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Abstract.
The influence of space charge on emittance growth is studied in simulations of a coasting beam exposed to a strong

octupolar perturbation in an otherwise linear lattice, and under stationary parameters. We explore the importance of self-
consistency by comparing results with a non-self-consistent model, where the space charge electric field is kept “frozen-in”
to its initial values. For Gaussian distribution functions we find that the “frozen-in” model results in a good approximation of
the self-consistent model, hence coherent response is practically absent and the emittance growth is self-limiting due to space
charge de-tuning. For KV or waterbag distributions, instead, strong coherent response is found, which we explain in terms of
absence of Landau damping.

INTRODUCTION

The effect of space charge on nonlinear resonances has
received increasing attention with the need of optimizing
the performance of storage rings or synchrotrons with
high intensity or high phase space density. In a recent
experiment carried out at the CERN proton synchrotron
(see companion paper to this conference, Ref. [1]) the 3D
aspects of the resonance effect of a single octupole on an
1 s long injection flat-bottom have been explored by sim-
ulation as part of a code bench-marking effort by aban-
doning self-consistency and using an analytical solution
of Poisson’s equation for the “frozen-in” density profile.
The present study is carried out in order to advance our
understanding of the importance of self-consistency as
well as the differences in resonance behavior of coasting
and bunched beams. We adopt similar parameters as in
Ref. [1], like a fixed working point varying over an in-
terval above the fourth order resonance at Qx = 6.25, as
well as comparable space charge tune shifts.

The most obvious effect of space charge is the inco-
herent tune shift and spread, which leads to an extended
foot-print of single particle tunes in the tune diagram.
Less obvious is the observation that the response on a
resonance may be modified by the coherent motion of
all, or of a large fraction of particles, which is the main
expression of self-consistency. It leads to an additional
time-dependent force, which must be added to the ex-
ternal forces, and which may cause a coherent shift of
the resonance condition. This phenomenon was studied
in some detail for second order resonances in connection
with the Spallation Neutron Source Ring, where it was
found that this coherent shift has a favorable effect on

the tolerable intensity [2]. The present study, however,
shows that for Gaussian beams and fourth order reso-
nances such a coherent effect is practically absent.

SIMULATION

We use the self-consistent 2D particle-in-cell (PIC) ver-
sion of the MICROMAP code [3] with 105 simulation
particles and employing different distribution functions
on a 64× 64 grid filling a rectangular boundary of 70×
70 mm size. In most examples intensity is normalized to
a maximum space charge tune shift ∆Qx = 0.09 for the
Gaussian distribution, and rms equivalence for all oth-
ers, which implies ∆Qx = 0.045 for the equivalent KV-
beam. Before discussing the effect of space charge we
consider the octupole effect alone. While the experiment
was done with 40 A octupole excitation, we find it con-
venient in this 2D study to raise the octupole strength by
a factor 2.5 (corresponding to 100 A) in order to enhance
the otherwise weak effects. The normalized strength (in
m−3) is given here as

K3 = 1.215 · I, (1)

where I[A] is the octupole excitation current.
For a Gaussian distribution we find that the response in

terms of rms emittance growth is 24% for not too strong
octupoles, independent of the octupole strength . This is
due related to the fact that the stabilizing de-tuning by
the octupole increases simultaneously with the resonance
driving term. The time required to reach the maximum
emittance growth is, however, about inversely propor-
tional to the octupole strength (≈ 103 betatron periods



for 100 A). The response curve as a function of machine
tune with clear de-tuning shift is shown in Fig. 1 for a
Gaussian distribution. Due to the strong octupole there is
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FIGURE 1. 2D simulation without space charge showing
relative rms emittance growth and intensity from octupole (100
A).

a visible (< 1%) beam loss effect for 6.235 < Qx < 6.24.
This is accompanied by some emittance reduction due to
extraction of the larger amplitude particles, which is ab-
sent for a 40 A octupole. In order to interpret loss effects
we have first carried out a simplified numerical study on
the dynamic aperture by searching the maximum stable
radius of test particles placed into 20 different directions
in the upper half of the x− y plane. Assuming a 200 A
octupole current we have calculated, in the absence of
space charge, that the dynamic aperture shrinks to a ra-
dius of 2.5σ near Qx = 6.25 for 103 turns, and to about
2.2σ for 105 turns. Comparing several octupole strengths
we have found the approximate scaling

DA ≈ 35/
√

K3, (2)

for the dynamic aperture DA expressed in units of σ .

Distribution function and Landau damping

Including space charge we obtain results, which de-
pend sensitively on the distribution function. The KV-
beam response after 1000 turns is shown in Fig. 2. In
order to appreciate the coherent nature of this response
we first discuss the rms emittance growth for a “frozen-
in” space charge electric field, where the initial values
are not updated, hence the response is entirely incoher-
ent. The response is non-zero for a distance of the bare
machine tune from the resonance line less than 0.045,
which equals the incoherent space charge tune shift -
common to all particles - of the initial KV-beam. Sim-
ilar to Fig. 1 we observe in the “frozen” response a stop-
band width of ≈ 0.01 and a shift from the ideal reso-
nance condition, which is now at Qx = 6.295. Both ef-
fects are a result of the resonance broadening due to the
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FIGURE 2. 2D simulation of KV distribution with ∆Qx =
0.045 and octupole (100 A) as function of bare machine tune,
showing self-consistent and “frozen-in” models (after 1000
turns).

strong octupole force. There is, however, a significant ad-
ditional de-tuning by space charge, which limits the max-
imum emittance growth to < 6% compared with the 25%
growth without space charge.

The self-consistent simulation, instead, shows two
high separate peaks split and shifted by coherent space
charge effects. The broader peak is interpreted as di-
rect result of the fourth order resonance, but with a co-
herent tune shift, which suggest that the resonance can
be approached roughly 20% more than suggested by
the single-particle response of the “frozen-in” model.
The height of this peak exceeds significantly (more than
five times) the maximum “frozen-in” response - a pro-
nounced coherent effect. The striking and unexpected
large peak at Qx = 6.273 cannot be explained as direct
result of the octupole, but is associated with an enve-
lope instability. Such an envelope instability requires a
fractional phase advance of the envelope of half an in-
teger relative to the lattice periodicity as was shown in
Refs. [2, 4]. This condition is analogous to the envelope
instability in linear accelerators, where a single-particle
phase advance above 90◦ per focusing period may induce
a half-integer unstable envelope. In the present case the
“structure period” cannot stem from the smooth first or-
der lattice, but only from the local perturbation induced
by the relatively strong octupole. The latter occurs at only
one position on the circumference, hence the total phase
advance of particles per turn is exceeding 6×360◦+90◦.

To distinguish between second and fourth order reso-
nance effects the coherent coupled mode coefficients Cmk
introduced in Ref. [5], and elaborated in more detail in
Ref. [6], are useful. In a pure single-particle picture it is
assumed that the bare machine tune should stay above
the resonance by at least the incoherent tune shift. From
the point of view of coherent resonance crossing this crit-
ical distance is multiplied by Cmk, which is smaller than
unity in most cases. The Cmk thus reflect the fact that



the additional coherent space charge force partly com-
pensates the stationary space charge force and - depend-
ing on the order of the resonant mode - allows to bring
the bare machine tune closer to the resonance than could
be inferred from the single-particle point of view. From
the position of the left peak of Fig. 2 we calculate that
C = 0.023/0.045≈ 0.5, which is typical for the envelope
breathing mode [6].

For the rms equivalent waterbag distribution in Fig. 3
we find that the envelope instability peak is unchanged.
The fourth order resonance effect is visibly reduced,
however. We explain this as a weakening of the coher-
ence induced by the finite tune spread. Note that the
“frozen-in” emittance response reflects the distribution
of single-particle tunes, which is the origin of Landau
damping. From Fig. 3 we note that the “frozen-in” curve
has no overlap with the coherent tune of the envelope
instability (marked by the location of the strong peak)
similar to Fig. 2, which therefore cannot be “Landau-
damped”; the overlap with the fourth order resonance
visibly weakens the coherent response.
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FIGURE 3. 2D simulation of waterbag distribution (same
parameters as Fig. 2).

For the Gaussian distribution the picture is essentially
different. The much broadened single-particle spectrum
of the Gaussian fully overlaps the position of the ex-
pected envelope instability frequency, which is therefore
effectively “Landau-damped”. The much broadened di-
rect response curve is only slightly enhanced compared
with the “frozen-in” model (Fig. 4), hence there is an
almost complete suppression of the coherent resonance
effect. There is also a region of about 0.2% loss, which is
practically identical for the self-consistent and “frozen-
in” model, and is caused by the extended Gaussian tails.

Dependence on octupole strength

The strong reduction of emittance growth, caused by
the suppression of coherent resonance response for the
Gaussian beam, is studied in Fig. 5 as function of oc-
tupole strength. The graph shows the relative rms emit-
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FIGURE 4. 2D simulation of Gaussian distribution (same
parameters as Fig. 2, note changed scales).

tance growth and intensity for Qx = 6.27 obtained from
a simulation, where the frozen-in space charge was cal-
culated by an analytical formula valid for round beams
(for faster parameter scans, and justified by section ),
i.e. equal emittances. Note the drastic suppression of the
rms emittance growth compared with the 24% of the
zero-space-charge level. The suppression is most visible
for small octupole strength, where the space charge de-
tuning is strongly dominant over the resonance excita-
tion. For octupole strengths above 100 A the shrinking
of the dynamic aperture - consistent with Eq. 2 - causes
loss from the Gaussian tails, which makes the effective
rms emittance shrink even below the starting value.

0.9

1

1.1

1.2

1.3

0 100 200 300 400

ε/ε0

I/I0

I [A]oct

zero space charge asymptotic emittance growth

FIGURE 5. 2D simulation of dependence of rms emittance
growth and intensity on octupole strength for Gaussian distri-
bution (same space charge shift as Fig. 2).

CODE COMPARISON AND
LONG-TERM EFFECTS

We have compared the output from the MICROMAP
code using 105 macro particles with a simulation apply-
ing the 3D IMPACT code [7] with 106 macro particles.
Note that IMPACT with a 3D Poisson solver applied to
the essentially 2D coasting beam problem should em-



ploy a larger number of simulation particles than is used
in MICROMAP with a 2D Poisson solver. The scope of
the comparison with two sufficiently different numerical
codes is to gain confidence in the particle-in-cell simu-
lation for large turn number. Here we particularly worry
about code-specific noise effects, which may be negli-
gible on the time-scale of 103 turns, but could have a
significant effect over much longer times.

We first compare the output of simulation at the end of
1000 turns for the case of 200 A octupole current. At this
level significant beam loss is expected, and we can thus
test both, the emittance growth and dynamic aperture ef-
fect caused by the octupole. Note that we have chosen the
slightly smaller space charge tune shift of ∆Qx = 0.075
for this comparison. The result of Fig. 6 shows excellent
agreement even in the dependence on Qx. The detailed
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FIGURE 6. Comparison of MICROMAP and IMPACT sim-
ulation for 200 A octupole and ∆Qx = 0.075 at 1000 turns.

evolution for Qx = 6.27 and 3200 turns (for MICROMAP
3400 turns) is shown in Fig. 7. It is noted that the rms
emittances show a slow but steady growth after about
1000 turns, with at the same time a continuing small rate
of loss. This steady growth cannot be attributed to just
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FIGURE 7. Evolution of MICROMAP and IMPACT simu-
lations for Qx = 6.27.

simulation noise as it is completely absent if the octupole
is turned off, in which case the relative emittance growth

is less than 10−4. It may be associated with slow diffu-
sion of particles into the dynamic aperture, hence these
particles contribute to the rms emittance before they hit
the simulation boundary. It must not be assumed that this
process continues for ever on the same rate, since tails get
depleted, and eventually the process slows down. This
was supported by an extended run of this case up to 104

turns with MICROMAP, where the growth was found to
saturate at 13% beyond 8000 turns.

CONCLUSION

This study demonstrates that for Gaussian coasting
beams, and under stationary external parameters, there is
practically absence of coherent resonance effects, which
justifies the use of non-self-consistent space charge cal-
culation. The main reasoning behind this 2D finding
is the effect of Landau damping due to the broad fre-
quency spread of the Gaussian, which is even enhanced
in bunched beams due to the additional spread from lon-
gitudinal current variation. This encourages the use of
analytical space charge models for 3D studies, particu-
larly in the realm of 105

− 106 turns as use din Ref. [1],
where fully self-consistent simulation appears imprac-
tical, except for special model tests on a reduced time
scale. Obviously, such conclusions cannot be applied to a
situation, where changing parameters (stacking injection,
peak intensity increase during bunch rotation, shifting
working point) enforce a significant dynamical change
of the distribution function.
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