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Abstract. We present a method to investigate the off momentum effects on the sin-
gle particle transverse dynamics in a non linear lattice. We show that the one turn
map approach is suitable to describe the coupling between the nonlinearity and the off
momentum. We prove that for a linear lattice with a single sextupole in the thin lens
approximation, the Hénon map description can be recovered. The computation of the
tune shift and non linear dispersion is presented. It is shown that the off momentum
dynamic aperture can be related to the dynamic aperture of the Hénon map with the

shifted tune. Extensions to the four dimensional case are briefly outlined.

INTRODUCTION

The transverse dynamics of particles in a non linear lattice has been successfully
analyzed by using the symplectic one turn map approach. This model is suitable
to describe the non linear tune shifts, the structure of resonances, and the dy-
namic aperture. For a flat beam moving in a ring of N identical FODO cells with
thin sextupoles, the one turn map is the N-th iterate of a map which is conjugated
up to a scaling the standard two dimensional Hénon map, if the off momentum
effects are neglected. Indeed the transfer map of each cell is quadratic and a
linear change of coordinates (a area preserving Courant-Snyder transformation
followed by a scaling depending on the sextupole strength) allows to write it as
the two dimensional Hénon map "2l | which depends only on the linear phase
advance w,. When the off momentum effects are relevant, as for high intensity
operations, an extension of the previous model is required.

The design particle with longitudinal momentum py follows a closed orbit, which
corresponds to the fixed point of the one turn map. In a linear lattice a particle
with off momentum ép = (p — po)/po follows a different closed orbit and the



fixed point in the one turn map is displaced. The presence of a nonlinear force
determines a further shift of the fixed point and changes the linear tune [}, As a
consequence the non linear tune shift and the dynamic aperture vary with ép.
We discuss in detail the transformation leading for any ép to the standard Hénon
map. As a consequence the change with ép of the dynamical variables of the map
is analytically determined. For instance it is simple to obtain the dependence
of the new linear tune @, as a function of the old one w, and ép, the sextupole
contribution to the dispersion éz/ép, and to relate the dynamic aperture of the
off momentum map with the standard Hénon map with linear frequency w,.

The present scheme extends to the transverse motion in the x,y plane. The same
correspondence with a standard four dimensional Hénon map is established. The
major difference arise from the structure of the 4D map, which depends from 3
parameters (linear frequencies w,,w, and ratio 3,/3;) and has four fixed points.
In some cases an interchange of stability of the fixed points may occur implying
a linear coupling and a vertical dispersion due to the non linearity.

THE LINEAR OFF MOMENTUM MAP

If the particle longitudinal momentum differs from the design one ép = (p —
Po)/po # 0, the closed orbit changes. Denoting by a dot the derivative with
respect to the arc length s the equation of motion is

op
p(s)

where k,(s) = p~2(s) — k(s), having denoted with p the radius of curvature. We

4 ky(s)r =

denote by D(s)ép the particular solution of the equation where

D+ ko(s)D = ——,  D(s)=D(s +0)
p(s)
where ¢ is the length of the reference orbit. The coordinates of the new closed
orbit are z.(s) = Dép and p, .(s) = Dép.

The general solution z(s) — D(s)ép of the homogeneous equation for the
horizontal plane is the usual solution of the Hill equation and the change after one
turn at a section s = sq is given by the one turn map L,, defined by the product of
the linear maps for the individual elements. The quantity z(s) — D(s)ép = x(s)—
x. represents the particle coordinate with respect the closed orbit. Assuming the
reference orbit is stable Tr L, = 2 cos w, we can write L, = W,;R(z.ux)W;1 so that

x — Dép l_ —1{ x—Dép
(pz_Dgp) —WzR(wz)Wz (pz_Dép



where D, D are the dispersion function and its derivative evaluated at s = sy and
the prime denote the coordinates evaluated after one turn. The matrix W, has

B3/ 0
W, = <_al 13_1/2 —-1/2

The 2D one turn map consequently reads

(2) =wreowz (250 Yew(B) o

The fixed point is now xy = (D6p,D6p) and z; = z.(s9). Introducing the

the form

Courant-Snyder coordinates by the transformation

X =W !x, x=<;z), X:(é) (2)

The linear map (1) takes the form
(X = Xy) = R(w: (X = Xj) (3)

where Xy = (X, P, ) denotes the fixed point x; changed according to equation
(2). Translating the origin at the fixed point X ; the map becomes a pure rotation.

THE NON-LINEAR OFF MOMENTUM MAP

The effect of sextupole of length £g in the thin length approximation for the case
of a flat beam can be easily evaluated using the following expression for the force
22
Fleoxit = gS K, ?6(8 — 80)

Evaluating the one turn map at the left hand of the sextupole and defining
ko = LsK, /2 the one turn map at s = s — 0 is given by the composition of the
one turn map (1) with a nonlinear kick K(z,p,) = (z, pr + k22?).

!
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This map is suitable to describe any linear lattice with a linear part L, which
is conjugated to a rotation by the transformation W, (easy to implement in a
computer code). In the Courant-Snyder coordinates the map takes the form

X -X;\ X — Xy
(Px —Pxf> (w )(Pz — P+ k8% X2 ()



Following the same procedure as in the previous section we translate the coordi-
nate system to the linear fixed point and scale them according to

~

Letting
koB.6p D
Xy =k83* Xy = .
kofBr6p(aD + 3,D)

be the fixed point in the new scaled coordinates, the off momentum one turn map

(gfs)’:R(wg’“’)(ﬁﬁ(ngXf)?) (5)

NEW FIXED POINT AND DISPERSION

reads

The stable fixed point of the map (5) X;, ]S:f is given by

~

~ Wy
X;:—Xf—l—tan7 1-—

where the condition for its existence is given by

~ 1 z
Xy < itan (%)

The stable fixed point does not exist in a neighborhood of the integer tunes
w, = 27 n with n integer and the length of this interval can be estimated if op is
small enough, by using a first order expansion which gives

wy € 270 — Aw,, 270 4+ Aw,], Awy = 4ka8: D |Ap|
where Ap is the momentum spread of the beam.

In the range of w, where the fixed point exists, if the ratio | X/ tan(w, /2)| is
much smaller than 1, we can expand X} according to

X2
Xt
f 2 tan %




In the original Courant-Snyder coordinates the fixed point is given by

X2
Xi=Xp+ k2L 4.

2tan%

In the initial coordinates the position of the fixed point reads

2

i D6
2tan%+“" vS=Eop

J:;Z =zf+ kof3e

As a consequence we introduce a nonlinear dispersion defined as

2

D=%=D+@m _

op+ ...
p tan 3

RECOVERING THE STANDARD HENON MAP

In order to bring the map (5) to a standard Hénon map we translate the origin

A

to the nonlinear fixed point X7

Separating the linear and quadratic part of the map we have

(7.) =7 [ (. axte ) + (3°)]

The linear part L, of the map can be conjugated to a rotation if |Tr(L,)| < 2.
Denoting by W, the corresponding similarity transformation and by w, the new
rotation angle we write

_ 1 0\ & pre o 1

W B le/Z 0
o \-ap, " 5"

and the parameter 3, is given by

where

—  (Ly)1z  sinw,

SIN W, SIN Wy



Equating the trace Tr L, = 2cosw, we can write

COSW, = COSWy + sinw, (Xf + )A(;) (6)

Performing the last linear transformation defined by the matrix Wz_l followed

by the scaling of Bz3/2 we define the new coordinates

X\ 5 3/2gm -1 X
(7.) =7 (5.)

and taking into account that Ww_lR(ww) = R(Ew)wx_l the map takes the final
form of the standard 2D Hénon map, which reads

(7.) === (5 )

DISCUSSION OF THE RESULTS

We first investigate the tune shift &, — w, as a function of w, and ép. To this
end it is convenient to recall that the tune is defined only when the following
conditions are satisfies

z . z 2ky 8. D 6
Z) tan % > ZkQ/Bngp’ ZZ) COS(.(J:L. + COS2 % <1 — ]_ — 217]) ) < 1

tan —
2

the first one corresponding to the existence of the closed orbit, the second to its
stability. At the first order in ép the tune w, is given by

Wy = wy — kB Dép — % (tanlwx + tan(uljm/2)> (kz,BzD)25p2

In Figure 1 we quote the tune @, as a function of w, at three different values
of the off momentum for a FODO cell with a thin sextupole. The following
parameters were chosen ky = 0.1, 3, = 10, D = 2, and the off momentum
values are 6p = 0.01, 0.05, 0.25. Only the first one is realistic in a high intensity
machine for beam compression operations. The higher values where chosen so as
to enhance the gaps where the closed orbit does not exist or is unstable and the
deviation of @, from w,.

In order to have an insight of the dynamical changes introduced by the
off momentum we compare the orbits (Figure 2) of the on momentum map (in
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FIGURE 1. Behavior of the tune @,/2n with respect to the linear tune w,/2m for three
different values of the off momentum 6p=0.01 (left),6p=0.05 (center) §p=0.25 (right)

scaled Courant-Snyder coordinates) with the off momentum one turn map given
by equation (5). The values of k2, 3;, D are the same quoted above and the chosen
off momentum value is 6p = 0.05. The phase portraits correspond to linear tunes
we/(27) = 0.1, 0.4, 0.51. 0.6. We recall that in the interval [0,0.0625] the fixed
point does not exist since condition i) is not fulfilled, whereas in the interval
[0.5,0.532] the fixed point is hyperbolic, since condition ii) is violated. For the
lowest frequency it appears that the stability region is considerably reduced by the
off momentum, since we are close to the value where the fixed point disappears.
At the mirror tunes 0.4, 0.6 with respect to the central tune 0.5 the symmetry
of the Hénon map is broken, and the tune shift effect is visible. The phase
portrait for the tune 0.51 shows that the fixed point stability is changed by the
off momentum. In all this cases the displacement of the fixed point is very small
and can be perceived only for the lowest value of the tune.

One of the main advantages of relating the off momentum map to the stan-
dard Hénon map is that the corresponding dynamic apertures are related, which is
particularly useful in the four dimensional case. We define the dynamic aperture
as the radius of the disc with the same area as the domain of stable points. De-
noting with A(w, ) the dynamic aperture of the on Hénon map and with A(w,, ép)
the dynamic aperture of the off momentum map (4) we have the following relation

sin w 3/2 1
Awg, 6p) = ( I) 7 A(@,)

; 3/2
SIN Wy, o kg

where the dynamic aperture of the Hénon map is now computed for the the
shifted frequency @, of the off momentum map, given by equation (6). Since A
is defined as the square root of an area, the scaling from the (X', P, ) variables to
(X, P,) is simply ko 33/2 Bz3/2 since det W, = 1. We have computed separately
A(w,,6p) and A(©,) verifying that their ratio agrees with the above expression
within the numerical accuracy of our computation. In order to visualize the effect
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FIGURE 2. Comparison of the phase portraits of the off momentum map 6§p=0.05 for the
following values of the tunes w/(27)=(0.1,0.4,0.51,0.6) (top left to right) with the corresponding

on momentum portraits (bottom)

of the off momentum on the dynamic aperture in Figure 3 we compare the results
for 6p = 0, 0.05,0.25. It can be noticed that the dynamic aperture is zero for
low frequencies where the closed orbit is lost and that the symmetry with respect
to the central tune 0.5 is progressively lost as ép increases. If w, is fixed, @, is
function of the off momentum. As a consequence the tune of the standard Hénon
map may cross a dangerous resonance for a certain ép. The crossing the 1/3
unstable resonance, where the dynamic aperture vanishes, is shown by figure 4.

CONCLUSIONS

We have presented a method to include the off momentum effect in any one
turn map. This methods allows to evaluate the tune shift produced by the off
momentum and the quadratic non linearities as well as the nonlinear contribution
to the dispersion. For a single sextupole contribution the dynamic aperture of
the off momentum map is related to the dynamic aperture of the standard Hénon
map with the shifted tune.

The analytical procedure was described for the case of a flat beam but the meth-
ods applies to the four dimensional case as well, even though the discussion of
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FIGURE 3. Comparison of the the dynamic aperture for the off momentum values 6p=0
(left), 6p=0.05 (center), 6p=0.25 (right)

the stability of the fixed points is more involved. In that case a new effect arises
since, for some values of the linear tunes, a stability exchange of the fixed points
can produce a vertical dispersion.
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FIGURE 4. Effect of the off momentum on the frequency @, (left) for w,/27=0.2 and it’s
consequences on the dynamic aperture (right). The dynamic aperture is zero exactly for an off

momentum correspondent to a tune of 1/3
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