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Abstract The long term stability of betatron motion in presence of multipolar nonlin-
earities has been extensively investigated for high energy accelerators and the Hénon
maps has been proposed as a model. In high intensity accelerators the non linear effects
due to space charge and synchro-betatron coupling are relevant. We propose a sim-
ple model to investigate the coupling between longitudinal and horizontal motion due
to chromaticity. The model consists in a standard Chirikov map coupled to a Hénon
map. Diffusion of orbits is observed and the structure of resonances is inspected by the

frequency analysis.

INTRODUCTION

High intensity beams are facing new applications beyond basic research in nuclear
physics 121, In the absence of space charge the multipolar errors and the cavities
exert nonlinear forces on the transverse and longitudinal motion. The space
charge force has a defocusing effect on the transverse motion and couples it to
the longitudinal one. A synchro-betatron coupling occurs also because any change
of momentum displaces the closed orbit and in presence of sextupoles or higher
multipoles the tune changes (chromatic effect).

To investigate the coupling we propose a simple 4D model consisting in a stan-
dard map which describes the effect of a thin RF cavity and a 2D Hénon map
which describes the effect of a thin sextupole for a flat beam. We make the linear
tune vary with the longitudinal momentum and require the map to be symplectic.
This fixes the longitudinal displacement due to the coupling with the transversal
motion. When a particle is almost synchronous and near to the corresponding
close orbit, the coupling effect is negligible. For large transverse displacements
the coupling with the longitudinal motion becomes visible when a large island
is encountered, because the frequency is slowly modulated and adiabatic invari-



ance is lost close to the islands border, where a localized diffusion is observed.
When the particle approaches the borderline of the bucket, namely the pendu-
lum separatrix, the diffusion in the transverse phase plane is enhanced. A similar
diffusion pattern occurs for a Hénon map whose linear frequency is stochastically
perturbed. The frequency analysis and the tune-action map provide the global
pattern of the resonances and of the chaotic regions.

THE SYNCHRO-BETATRON MAP

The design of high energy accelerators like LHC requires a stable beam on a
high number turns (~ 10® corresponding to 10'! crossings of FODO cells). As a
consequence the dynamic aperture and the ripple induced diffusion in presence
of multipolar errors have been actively investigated 24, In the case of a high
intensity LINAC M the number of FODO cells does not exceed 10® whereas the
storage ring of HIDIF 12 has 102 cells visited during 10? turns. Since the number
of FODO crossings does not exceed 10* we are not very concerned with the long
term stability and only the short term dynamic aperture is relevant. It is well
known that a particle with momentum p different from the design momentum p,
follows a different closed orbits and its linear tune is shifted by o (p—ps)/ps. This
tune shift may be due to the structure of the linear lattice and to the presence of
nonlinear forces (sextupoles). We assume that the natural chromaticity, present
in the linear lattice, is zero. In the case of a simple lattice with a single thin
sextupole the tune shift due to the off momentum is given by [%!
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where # and the dispersion D are evaluated at the sextupole position and ks is the
sextupolar gradient. We propose the following model for the synchro-betatron
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where h is the harmonic number equal to the ratio between the RF frequency
and the revolution frequency. The function f(y) is periodic with period 1 and



such that f(7) = 7+ O(y?). We choose f(3) = (27)~! sin(27)) in all the numerical
examples considered below; if A < 1 the results are the same as for the linear
function f(j) = j. We have assumed that in our lattice there is only one RF
cavity and a sextupole nearby. The constant A is given by
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where V is the maximum potential difference of the cavity, E; is the energy of the
synchronous particle whose velocity and momentum are v, and p,. If there are
N cavities then n — n/N. The z,p, coordinates we use are scaled with respect
to the normalized Courant Snyder coordinates z, p,, and j, 8 are the normalized
longitudinal momentum and phase defined by

Ps ps’ ~ 2rh :27rh
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where ¢y = 27 h n is the phase of the nearby synchronous particle after n turns,
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for which the potential jump V sin ¢ across the cavity vanishes. For a realistic
machine like SIS we have A ~ 1072, ko = 1072 and n ~ 1, h = 4. Choosing
B =10, D = 2 we have o ~ 0.2 and «/2k33*> ~ 1. In the mathematical model
we consider the choice 2k23* = 1 and = 1 is made, leaving only A and « as
variable parameters.

Choosing o = 0 this model reduces to the standard map and the Hénon map.
Letting 6¢,, = ¢, — ¢s be the phase shift with respect to a synchronous particle
and 6F, = E, — E be the energy shift, one has [6]
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Using the kinematic identity
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and the normalized variables (2) we can write the map as
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On the other hand the Hénon map written in Courant Snyder coordinates reads
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The coupling has been chosen so that the map is symplectic. More generally we
replace the linear tune shift ay with the derivative of f(y) where f(3+1) = f(y) =
7+ O(?) so that the map is continuous on the torus. This is not relevant for
beam physics but the map, extended to any value of j, remains continuous and
bounded. To prove that this map is symplectic we show that it is the Poincaré
map of the following time periodic Hamiltonian
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where 6 p(0o) is the periodic Dirac function of period 1 in o = s/L, where L is the
length of the FODO cell. Splitting H into Hy + Hy6p(s) and introducing action

and angles 6,, j, for the transverse motion we have
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whose solution is given by
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The map from s = n to s = n + 1 of the unperturbed Hamiltonian immediately
follows and composing it with the map corresponding to the impulsive contribu-
tion in Hamiltonian we obtain
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Written in explicit form the map (6) reads
Jn — Asin(27 h 6,,)
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Replacing &, p, with z, p, according to (2) the map (1) is recovered.



ACTION-FREQUENCY MAP ANALYSIS

We have introduced the map (1) by coupling the transverse motion to the longi-
tudinal motion by the chromatic effect of the sextupole, introduced as a shift in
the linear frequency due to the off momentum. The coupling of the longitudinal
motion to the transverse one was automatically fixed by the requirement that
the map is symplectic. When the coupling vanishes the usual description of the
longitudinal and transverse motion is recovered. The model enables us to see
how the increase of the transverse emittance influences the change of the longitu-
dinal momentum. We first analyze the dynamical features of the map (1), with
n=1, 2k2 3% =1, h =1, when the potential strength A\ and the coupling « are
varied in a physically reasonable interval. Dynamically the model is well defined
even outside the bucket, namely the pendulum separatrix, and the restriction to
the torus (by the mod 1 condition) makes the map bounded. If A is large the map
becomes chaotic and the model describes a random perturbation to the linear be-
tatronic frequency is av is small. At A ~ (27)7! the chaotic transition occurs since
the last KAM curve is broken whereas for A < 0.1 the map is a good integrator
of the pendulum and the phase portrait is almost the same. When the coupling
is switched on the phase plots show that the pendulum drive on the oscillator is
significant and the reverse is even more important. In order to analyze the global
aspects of the dynamics such as the location and strength of nonlinear resonances
or the presence of chaotic regions it is convenient to have a two dimensional plot
in frequency space or in action space, since the 2-dimensional or 3-dimensional
projections do not allow to obtain a global view of the dynamics.

Analysis of 2D maps

We first describe the frequency analysis when the system is uncoupled. The fre-
quency analysis for integrable systems is locally defined in every region delimited
by a separatrix. For the Hénon map in the neighborhood of the origin, (almost
all) the invariant curves are slightly distorted circles represented by

T = (2a)1/2 cos ¢, pe = —(2a)/? sin ¢
(8)
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where ©, J are the angle-action coordinates and f, ¢ are periodic functions.
Expanding the invariant curves in a Fourier series we write

T—ips =Y cx(J)e™® (9)
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FIGURE 1. Frequency plots for the Hénon map on the line p,=0 for linear frequencies
w/27=0.21. On the left is shown v(z)=Q(z)/2x, on the right the histogram of the frequency
density p(v)

The orbits of the map with a non-resonant frequency are dense on a close curve
and their Fourier representation is given by

Toipy =Y cretknANTOO) (10)
k

We choose the points uniformly distributed on a half line issued from the origin,
for instance the positive & axis. The frequency of each orbit issued at the point
(2,0) is © = f(x) and the density of points in frequency space is

-1
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If Q is locked to a resonance £ for & min < © < @ pmax then f(z) ~ Qu — |z —
2 min |1/" with @ > 1 for < @ min . The density p(Q) vanishes as (2 — ,)* !
by approaching £2,. There is an empty region around {2, and p diverges at €.,
see figure 1, where the tune v(z) = /27 plot and the histogram p(v) are shown.
The action is given by

_]{pq__/ aq 240 = 5 Zk|ck|2 (11)

and is defined at every point where £ is non resonant. The map Q(.J) is known
for every trajectory with non resonant {2 since the tracking points are dense on
the closed orbit. For a resonance, the frequency 2 is locked and corresponding
action interval is [J min , J max | Where the ends correspond to the actions of the
inner and outer separatrix.

Defining J by the sum (11) over the resonant Fourier components we find that
its value falls in the interval [J min , J max |, see figure 2. This is not surprising by
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FIGURE 2. Action J(z) of the Hénon map with linear frequency w/27=0.21 for the points

of the line p,=0 (left), tune-action map v(J) (center), action density p(J) (right)

considering the interpolated orbit, which cannot reproduce the islands having to
be connected but falls between the inner and the outer separatrix.

As a consequence the plot Q(.J) has holes where the frequency is locked and the
width of the hole is the resonance width, see figure 2. The analysis extends to
any 4D map.

DYNAMICAL FEATURES OF THE MODEL

We describe the dynamical behavior of the map (2.2) where 2k?3% = 1 and
h = 1. The linear tune of the Hénon map is chosen to be w, /27 = 0.21 so that
the nonlinear tune decreases and locks on the resonance 5 as we move out from
the origin. The chain of islands intersects the z axis on the interval [0.45,0.65]
and the dynamic aperture is at + = 0.8. We have analyzed the 2D projections of
the orbits for A = 0.001 by varying the coupling from a very small o = 1073 up
to the physical value o = 1071,

The normalized coordinates (z,p,) were chosen in the interval [—1,1]; since
6.7 vary in the interval [—1/2,1/2], in order to have the same range in both
phase planes we plot (26,2j). The linear frequency of the standard map is
wj/2m = (A\/27)Y/? = 0.0126 and the amplitude of the island corresponding
to the pendulum oscillations is Aj = 2(\/27)'/? = 0.252.

The figures 3 shows for &« = 0.01 the projection of the orbits in the x, p, plane for
two initial conditions in the other plane 3o = 0,26y = 0.1, close to the elliptic fixed
point, and jo = 0, 26y = 0.99 close to the hyperbolic fixed point. The projections
in the 6, j phase plane are also shown for two distinct initial conditions xy =
0.2,p, 0 = 0 close to the origin and zy = 0.7,p, ¢ = 0 close to the dynamic
aperture.

The frequencies for all the orbits for initial conditions in the region 0 < zy <



FIGURE 3. Phase plots of the Hénon map with w,/27=0.21, «=0.01, A=0.001. Phase plane
z,p, with initial conditions: 70=0, 26,=0.1 (left), 70=0, 260=0.99 (center left) Phase plane 26, 2;

with initial conditions z¢=0.1, p ¢=0 (center right), z0=0.7, p, ¢=0 (right)
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FIGURE 4. Frequency analysis for w,/27=0.21, =0.01, A=0.001. Plot in the v,, vy plane
(left), plot v,z (center left), plot vy versus 26 (center right), error plot in the plane z, 26 with
a scale [0,0.01] (right)

0.7, 0 < 26y < 0.99 and p, o = jo = 0 have also been computed chosing a
uniform grid of 100 x 100 and 2000 iterations for each initial condition (the 600
MH CPU time is 1 minute since only one harmonic is evaluated). The results
are shown in the figures 4. For a very weak coupling o = 0.001 the projection
of the orbits in the x,p, plane is almost unaffected, whereas in the 6, plane
a deformation is visible when the initial condition in the (z,p,) plane is chosen
inside the islands. For the intermediate coupling o = 0.01, see figure 3, the
chaotic layers near the separatrices in both planes are well visible. The width
of the layer in the z,p, plane is the largest for initial conditions close to the
separatrix in the (6, ) plane. The width of the chaotic layer in the (6, j) plane
becomes significant when we cross the island and approach the dynamic aperture
in the (z,p;) plane. We show also an error plot of the Fourier reconstruction of
the orbit: points with large errors are scattered and correspond to chaotic orbits.

We have also considered another example with a linear frequency w, /27 = 0.175
and A = 0.18, above the critical value A, ~ (27)~!. In this case the linear fre-
quencies are comparable since w;/2r = 0.178; the coupled 1 : 1 resonance and
many others appear. Since A is large, the map is a bad integrator of the pendu-
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FIGURE 5.
tions: jo=0, 260=0.1 (left), 30=0,260=0.99 (center left) Phase plane 26, 2; with initial conditions

Phase plots for =0.175, a=0.01, A=0.18. Phase plane z,p, with initial condi-

£0=0.1, p; 0=0 (center right), z0=0.7, p, ¢=0 (right)
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FIGURE 6.
(left), plot v,z (center left), plot vy,26 (center left), error plot in the plane z,26 with a scale
[0,0.1] (right)

Frequency analysis for w,/27=0.175, =0.01, A=0.18. Plot in the v, vy plane

lum, whose linear tune (A\/27)'/2 = 0.169 differs from w;/27. The separatrix is
replaced by large stochastic layer and initial conditions there produce a random
perturbation of the linear frequency of Hénon map, see figures 5. Many resonant
structures are visible as confirmed by the frequency analysis, see figure 6.

A physical example

We have considered the mapping (1) for a set of the parameters compatible
with SIS namely k2 = 0.01, 8 = 10,D = 1 so that & = 0.1 and the coeflicient
(2k33%)~! which multiplies the coupling term in the longitudinal plane is equal
to 5 rather than to 1, the value chosen in the previous examples. For comparison
we have condered first a case where the dispersion is very small D = 0.1 so that
a = 0.01. The dynamic aperture in the normalized variables is A = 0.6 along the
T axis.

In the weakly coupled case & = 0.01 as long as we remain up to 1/6 the dynamic
aperture, the coupling effect is negligible in the longitunal cordinates; the effect
becomes apreciable at 1/2 of the dynamic aperture and has a strong randomizing
effect close to the dynamic aperture. Due to the absence of resonances of appre-
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FIGURE 7. Phase plots for w; /27=0.295, «=0.1, A=0.001. Phase plane z,p, with initial con-
ditions: j0=0, 26,=0.1 (left), j=0, 26=0.99 (center left) Phase plane 6, j with initial conditions
£0=0.1, p; 0=0 (center right), z0=0.3, p, ¢=0 (right)
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FIGURE 8. Frequency analysis for w,/27=0.295, =0.1, A=0.001. Plot in the v,, vs plane
with initial conditions restricted to 0<z<0.2, |260|<0.75 for (left), plot v,z (center left), plot
vp,26 (center left), error plot in the plane z,28 (right) with a scale [0,0.0001]

ciable width the effect of coupling in the transverse plane is small, also when we
are close the separatrix in the longitudinal phase plane (this is partly due to the
factor (2k33%)~! which is larger than 1 and enhances the coupling effect in the
longitudinal phase plane).

For strong coupling & = 0.1 below 1/6 of the dynamic aperture, namely for
pzo = 0,0 < g < 0.1, the orbits in the longitudinal phase plane are weakly
affected at least for initial conditions 0 < 26y < 0.9, jo = 0, see figure 7. Up
to 1/3 of the dynamic aperture namely p, o = 0,0 < 2y < 0.2 the longitudinal
orbits are still regular at least for 0 < 26, < .75, j0 = 0. Approaching the
dynamic aperture the longitudinal motion becomes very chaotic and the fixed
point is displaced. In Figure 8 we show the frequency plots for initial conditions
in the range 0 < 29 < 0.2, p,o =0 and 0 < 26y < .75, 30 = 0. Approaching the
dynamic aperture the longitudinal motion becomes very chaotic.

Action frequency map and resonances

In order to have a better understanding of the dynamics when it is more intricate
we have carried a more refined frequency analysis choosing a 600 x 600 grid and
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FIGURE 9. Frequency analysis for w;/27=0.175 «=0.01, A=0.18. Plot in the v,, vy plane
of the points with a discrepancy less than 0.01 (upper left). Resonance lines in the z,26 plane
(upper right). Plot of nonresonat tori in the actions plane (v/J, vJs (lower left). Resonance
lines in the actions plane (v/7,, /75 (lower right)

evaluating the harmonics up to order 10 (600 MH CPU time ~ 7 hours ). We have
chosen w, /27 = 0.175 and A = 0.18 and a = 0.01. The frequency plot v,, vy, see
figure 9 is obtained by dropping the points where the mean discrepancy between
the signal and its reconstruction is larger than 0.01. A resonance plot consists of
all the points in the x, 26 plane whose orbits are resonant.

The actions for all the nonresonant orbits have been evaluated. In the actions
space J;/Q, J;/Q we plot all the points which correspond to the non resonant
orbits. The resonances in this plot are empty channels. Finally we have also
determined the values of the action given by the algorithm (11) within the reso-
nances (excluding the 1:1). The lines so obtained fall within the empty channels
of the previous plot and are close to the resonance lines in the z, 26 plane, as one
should expect close to the stable elliptic point from normal form theory [,



CONCLUSIONS

To summarize the proposed model seems adequate to describe the synchro-
betatron coupling. As we should expect far enough from the dynamic aperture
the coupling effect is small and the longitudinal motion is scarcely affected. By
increasing the transverse amplitude, the longitudinal orbits are distorted and
then become chaotic. The frequency analysis proves to be useful to determine
the safety regions. The longitudinal motion affects the transverse one when res-
onances are present. In this case the islands become chaotic especially when the
initial condition are chosen close to the separatrix in the longitudinal phase plane.
The diffusion process can be analyzed in this case following well established tech-
niques. From the dynamical point of view the model is rich and allows to explore
different regimes. For instance when A approaches the critical value A = 1/27
the linear frequencies become comparable and many coupled resonances appear
as for coupled Hénon maps. A large stochastic layer appears in this case and for
initial conditions there the transverse motion is almost the same as for a random
perturbation of the linear betatronic frequency. This model can be used also to
explore how a random perturbation in the longitudinal coordinates determines a
diffusion of the emittance.
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