012001

LI-PUB-488829

ALI-PREL-486622

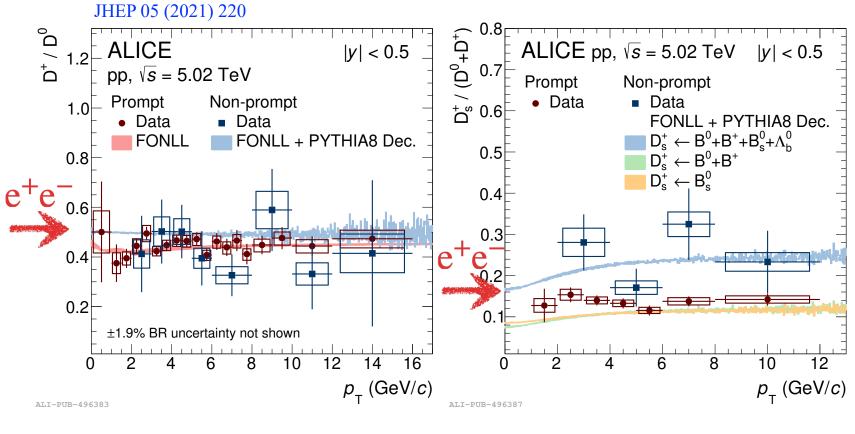
Charm mesons

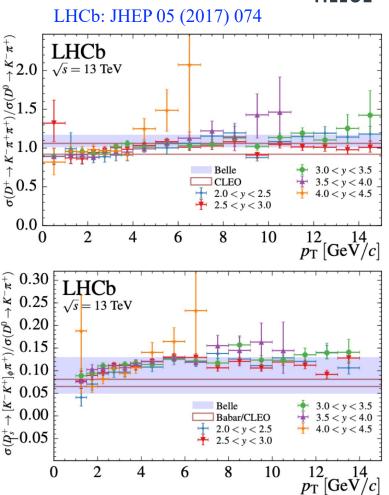
P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

	Charm mesons					Charm baryons					
	$\mathrm{D}^0(\overline{\mathrm{u}}\mathrm{c})$	$D^+(\bar{d}c)$	$D^{*+}(\bar{d}c)$	$D_s^+(\bar{s}c)$	$\Lambda_c^+(udc)$	$\Sigma_{\rm c}^{0}({\rm ddc})$	$\Sigma_{\rm c}^{++}({\rm uuc})$	$\Xi_{\rm c}^+({\rm usc})$	$\Xi_{\rm c}^0({ m dsc})$	$\Omega_{ m c}^0(m ssc)$	
Strangeness		0		1		0]		2	
Mass (MeV/c ²)	1864.83	1869.65	2010.26	1968.34	2286.46	2453.75	2453.97	2467.94	2470.90	2695.20	
Lifetime (µm)	122.9	311.8		151.2	60.7			136.6	45.8	80	

$$D^0: D^0 \to K^-\pi^+ (BR=3.95\%)$$

$$D^+: D^+ \to K^-\pi^+\pi^+ (BR=9.38\%)$$


$$D^{*+}: D^{*+} \longrightarrow D^{0}\pi^{+} (BR=67.7\%)$$


$$D_s^+: D_s^+ \to \phi \pi^+ \to K^+K^-\pi^+ (BR=2.24\%)$$

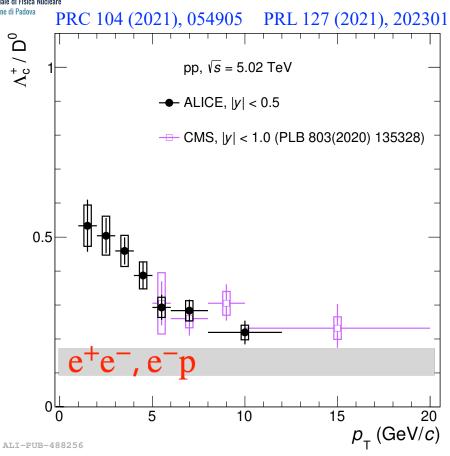
HF meson-to-meson production ratios in pp collisions

- \triangleright HF meson-to-meson ratios independent of meson p_T and collision system
- Agreement with model calculations (FONLL^[1]) based on a factorisation approach and relying on universal fragmentation functions and with e⁺e⁻ and e⁻p measurements
 - [1] M. Cacciari, et al., JHEP 10 (2012) 137
 - [2] PYTHIA8: P. Skands, et al., EPJC 74 (2014) 3024

Charm baryon: Λ_c^+

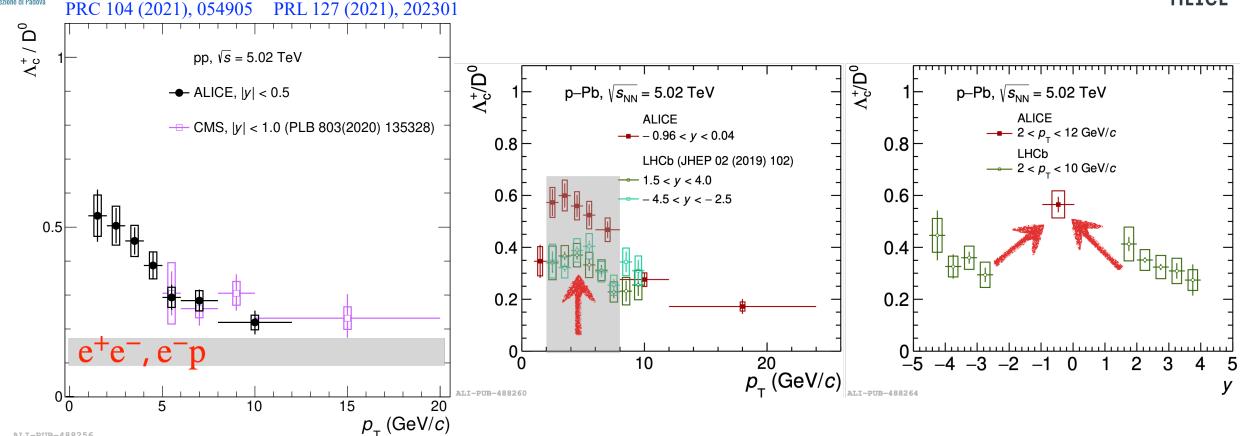
P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

		Charm	mesons		Charm baryons					
	$D^0(\bar{u}c)$	$D^+(\bar{d}c)$	$D^{*+}(\bar{d}c)$	$D_s^+(\bar{s}c)$	$\Lambda_{\rm c}^{+}({\rm udc})$	$\Sigma_{\rm c}^{0}({\rm ddc})$	$\Sigma_{\rm c}^{++}({\rm uuc})$	$\Xi_{\rm c}^+({\rm usc})$	$\Xi_{\rm c}^0({ m dsc})$	$\Omega_{ m c}^0(m ssc)$
Strangeness		0		1		0		1		2
Mass (MeV/c ²)	1864.83	1869.65	2010.26	1968.34	2286.46	2453.75	2453.97	2467.94	2470.90	2695.20
Lifetime (µm)	122.9	311.8		151.2	60.7			136.6	45.8	80


$$\Lambda_c^+ \longrightarrow pK^-\pi^+ (BR=6.28\%)$$

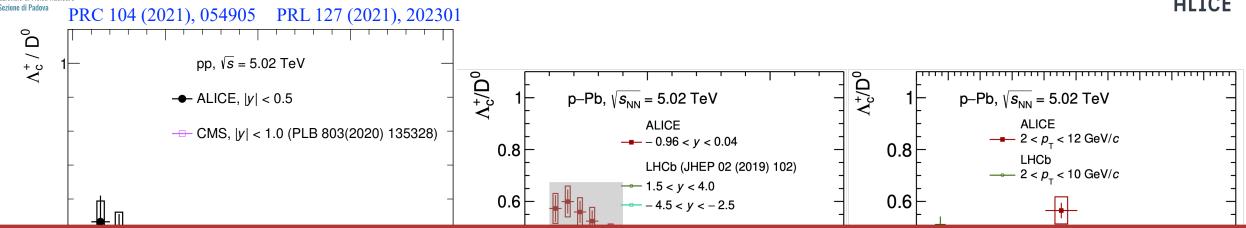
$$\Lambda_c^+ \longrightarrow pK_s^0 \text{ (BR=1.59\%)}$$

Λ_c^+/D^0 in Run 2: more precise

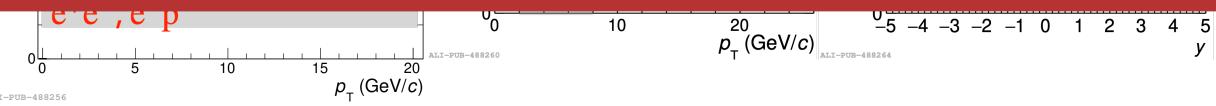


- More precise and wider p_T range measurements (w.r.t. Run 1) highlight strong p_T dependence (CMS reaches higher p_T)
 - Low p_T significantly higher than e^+e^- and e^-p
 - High p_T approaches value measured in e^+e^- and e^-p

Λ_c^+/D^0 in Run 2: more precise

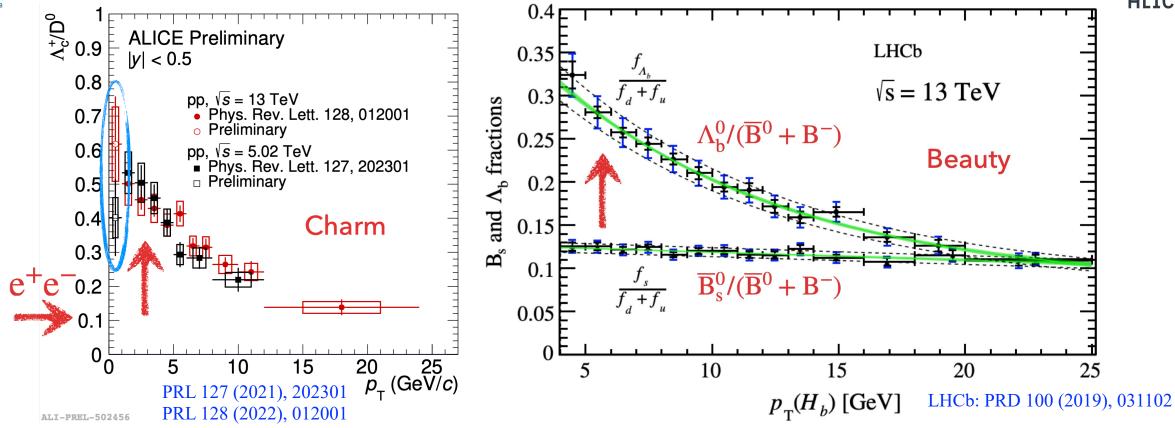


- More precise and wider p_T range measurements (w.r.t. Run 1) highlight strong p_T dependence (CMS reaches higher p_T)
 - Low p_T significantly higher than e^+e^- and e^-p
 - High p_T approaches value measured in e^+e^- and e^-p
- Comparison with forward and backward rapidity measured by LHCb represents interesting trend
- All measurements from Run 2 at the LHC agree to draw conclusion that Λ_c^+/D^0 is higher in pp w.r.t. e^+e^- and e^-p


Λ_c^+/D^0 in Run 2: more precise

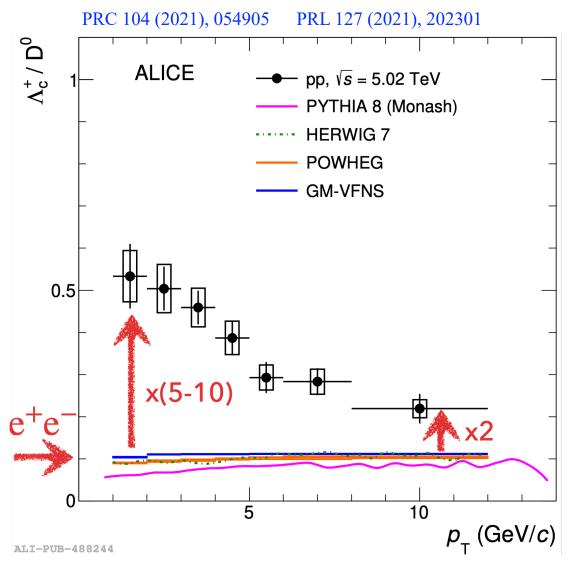
LHC Run 2 data confirm the indications observed previously

 \blacktriangleright Enhancement of $\Lambda_c^+/D^0 \rightarrow \text{modification of charm hadronisation mechanism}$



- More precise and wider p_T range measurements (w.r.t. Run 1) highlight strong p_T dependence (CMS reaches higher p_T)
 - Low p_T significantly higher than e^+e^- and e^-p
 - High p_T approaches value measured in e^+e^- and e^-p
- Comparison with forward and backward rapidity measured by LHCb represents interesting trend
- All measurements from Run 2 at the LHC agree to draw conclusion that Λ_c^+/D^0 is higher in pp w.r.t. e^+e^- and e^-p

$\Lambda_{\rm c}^+/{ m D}^0$ down to $p_{\rm T}=0$ in pp collisions

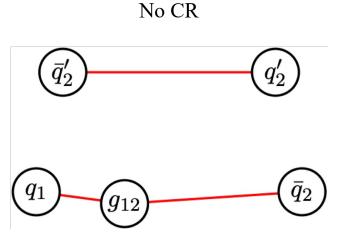


- First measurements of Λ_c^+ down to $p_T = 0$ in pp@5.02 TeV and pp@13 TeV
- NO collision energy dependence
- ➤ Charm baryon-to-meson ratios significantly higher than e⁺e⁻ results
 - PYTHIA 8 Monash (e⁺e⁻ charm fragmentation functions)
- \triangleright Beauty baryon-to-meson enhancement at low p_T also observed

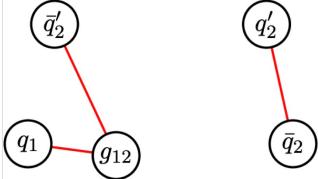
How do model calculations and MC generators perform?

- ➤ The MC generators
 - PYTHIA8 Monash tune^[1] simple LUND string fragmentation
 - HERWIG7^[2]: hadronization implemented via clusters
 - POWHEG^[3]: matched to PYTHIA6^[4] to generate parton shower
- $ightharpoonup GM-VFNS^{[5]}$: pQCD calculations, compute the ratios of Λ_c^+ and D^0 cross sections with same choice of pQCD scales
- ➤ All implement fragmentation processes tuned on e⁺e⁻

 - NO $p_{\rm T}$ dependence
- At low $p_{\rm T}$, significantly underestimate $\Lambda_{\rm c}^+/{\rm D}^0$
- \triangleright At high p_T , discrepancy reduced
 - [1] PYTHIA8 Monash: P. Skands, et al., EPJC 74 (2014) 3024
 - [2] HERWIG: M. Bahr, et al., EPJC 58 (2008) 639-707
 - [3] POWHEG: S. Frixione, et al., JHEP 09 (2007) 126
 - [4] PYTHIA6: T. Sjostrand, JHEP 05 (2006) 026
 - [5] GM-VFNS: B. Kniehl, et al., PRD 101 (2020) 114021

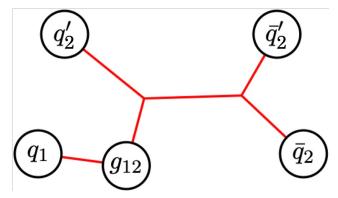


PYTHIA with new colour reconnection


PYTHIA 8^[1,2]

- New CR model: color reconnection beyond leading color (CR-BLC) mode with SU(3) topology weights + string-length minimisation
 - The junction topology favours baryon formation
 - Primordial Λ_c^+ enhanced by factor ~ 2 with new CR model
 - Extra contribution from feed-down of Σ_c states ($\times 20 \sim 30$ more)

• Partons created in different scatterings do not interact



- CR allowed between partons from different MPIs to minimize string length
- As implemented in Monash

J. Christiansen, P. Skands, JHEP 08 (2015) 003

Particle	New CR	model ($N_{\rm par}$	Old CR model	
	string	junction	all	$N_{\rm par}/N_{\rm events}$ (all)
D^+	$5.3 \cdot 10^{-2}$	0	$5.3 \cdot 10^{-2}$	$6.5 \cdot 10^{-2}$
Λ_c^+	$4.0 \cdot 10^{-3}$	$7.9 \cdot 10^{-3}$	$1.2\cdot 10^{-2}$	$6.6 \cdot 10^{-3}$
Σ_c^{++}	$2.7 \cdot 10^{-4}$	$1.3 \cdot 10^{-2}$	$1.3\cdot 10^{-2}$	$5.4 \cdot 10^{-4}$
Σ_c^+	$2.5 \cdot 10^{-4}$	$1.5\cdot 10^{-2}$	$1.5 \cdot 10^{-2}$	$5.2 \cdot 10^{-4}$
Σ_c^0	$2.5 \cdot 10^{-4}$	$1.3\cdot 10^{-2}$	$1.3\cdot 10^{-2}$	$5.1\cdot10^{-4}$

More-QCD CR (New CR-BLC model)

- Uses a simple model of the colour rules of QCD to determine the formation of strings and introduce junctions
- Minimization of the string length over all possible configurations
- Include CR with MPIs and with beam remnants

- [1] P. Skands, S. Carrazza and J. Rojo, EPJC 74 (2014) 3024
- [2] J. Christiansen, P. Skands, JHEP 08 (2015) 003

Statistical hadronization with augmented resonances

Statistical Hadronization Model and Relativistic Quark Model (SHM+RQM) (M. He and R. Rapp)^[1]

- > SHM (M. He and R. Rapp), and FF from e⁺e⁻
 - Tuned on D⁰ ALICE data + scaling for mass
- ➤ Strong feed-down from an augmented set of excited charm baryons based on RQM^[2]
 - PDG: $5\Lambda_c$, $3\Sigma_c$, $8\Xi_c$, $2\Omega_c$
 - RQM: extra $18\Lambda_c$, $42\Sigma_c$, $62\Xi_c$, $34\Omega_c$ w.r.t. PDG2018^[3]

M. He and R. Rapp, PLB 795 (2019) 117-121

r_i	D^+/D^0	D^{*+}/D^{0}	D_s^+/D^0	Λ_c^+/D^0
PDG(170)	0.4391	0.4315	0.2736	0.2851
PDG(160)	0.4450	0.4229	0.2624	0.2404
RQM(170)	0.4391	0.4315	0.2726	0.5696
RQM(160)	0.4450	0.4229	0.2624	0.4409

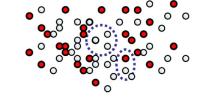
M. He and R. Rapp, PLB 795 (2019) 117-121

$n_i \ (\cdot 10^{-4} \ {\rm fm}^{-3})$	D^0	D^+	D^{*+}	D_s^+	Λ_c^+	$\Xi_c^{+,0}$	Ω_c^0
PDG(170)	1.161	0.5098	0.5010	0.3165	0.3310	0.0874	0.0064
PDG(160)	0.4996	0.2223	0.2113	0.1311	0.1201	0.0304	0.0021
RQM(170)	1.161	0.5098	0.5010	0.3165	0.6613	0.1173	0.0144
RQM(160)	0.4996	0.2223	0.2113	0.1311	0.2203	0.0391	0.0044

- [1] M. He and R. Rapp, PLB 795 (2019) 117-121
- [2] D. Ebert, R. Faustov and V. Galkin, PRD 84:014025, 2011
- [3] PDG: PRD 98, no.3, 030001 (2018)

Coalescence from a partonic system

Catania^[1,2]

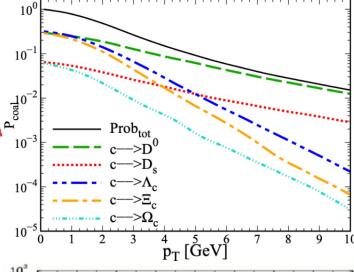

- > Transport model with hadronization via coalescence+fragmentation
 - Assume a partonic system (QGP-like) in pp
 - Coalescence enhances baryon-to-meson yield ratio
- \triangleright Total charm cross section $d\sigma_{c\bar{c}}/dy = 1.0$ mb used (higher than FONLL)
- ➤ Charm quark spectrum from FONLL
- > Same excited resonances as PDG
- ightharpoonup At $p_{\rm T} \approx 0$, a charm quark can hadronise only by coalescence
- \triangleright At high $p_{\rm T}$, fragmentation becomes dominant

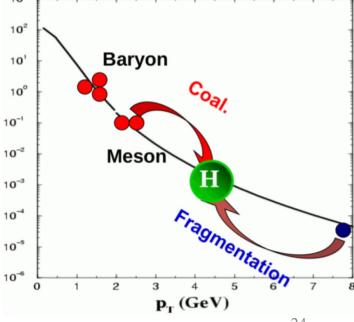
QCM: Quark (re-)Combination Mechanism^[3]

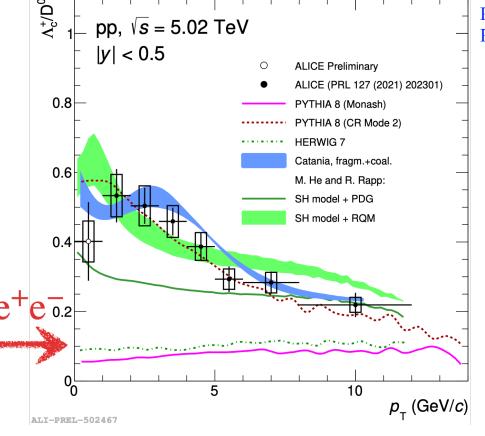
- ➤ Charm combined with equal-velocity light quarks
 - Charm can pick up a co-moving light antiquark or two co-moving quarks

Both models maybe related to creation of deconfined parton system in pp

- [1] V. Minissale, S. Plumari, V. Greco, arXiv:2012.12001
- [2] S. Plumari, et al., EPJC (2018) 78:348
- [3] J. Song, H. Li, F. Shao, EPJC (2018) 78: 344

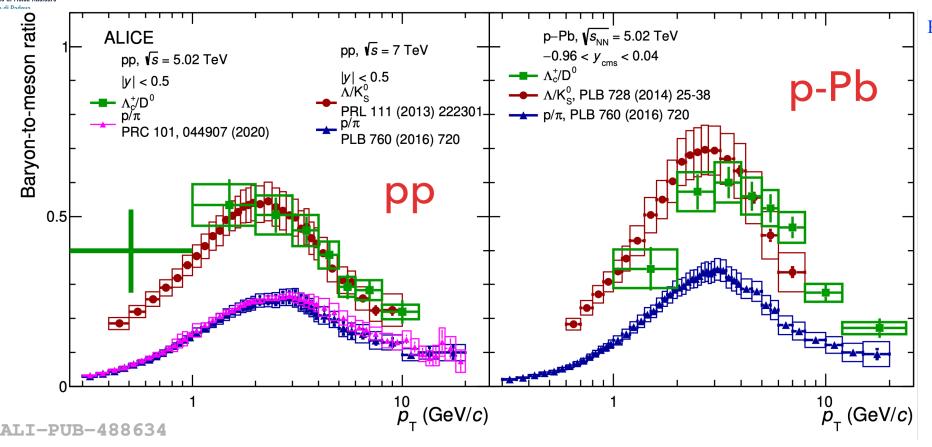






Models with different assumptions compared with data

PRC 104 (2021), 054905 PRL 127 (2021), 202301

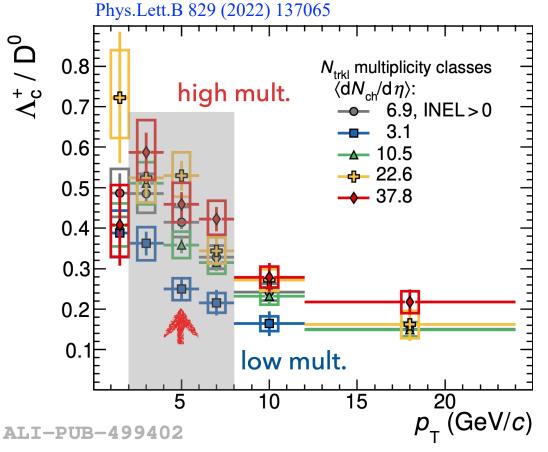

- **PYTHIA8** CR-BLC tunes^[2] largely enhance Λ_c^+ yield w.r.t. Monash tune^[1]
- > SHM^[3]+RQM^[4] enhance Λ_c^+ yield w.r.t. SHM+PDG and better describes data
 - Suggest yet-unobserved higher-mass charm-baryon states exist
- ➤ Catania^[5] with coalescence approach describes data
 - Indicate coalescence exists in pp

- [1] P. Skands, et al., EPJC 74 (2014) 3024
- [2] J. Christiansen, et al., JHEP 08 (2015) 003
- [3] M. He and R. Rapp, PLB 795 (2019) 117-121
- [4] D. Ebert, et al., PRD 84:014025, 2011
- [5] V. Minissale, et al., arXiv:2012.12001

Compare with light flavour (LF)

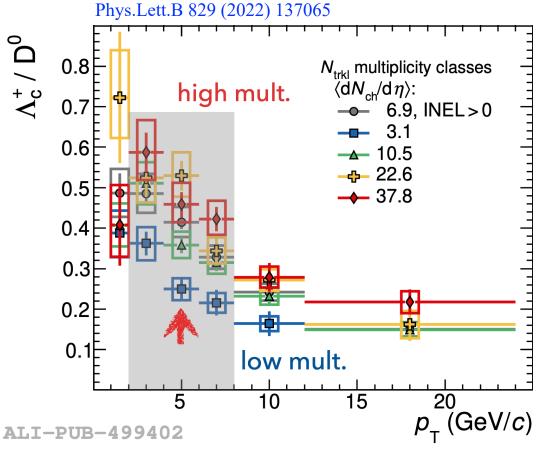
PRL 127 (2021), 202301

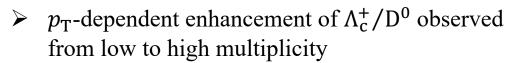
Common mechanism for light and charm baryon formation?

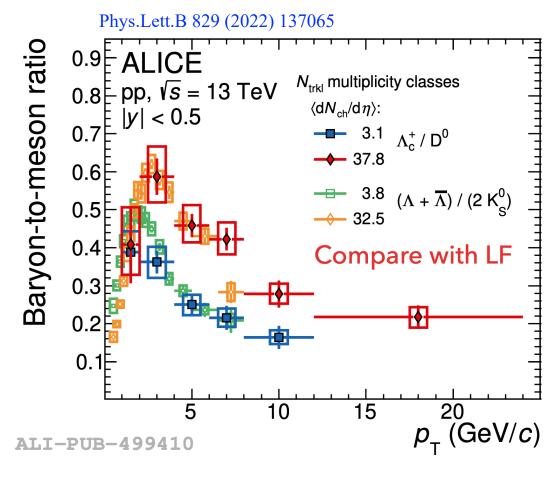

- Comparison of baryon-to-meson yield ratio in heavy and light sector show similar properties
 - Λ_c^+/D^0 consistent with Λ/K_s^0 both in magnitude and shape
 - Similar $p_{\rm T}$ trend observed for p/ π

Caveat: Light-flavour hadrons have a significant contribution from gluon fragmentation Low p_T light-flavour hadrons mainly originate from soft scattering process involving small momentum transfers

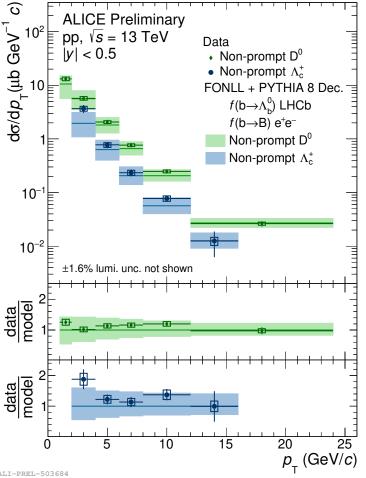
$\Lambda_{\rm c}^+/{\rm D}^0$ vs. $p_{\rm T}$ from low to high multiplicity



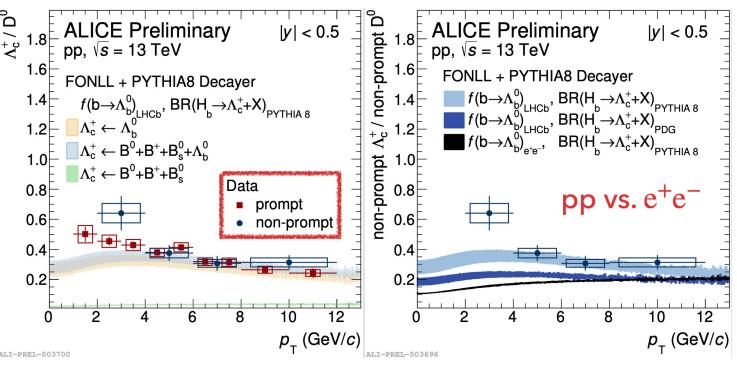

- p_T -dependent enhancement of $Λ_c^+/D^0$ observed from low to high multiplicity
- ➤ Lowest multiplicity still higher than measurements in e⁺e⁻ and e⁻p


Λ_c^+/D^0 vs. p_T from low to high multiplicity

➤ Lowest multiplicity still higher than measurements in e⁺e⁻ and e⁻p



- Similar p_T -dependent enhancement of Λ_c^+/D^0 and Λ/K_s^0 observed from low to high multiplicity
 - Common mechanism for light and charm baryon formation?


Non-prompt Λ_c^+ production in pp@13 TeV

- $ightharpoonup p_{\mathrm{T}}$ dependence well reproduced by theoretical calculations
 - $\Lambda_{\rm b}^0$ fragmentation fractions measured by LHCb
 - Folding with $H_b \rightarrow \Lambda_c^+ + X$ decay from PYTHIA 8

- \triangleright Non-prompt vs. prompt Λ_c^+/D^0
 - Similar baryon-to-meson ratio enhancement
- \triangleright Non-prompt Λ_c^+/D^0 vs. models
 - Well reproduced by FONLL+PYTHIA8 for $p_{\rm T} > 4~{\rm GeV}/c$
- \triangleright Non-prompt Λ_c^+/D^0 : pp vs. e^+e^-
 - Enhanced beauty-baryon production in pp w.r.t. e⁺e⁻

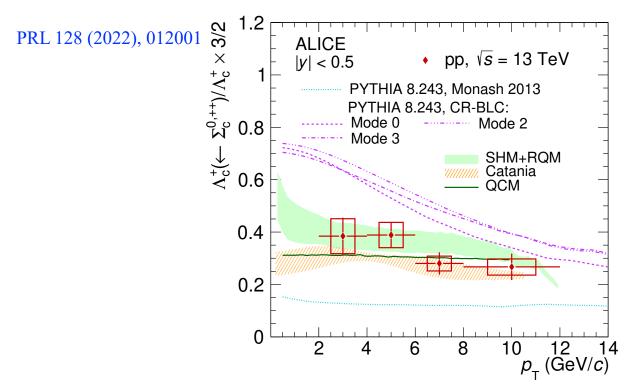
Heavier charm baryons: $\Sigma_c^{0,+,++}$

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

		Charm	mesons		Charm baryons					
	$D^0(\bar{u}c)$	$D^+(\bar{d}c)$	$D^{*+}(\bar{d}c)$	$D_s^+(\bar{s}c)$	$\Lambda_{\rm c}^{+}({\rm udc})$	$\Sigma_{\rm c}^{0}({\rm ddc})$	$\Sigma_{\rm c}^{++}({ m uuc})$	$\Xi_{\rm c}^+({\rm usc})$	$\Xi_{\rm c}^0({ m dsc})$	$\Omega_{\rm c}^0({ m ssc})$
Strangeness		0		1		0]		2
Mass (MeV/c ²)	1864.83	1869.65	2010.26	1968.34	2286.46	2453.75	2453.97	2467.94	2470.90	2695.20
Lifetime (µm)	122.9	311.8		151.2	60.7			136.6	45.8	80

$$\Sigma_c^0 \longrightarrow \Lambda_c^+ \pi^-$$
 (BR=100%, strongly decay)

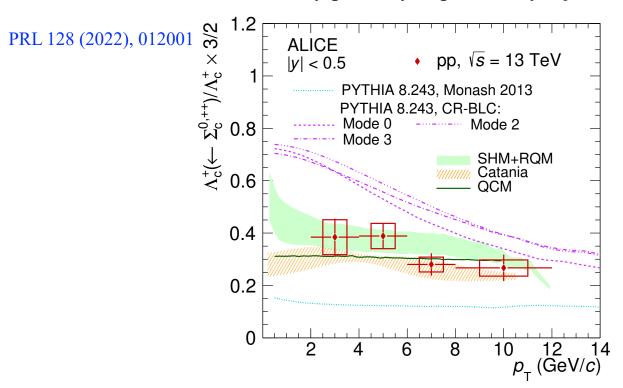
$$\Sigma_c^{++} \longrightarrow \Lambda_c^+ \pi^+$$
 (BR=100%, strongly decay)

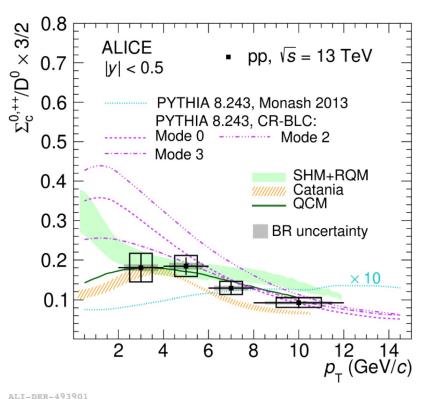

$$\times$$
 3/2 to count Σ_c^+ (udc)

Heavier charm baryons: $\Sigma_c^{0,+,++}$ in pp@13 TeV

- \triangleright Effect of $\Sigma_c^{0,+,++}$ feed-down contribution on Λ_c^+/D^0 enhancement
 - ~40% contribution, only partially explained by $\Sigma_c^{0,+,++}$ feed-down

- ALI-DER-493906
- ► PYTHIA8 Monash^[1] severely underestimates Λ_c^+ ($\leftarrow \Sigma_c^{0,+,++}$)/ Λ_c^+
- ightharpoonup PYTHIA8 CR Modes^[2] overestimate $\Lambda_c^+ (\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$
- ightharpoonup SHM^[3]+RQM^[4], Catania^[5], and QCM^[6] describe Λ_c^+ ($\leftarrow \Sigma_c^{0,+,++}$)/ Λ_c^+


- [1] P. Skands, et al., EPJC 74 (2014) 3024
- [2] J. Christiansen, et al., JHEP 08 (2015) 003
- [3] M. He and R. Rapp, PLB 795 (2019) 117-121
- [4] D. Ebert, et al., PRD 84:014025, 2011
- [5] V. Minissale, et al., arXiv:2012.12001
- [6] J. Song, et al., EPJC (2018) 78: 344


Heavier charm baryons: $\Sigma_c^{0,+,++}$ in pp@13 TeV

- \triangleright Effect of $\Sigma_c^{0,+,++}$ feed-down contribution on Λ_c^+/D^0 enhancement
 - ~40% contribution, only partially explained by $\Sigma_c^{0,+,++}$ feed-down

ALI-DER-493906

- PYTHIA8 Monash^[1] severely underestimates $\Lambda_c^+ (\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$ and $\Sigma_c^{0,+,++}/D^0$
- ightharpoonup PYTHIA8 CR Modes^[2] overestimate $\Lambda_c^+ (\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$, but describe $\Sigma_c^{0,+,++}/D^0$
- ightharpoonup SHM^[3]+RQM^[4], Catania^[5], and QCM^[6] describe Λ_c^+ ($\leftarrow \Sigma_c^{0,+,++}$)/ Λ_c^+ and $\Sigma_c^{0,+,++}$ /D⁰

- [1] P. Skands, et al., EPJC 74 (2014) 3024
- [2] J. Christiansen, et al., JHEP 08 (2015) 003
- [3] M. He and R. Rapp, PLB 795 (2019) 117-121
- [4] D. Ebert, et al., PRD 84:014025, 2011
- [5] V. Minissale, et al., arXiv:2012.12001
- [6] J. Song, et al., EPJC (2018) 78: 344

Strange-charm baryons: $\Xi_c^{0,+}$

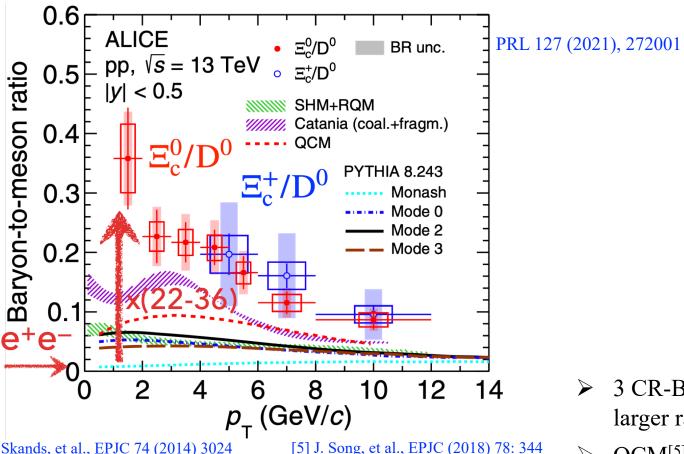
P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

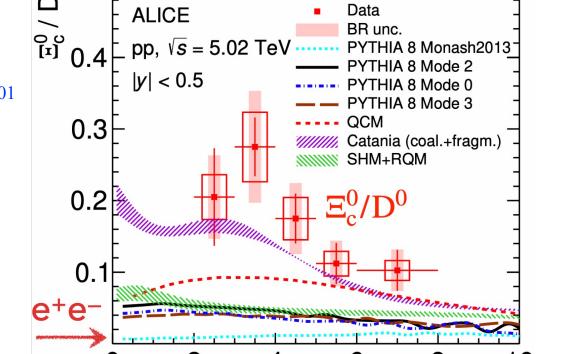
		Charm	mesons		Charm baryons					
	$D^0(\overline{u}c)$	$D^+(\bar{d}c)$	$D^{*+}(\bar{d}c)$	$D_s^+(\bar{s}c)$	$\Lambda_{\rm c}^{+}({\rm udc})$	$\Sigma_{\rm c}^{0}({\rm ddc})$	$\Sigma_{\rm c}^{++}({\rm uuc})$	$\Xi_{\rm c}^+({\rm usc})$	$\Xi_{\rm c}^0({ m dsc})$	$\Omega_{\rm c}^0({ m ssc})$
Strangeness		0		1		0		1		2
Mass (MeV/c ²)	1864.83	1869.65	2010.26	1968.34	2286.46	2453.75	2453.97	2467.94	2470.90	2695.20
Lifetime (µm)	122.9	311.8		151.2	60.7			136.6	45.8	80

$$\Xi_c^0 \longrightarrow \Xi^-\pi^+ (BR=1.43\%)$$

$$\Xi_c^0 \longrightarrow e^+ \Xi^- v_e \text{ (BR=1.8\%)}$$

$$\Xi_c^+ \to \Xi^- \pi^+ \pi^+ (BR = 2.86\%^{[1]})$$


[1] Belle: Phys. Rev. D 100, 031101 (2019)



Strange-charm baryons: Ξ_c^0 and Ξ_c^+ in pp collisions

- $\geq \Xi_c^0/D^0$ in agreement with Ξ_c^+/D^0
- ➤ PYTHIA8 Monash^[1] largely underestimates data

- ➤ 3 CR-BLC Modes^[2] and SHM^[3]+RQM^[4] predict significantly larger ratio w.r.t. Monash, but largely underestimate data
- QCM^[5], further enhanced, still NOT describe the data

JHEP 10 (2021) 159

Catania^[6] better describes measurements

- [1] P. Skands, et al., EPJC 74 (2014) 3024
- [2] J. Christiansen, et al., JHEP 08 (2015) 003
- [3] M. He and R. Rapp, PLB 795 (2019) 117-121
- [4] D. Ebert, et al., PRD 84:014025, 2011

[6] V. Minissale, et al., arXiv:2012.12001

[7] Belle e⁺e⁻: PRD 97 (2018) 7, 072005

 p_{τ} (GeV/c)

Double strange-charm baryon: Ω_c^0

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

		Charm	mesons		Charm baryons					
	$D^0(\bar{u}c)$	$D^+(\bar{d}c)$	$D^{*+}(\bar{d}c)$	$D_s^+(\bar{s}c)$	$\Lambda_{\rm c}^{+}({\rm udc})$	$\Sigma_{\rm c}^{0}({\rm ddc})$	$\Sigma_{\rm c}^{++}({\rm uuc})$	$\Xi_{\rm c}^+({\rm usc})$	$\Xi_{\rm c}^0({ m dsc})$	$\Omega_{\rm c}^0({ m ssc})$
Strangeness		0		1		0			1	2
Mass (MeV/c ²)	1864.83	1869.65	2010.26	1968.34	2286.46	2453.75	2453.97	2467.94	2470.90	2695.20
Lifetime (µm)	122.9	311.8		151.2	60.7			136.6	45.8	80

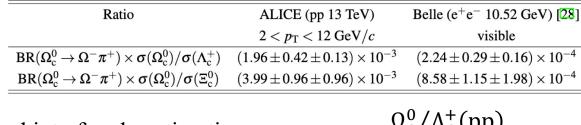
 $\Omega_c^0 \to \Omega^- \pi^+$ (BR unknown, theoretical calculations: BR = $0.51^{+2.19}_{-0.31}\%$ [1-5])

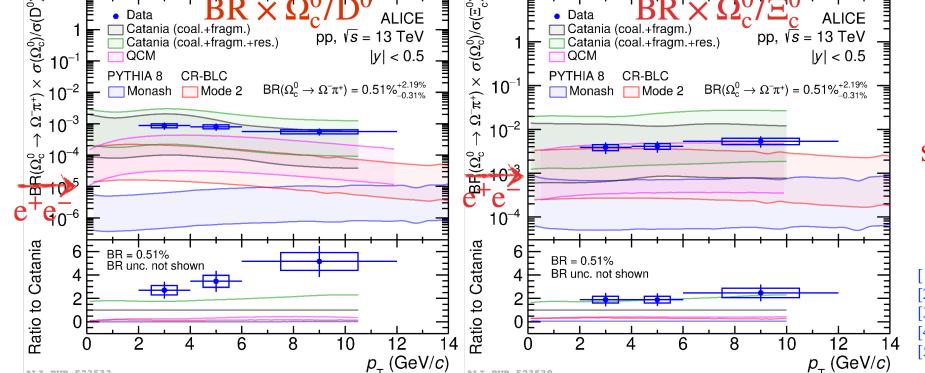
[1] EPJC 80 no. 11, (2020) 1066

[2] PRD 98 no. 7, (2018) 074011

[3] PRD 56 (1997) 2799-2811

[4] PRD 101 no. 9, (2020) 094033


[5] PRD 97 no. 7, (2018) 072005



Double strange-charm baryon: Ω_c^0 in pp@13 TeV

- Theoretical calculations: BR($\Omega_c^0 \to \pi^+ \Omega^-$) = 0.51 $^{+2.19}_{-0.31}\%$
- PYTHIA8 Monash^[1] largely underestimates Ω_c^0/D^0 and Ω_c^0/Ξ_c^0
 - Do not reproduce strangeness enhancement in pp
- PYTHIA8 CR-BLC^[2] NOT enough to describe the measurement
- Further enhancement with simple coalescence QCM^[3] still shows a hint of underestimation
- Catania^[4] closer to data points, additional resonances decay considered

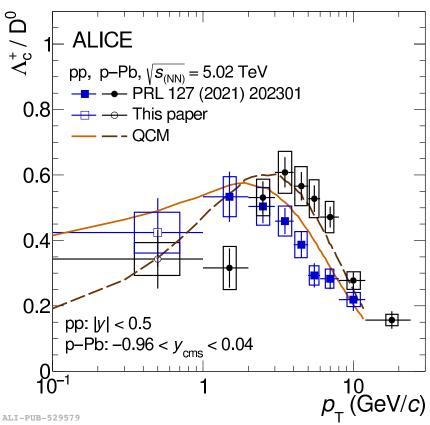
 $\frac{\Omega_c^0/\Lambda_c^+(pp)}{\Omega_c^0/\Lambda_c^+(e^+e^-)} \approx 9$ $\frac{\Omega_c^0/\Xi_c^0(pp)}{\Omega_c^0/\Xi_c^0(e^+e^-)} \approx 5$

Sizeable contribution of to charm production at LHC energies?

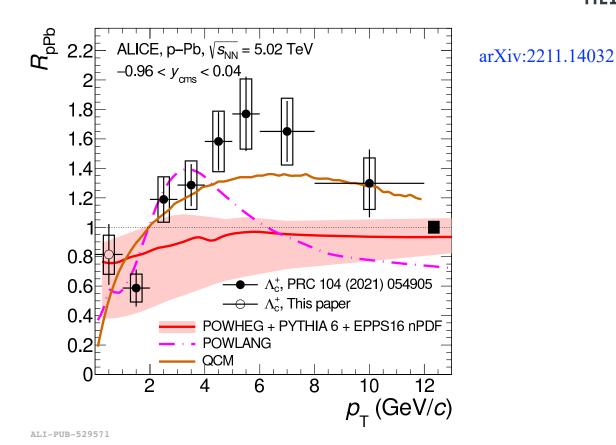
arXiv:2205.13993

- [1] P. Skands, et al., EPJC 74 (2014) 3024
- [2] J. Christiansen, et al., JHEP 08 (2015) 003
- [3] J. Song, et al., EPJC (2018) 78: 344
- [4] V. Minissale, et al., arXiv:2012.12001
- [5] Belle e⁺e⁻: PRD 97 (2018) 7, 072005

ALI-PUB-523533

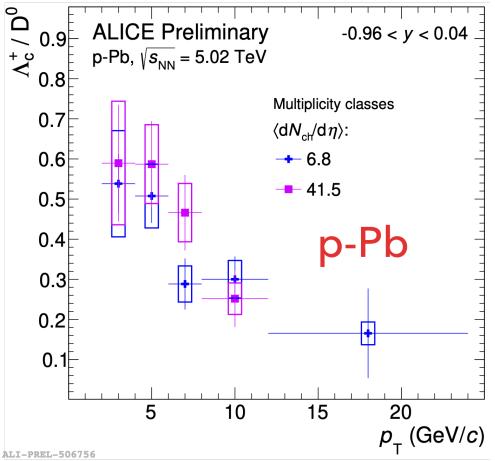


p-Pb collisions

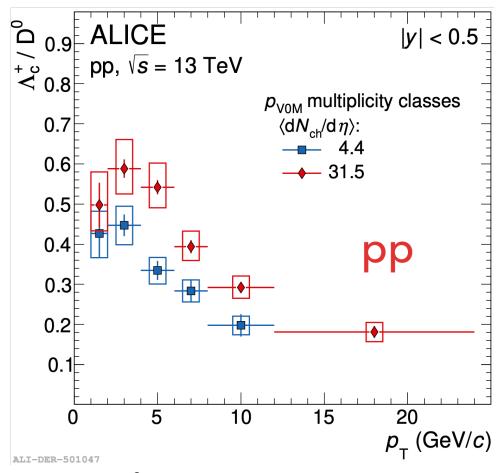

$\Lambda_{\rm c}^+/{ m D}^0$ and $R_{\rm pPb}(\Lambda_{\rm c}^+)$ vs. $p_{\rm T}$ in p-Pb

- \rightarrow Λ_c^+/D^0 : significant suppression in $p_T < 2$ and enhancement in mid- $p_{\rm T}$
 - Similarities with strange sector^[1,2]

- $ho R_{\rm pPb}(\Lambda_{\rm c}^+)$: significant suppression in $p_{\rm T} < 2$, enhancement in mid- $p_{\rm T}$
 - POWHEG^[3]+PYTHIA6: only CNM effect^[4] included
 - POWLANG^[5]: QGP in small system
 - QCM ^[6]: CNM effect not included


[6] QCM: PRC 97 (2018) 064915

HF production and hadronization with ALICE at the LHC

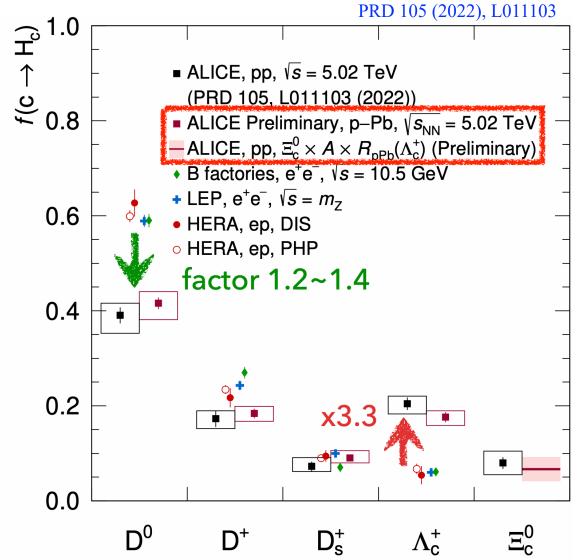

Λ_c^+/D^0 vs. p_T from low to high multiplicity in p-Pb

 Λ_c^+/D^0 vs. p_T in different multiplicity in p-Pb

- > No significant separation between lowest and highest multiplicity
- > Compatible with pp results within the large uncertainties
- ➤ More precise measurements needed

 $\Lambda_{\rm c}^+/{\rm D}^0$ vs. $p_{\rm T}$ in different multiplicity in pp

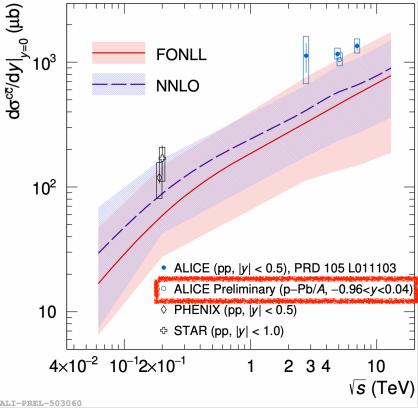
Significant enhancement from lowest to highest multiplicity

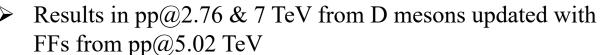


Charm fragmentation fractions

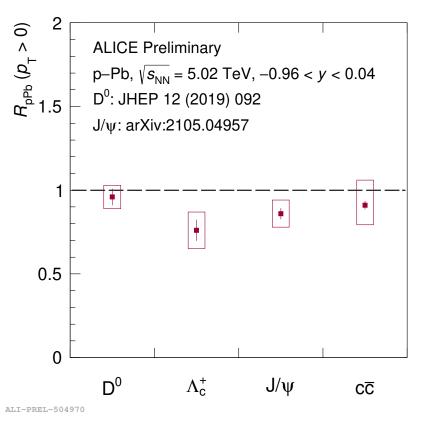
- ➤ Charm fragmentation fractions in hadronic collisions at 5.02 TeV
 - pp: PRD 105 (2022) 1, L011103
 - **■** p-Pb:
 - D^0 , Λ_c^+ (new): measured down to $p_T = 0$
 - D⁺, D_s⁺: extrapolated to $p_T = 0$ using POWHEG+PYTHIA
 - $\Xi_{\rm c}^0$ not measured $\to \sigma_{\rm pp}(\Xi_{\rm c}^0) \times 208 \times R_{\rm pPb}(\Lambda_{\rm c}^+)$
- > pp and p-Pb results compatible
- Significant baryon enhancement w.r.t. e⁺e⁻ and e⁻p

Charm fragmentation fractions not universal!




ALI-PREL-503055

$c\bar{c}$ production cross section and R_{pPb}

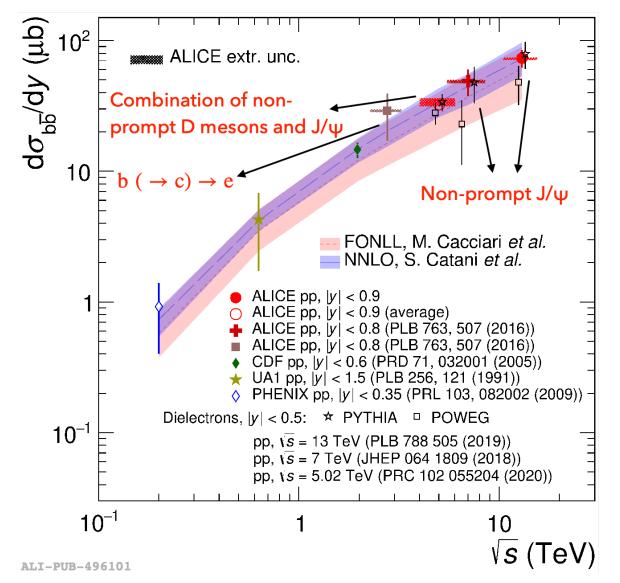


- ~40% increase driven by observed baryon enhancement
- ➤ On upper edge of FONLL^[3] and NNLO^[4] calculations
 - [1] STAR: Phys. Rev. D 86 (2012) 072013
 - [2] PHENIX: Phys. Rev. C 84 (2011) 044905
 - [3] FONLL: JHEP 10 (2012) 137
 - [4] Charm NNLO: PRL 118 (2017) 12, 122001

- [5] ALICE non-prompt D: JHEP 05 (2021) 220
- [6] ALICE non-prompt: JHEP 11 (2015) 065
- [7] ALICE b→e: PLB 721 (2013) 13-23
- [8] ALICE dielectrons: PRC 102 (2020) 5, 055204

Nuclear shadowing effect

- \triangleright p-Pb not obvious, $R_{pPb}(c\overline{c})$ compatible with unity
- \triangleright c \overline{c} in Pb-Pb would be interesting to see this effect

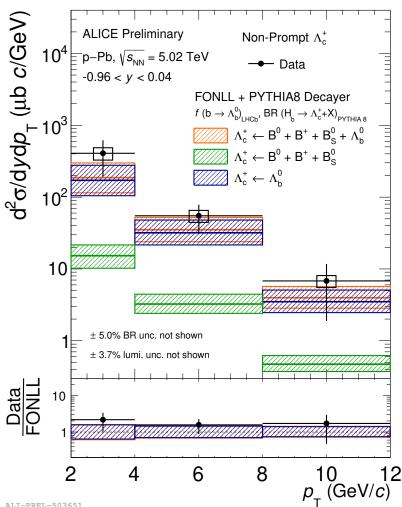

[9] PHENIX: PRL (2009) 103, 082002 [10] UA1: PLB 256 (1991) 121-128 [11] CDF: PRL 91 (2003) 241804

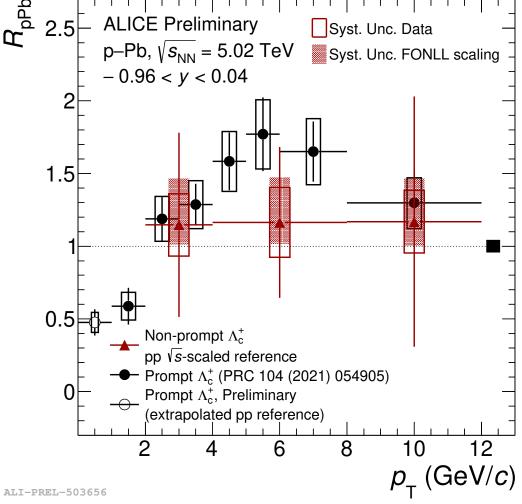
bb̄ production cross section

➤ Described widely by FONLL^[1] and NNLO^[2] calculations

JHEP 03 (2022) 190

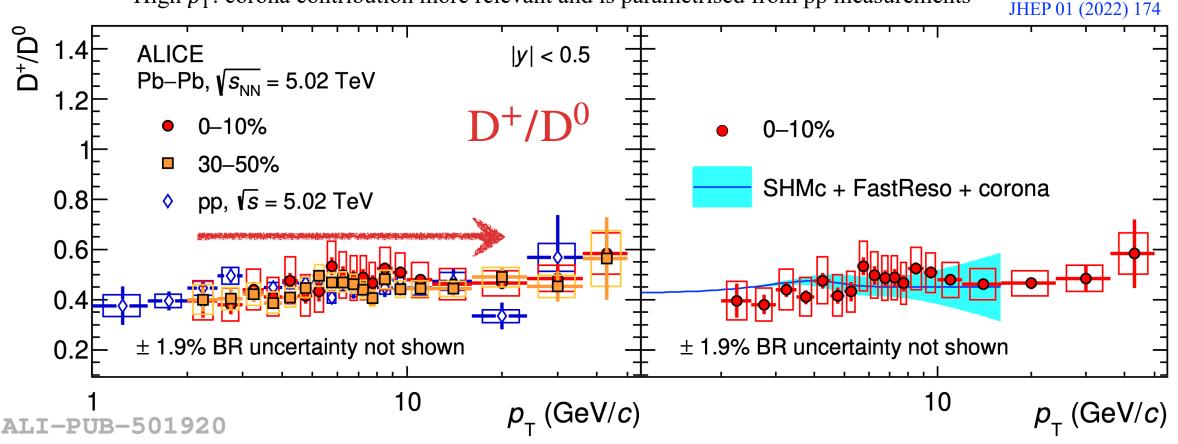
[1] FONLL: JHEP 10 (2012) 137


[2] Beauty NNLO: JHEP 03 (2021) 029


Non-prompt Λ_c^+ production in p-Pb@5.02 TeV

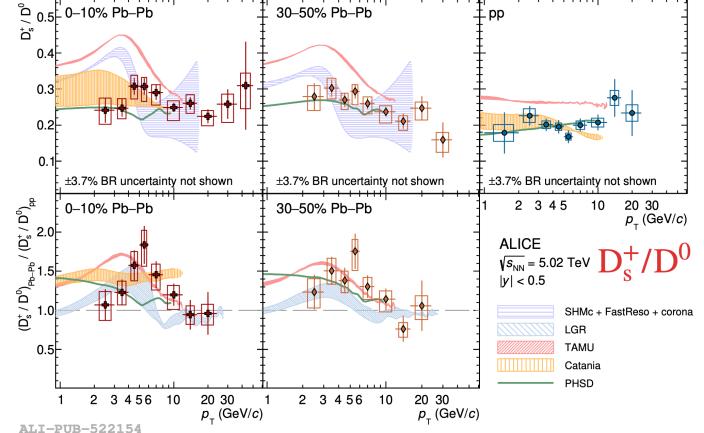
- Non-prompt Λ_c^+
 - $p_{\rm T}$ dependence well reproduced by theoretical calculations, same as pp

- \triangleright Non-prompt $\Lambda_c^+ R_{pPb}$
 - Compatible with unity and with prompt Λ_c^+ $R_{\rm pPb}$ within the large uncertainties


Pb-Pb collisions

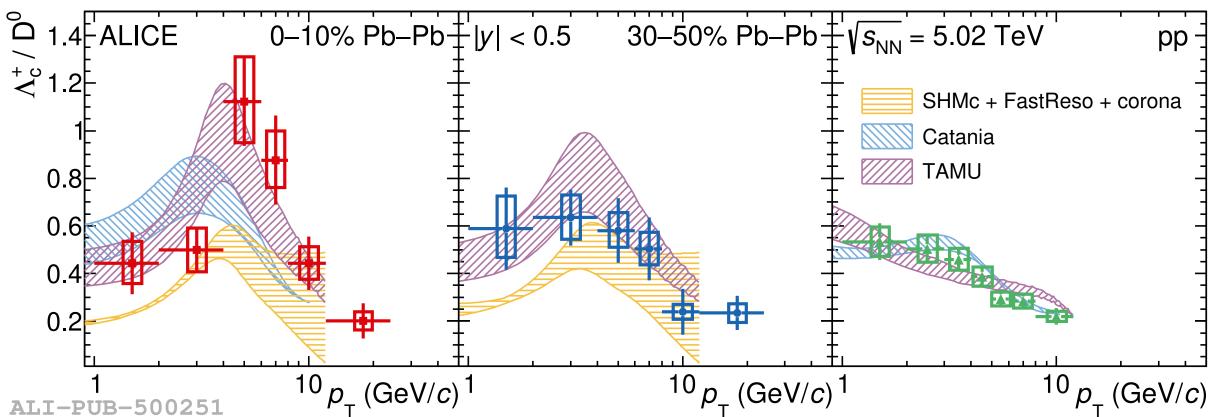
Non-strange charm meson to probe hadronization

- ➤ D⁺/D⁰: flat distribution, NOT modified in QGP, described by SHMc
 - $p_{\rm T}$ spectra of charm hadrons are modelled with a core-corona approach
 - Resonance decays computed with FastReso package
 - Low p_T : dominated by the core contribution described with a Blast-Wave function
 - High p_T : corona contribution more relevant and is parametrised from pp measurements

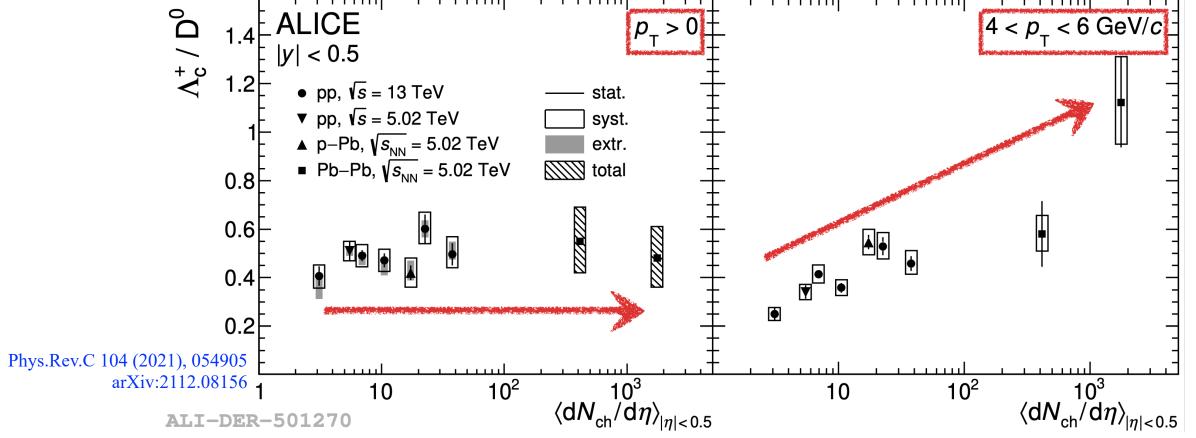


Strange-charm meson to probe hadronization

- $P_{\rm s}^+/D^0$: hint of enhancement in $2 < p_{\rm T} < 8 \; {\rm GeV}/c$ in 0-10% (30-50%) Pb-Pb by 2.3σ (2.4 σ)
- > Described by models including strangeness enhancement and <u>fragmentation + recombination</u>
 - TAMU (coalescence implemented with a Resonance Recombination Model) significantly overestimates data
 - Catania and LGR (coalescence implemented with Wigner formalism) describe data
 - PHSD (coalescence implemented with MC) describe data


Phys.Lett.B 827 (2022) 136986

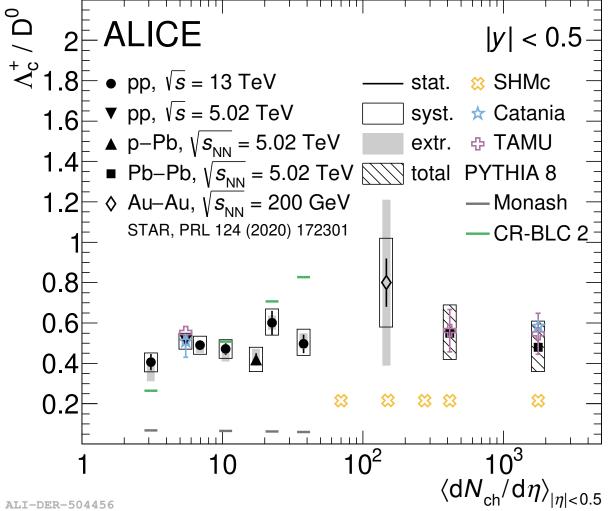
Non-strange charm baryon to probe hadronization


- \rightarrow Λ_c^+/D^0 : enhanced in $4 < p_T < 8 \text{ GeV}/c$ for central Pb-Pb w.r.t. pp by 3.7σ
 - Also seen for light-flavour baryon-to-meson ratios
 - Described by TAMU
 - The shapes of the Catania and SHMc predictions agree qualitatively

 $\Xi_{\rm c}^{0,+}/{\rm D}^0$ and $\Omega_{\rm c}^0/{\rm D}^0$ vs. $p_{\rm T}$ in Pb-Pb with Run 3 data to further constrain hadronization processes

$\Lambda_{\rm c}^+/{ m D}^0$ vs. multiplicity for integrated and intermediate $p_{ m T}$

- hopha $p_{\rm T}$ -integrated $\Lambda_{\rm c}^+/{\rm D}^0$ ratio compatible with a flat behaviour versus event multiplicity, similar to $\Lambda/{\rm K_s^0}$
- \triangleright Re-distribution of p_T that acts differently for baryons and mesons, no modification of overall p_T -integrated yield
- Same mechanism in all collision systems? Modified hadronization? Radial flow?


 $\Xi_c^{0,+}/D^0$ and Ω_c^0/D^0 vs. multiplicity for integrated and intermediate p_T with Run 3 data to further constrain hadronization processes

$p_{\rm T}$ -integrated $\Lambda_{\rm c}^+/{ m D}^0$ vs. multiplicity comparing with models

- Flat trend reproduced by models implementing fragmentation+coalescence and SHM predictions
- > PYTHIA 8 CR-BLC 2 predicts enhancement with multiplicity

Phys.Lett.B 829 (2022) 137065

Summary

- ➤ Precise measurements of charm and beauty **meson** production provide strong constraints on pQCD calculations
- Charm and beauty **baryon** production measurements indicate that assumption of universal parton-to-hadron fragmentation fractions not valid at LHC energies
- > Charm hadronization mechanisms in pp collisions need further investigations
 - Coalescence in pp?
- ➤ Charm hadron yield ratios in Pb-Pb can be described by models including both coalescence and fragmentation processes
- \triangleright Re-distribution of $p_{\rm T}$ that acts differently for $\Lambda_{\rm c}^+$ in p-Pb and Pb-Pb w.r.t. pp, no modification of overall $p_{\rm T}$ -integrated yield
 - Same mechanism in all collision systems? Modified hadronization? Radial flow?

Backup

Summary

> Charm hadronization mechanisms need further investigations

	Models	Λ_c^+/D^0 (no s)	$\sum_{c}^{0,+,++}/D^{0} \text{ (no s)}$	$\Xi_{c}^{0,+}/D^{0}$ (s)	$\Omega_{\rm c}^0/{\rm D}^0~({\rm ss})$
pp	PYTHIA8 Monash	8	8		
	PYTHIA8 CR Mode	3	3		
	SHM+RQM	3	3		_
	QCM	3	3		
	Catania	3	3	3	•

	Models	D^+/D^0 (no s)	D_s^+/D^0 (s)	Λ_c^+/D^0 (no s)
Pb-Pb	SHMc	3	8	
	TAMU			3
	Catania		3	
	LGR		3	
	PHSD		3	