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Abstract. Inthe FAIR [1] facility planned at GSI high space charge etfffeand nonlinear dynamics may play an

important role for limiting nominal machine performancéelmost relevant interplay of these two effects on the
single particle dynamics has been proposed in terms of itngpd particles into stable islands [2]. Subsequent
numerical studies and dedicated experiments have foll§8set]. We present here the effect of the chromaticity
on the mechanisms of halo formation induced by particlepiragpinto resonances.
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INTRODUCTION In the real space the distribution Eq. 1 reads
Beam loss control is an important issue for high-intensity p(x,y.2) O exp _ﬁ B y_2 B i @)
heavy ion rings of the new generation [1]. The new ' 202 207 207)°

design challenges need to be supported by theoreti-
cal/numerical understanding of the basic relevant bearhiere dx, oy, 0; are thex,y,z rms bunch sizes and; =
loss mechanisms. PIC simulation would present here g/E;f3;.
difficulty: the long term storage of a bunched beam, typi- In order to simplify the problem we consider an axi-
cally 1¢° turns, results in unreasonably large CPU times.symmetric beamd = oy) and we will refer throughout
Alternatively to the self-consistent approach, a pariicle this paper to the horizontal plane. In the condition of
core model of the 3D bunch in a nonlinear lattice cansmall aspect ratigy/o; < 1, common in realistic bunch
be used. Even if the validity of this model is confined to operation, the transverse electric fiefgd in the point
small beam loss, we expect in this limit to obtain a reli- (x,y,z) is obtained in good approximation by the space
able indication on basic mechanisms of beam loss. charge of the local portion of the bunch neighbouring
which resembles a coasting beam [6]. Therefore we can

SIMPLIFIED MODEL OF A BUNCH IN A apply the approximation
NONLINEAR LATTICE Gy = ke FB X1 R (g

The Im_ear F"V”f”‘m'cs is modelled _by using the smO.Othwhere the electric field is normalized in units of the
approximation in all three space directions. The motion

of one particle is then governed by three harmonic Osstandard equation of motion [M; the perveance is
Hefi _ 3133 — 2\

cillators of strength& = (Qu/R)? ky = (Qy/R)?, and aeflnedtasifj_fql t/rsznﬁ)m B 1‘yt3r)1 a”dtf ot X +yrt. q

k; = (Qp/R)% where Qs Qyo, Qo are the horizontal ereq stands for the charge of the particle transported,

vertical and longitudinal tuneR s the radius of the ring. Is the bunch peak currerg, the permettiviym the mass

Consistently a stationary Gaussian bunch (with small i”'?rfetﬁlsnp;;t&ci:?;\fgﬁg ;E)eg;j tf?:z ll')gur:f Py:th\g/ rcel\z,:lvtlit\t]is\tlizc
tensity) can approximately be represented with the dis; 9 . yort ’ .
factor. The equation of motion for one particle becomes

tribution then
Ex gy & 2 2 2 2
, +22(5) 02— ¥?)
whereg; = x?/B; + x 23 are the Courant-Snyder invari- 74 (Q_zo)zz -0
ants,3 = R/Qjp the beta functionsk; the beam emit- R ’

4
The quadratic term witedependent strengty(s) mod-
els the effect of a sextupolar error to the lattice linearity

tances and = x,y,z Throughout the papd)’ = d/ds.



For particles with small amplitude in all 3 directions the o

b o
linearization of Eq. 4 allows to relate the perveaice ~. £
with the maximum tune shithQx and we find o -

203 0.25F
K = 5 (2Q:0AQx — AQ%). (5) :
OF
In order to discuss the interplay of space charge forces E
with the single particle nonlinear dynamics we take the -0.25 E
typical parameters of the SIS18 synchrotron foreseen to 05 2
become the injector of the SIS100 in the FAIR project TE
[5]: R=34.4 m, Qy ~ 4.3. The maximum tune shift is -0.75F
taken af\Qy = 0.1 andox = 0.01 m. The numerical stud- }
ies are performed by transporting a particle via the lat-
tice linear map with 101 space charge kicks per betatron
wavelength. The nonlinear lattice is obtained by concen- o
trating all the nonlinear components in a single kick. We 434
take the integrated kick of strength = a; x 2nmR=0.05 )
m-2
4.32
STABLE ISLANDS OF THE FROZEN 43
SYSTEM '
' . ; , 4.28
We first explore the properties of a “frozen system”, for
which we assume that the longitudinal motion is frozen
4.26
(Qo — 0).
In this limit Poincare’ sections can be drawn for each b b b b b b

Oy

1 2 3 4 5 6

z as the longitudinal motion is suppressed. In Fig. 1a we e
X

plot atz= 0 an example of phase space orbits and in
Fig. 1b correspondent tunes obtained by FFT [7]. Note
that the position of the islands depends on the distancg|GURE 1. a) phase space orbits at 0; b) correspondent
of the bare tuneQ,o from its value at the third order tunes.
resonance Qy = 13. In Fig. 1 we takeQy = 4.35.
Qualitatively the center of the island (locatedxat 0) X =Y = 0; instead foz > z no islands are present in the
in this longitudinal section is obtained by the interceptio phase space. Ry — Qxres > AQx then the resonance
of the single particle tune curve in the absence of externatondition never occurs.
sextupoles (dotted line) with the horizontal ligg = For the parameters used hexe= 1.890;. In Fig. 3
Qures- In Fig. 1b the horizontal flat indicates that the we plot the projection (cut g = 0, x > 0) of the fixed
particle is locked in to the islands, and the fractional tungpoint and edge of the island as functionzofThe island
1/3is obvious. has the outer position and maximum sizezat 0, then

In Fig. 2 we show how the islands of the frozen systemfor largerz the fixed point approaches the closed orbit.
change position foz = 1.30,. At large z the islands Note that the islands merge into the origirzat 1.90; in
approach the closed orbit and have smaller size. This igood agreement with the prediction of Eq. 6. We also
explained as result of the weakening of the transversgéomputed the fractional tun@ys on the island fixed
space charge for increasirgy which is related to the point (Fig. 4). The tun&ys is maximum inz= 0 and
maximum tuneshift of the frozen systemxat y = 0: approaches zero at

AQ(2) = AQe Z/(29%) (6) TRAPPING INTO THE RESONANCE

For largez the maximum tune-shihQ(z) decreases, During the synchrotron motion a particle sees at each in-
thus reducing the space charge effectiveness in creatingant, i.e. at each, an instantaneous phase space topol-
the island. From Eq. 6 follows that@y — Qxres <AQx  ogy as described by the analysis of the frozen system.
and Qo > Qxres, there is a longitudinal coordina®  The dynamical picture is that of an island which oscil-

such thanQ(z ) = Qo — Qxres- There the islands merge |ates in the phase space.
the origin because the resonance condition is met on
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FIGURE 2. Island position as function af FIGURE 4. Tune of the fixed point vz
area returns back to the same value, where the original
trapping occurred [9]. The condition of adiabaticity is
y ] determined by:
E 6F « The speed of the island, which we approximate as
X the speed of the fixed poidtx; (n)/dn. Herex; (n)
St is the position of the fixed point,
4t - The size of the islandx(n);
: « The tune of the fixed poir®y: (n).
3; The variablen is the number of turns. If during one
2F revolution around the fixed point the island moves more
- than its size, the particle may not remain trapped. This
1f condition can be formulated in terms of an adiabaticity
E parameter
O....I....I....I...I....I....
0O 05 1 15 2 25 3 T axt (n) 1 @
zl o, = 7on Qu(nxn)’

_ _ ~ 1. The parameteil is equivalent to the local adia-

The results of the previous section can be maintainegaticity parameter used in the analysis of the pen-
in terms of the single particle transverseand longitu-  dulum with time-varying amplitude (see [10]) where
dlna! €, emittances. In fact we can define the threshoIdAX(n)/(@xf(n)/an) gives the characterisitc time scale of
longitudinal emittance as: = ZQ,0/R. Then for apar-  the perturbation (locally) and/Qy; the time scale of
ticle with & ~ 0, if & < £z, there is no longitudinal po-  the revolution around the fixed point. Typical (n)
sition allowed by the SynChrOtron motion in which the andAx(n) are depending on the space Charge tune shift
island intercepts the orbit of the test particle. ViceversapQ, and on the strength of the resonamge whereas
for ?Z > &4, there are-tWO |Ongltudlnal pOSitionS Whe-re OXs (n)/dn depends also 0'@20: the Sma"eero the
the island overlaps with the particle orbit. The resultingsjower the crossing and the more the adiabaticity is ful-
dynamics is that the oscillation of the island crosses refjlled. In Fig. 5 are shown two examples of the depen-
peatedly the particle trajectory. o ~dence ofT from z for different longitudinal tunes. The

When the island crossing is "adiabatic”, a particle adiabaticity is more critical at large synchrotron ampli-
can be trapped into the island if the island a®#&  tyges.
such thatS' > 0 during the passage [8]. According to  |n Fig. 6 is shown the motion of a particle f@g =
this theory the particle remains trapped until the islands 35 Q,, = 5 x 1075 and initial coordinateg = 1.50,
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FIGURES. Adiabaticity parameter as function oz for two 0.2 _
longitudinal tunes. T
z= 30z, all other coordinates are zero. &g is small, 0 _
the trapping in one synchrotron oscillation into the third 020
order island is allowed. In a) is plotted the single particle T
invariant & /&y during 1 synchrotron oscillation. Note 04k
that the trapping occurs after 0.15 synchrotron oscilla- T
tions which corresponds to= 1.80; consistently with v R R R

Fig. 5; the detrapping occurs at 0.35 synchrotron oscil- -2 0 2 4
lations, the symmetric point in the second half of the x/a,
bunch. The second trapping shown in Fig. 6a occurs dur-
ing the second half of the synchrotron oscillation. Theg, surE 6. Trapping of a particle during one synchrotron
differences between values ef/&o before and after oscillation: single particle invariant a); phase space b).
trapping are due to quasi random jumps of the adiabatic
invariant at the separatrix [8, 9]. In Fig. 6b is shown thatgepending on the size of the island and its speed of cross-
the outer position of the trapped particle @ 3s given  jng the particle orbit, which are depending on the trans-
by the farthest position of the islands of the frozen sys—erse position. The number of turns needed to reach an
tem. ) amplitude large enough to ensure particle trapping into
If we consider synchrotron tunes closer to those usegk|ands is therefore sensitive to the initial conditionr Fo
in standard operation, for examplo = 102, the dy-  petter representing the diffusive stochastic behaviour we
namics is completely different. In this case, as shown inrack 10000 particles with different initial conditions in
Fig. 5, only particles withz/o;| < 0.7 will be crossed  the range 0< x < 4.50%, z= 30, (all other coordinates
by an island in an adiabatic regime. The resulting dy-zero). In Fig. 9 we plot in synch. osc. units the aver-
namics is shown in Fig. 7: the repeated resonance Crosgge time needed in order that the test particle reaches
ing induces a "scattering" of the single particle invariant x — 4 54, The average is obtained by taking the time of
Over many synchrotron oscillations the repeated scaty group of 50 consecutive initial conditions. The corre-
tering produces a stochastic diffusion which brings thejation is clearly shown: the smaller the initial amplitude,
particle to large transverse amplitudes. When the particlgne larger the number of crossings to reach 4.50;.
transverse amplitude is large enough the crossing of is-

lands through the particle orbit occurs at smalo;| en- HALO FORMATION
suring adiabatic trapping. In fact in Fig. 8 trapping occurs

\I’:VPO?Q 8FX|/g £X% ?hg itglztnlc? éggir;oas??#it:(:)?ﬂrctﬁtcz 231?“ w deAS the outer position of the island is roughly given by the
only atz= 0.7g, but thereT ~ 1 (see Fig. 5) and the interception ofQyres With the effective depressed tune

adiabatic trapping can oceur Qx, the outer position of a particle is a function of the

S . . . distance from a resonan€®g — , the space charge
The diffusive process is nonlinear as the scattering is Qo — Qxres P 9
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FIGURE 7. Scattering oy during 1 synchrotron oscillation. 0.25 E
tune shiftAQy, and the resonance strength. As guideline 0
the above discussed mechanism allows to infer that for C
tunes approaching the resonaigg — Qxres, the fixed -0.25 E
points, virtually, are shifted to infinity. Eventually part C
cles reach the dynamic aperture and get lost. In Fig. 10 -0.5 F
we plot the outer position of a particle for different tunes. Ll .. T il
The test particle has initial condition= 1.50y,z = 30, 4 2 0 2 4
all the other coordinates are zero. The outer position is x/ o,

taken over 2< 10° turns.

As previously discussed, all particles with~ 0 and
& > & are periodically crossed by the islands. In the
longitudinal phase space the fraction of partidé§/N,

which satisfies this condition, is given by the area deter- . . Lo .
. " ’ ) - h .F I h h -
mined by the conditiols, > 4. For a Gaussian distribu- via chromaticity. For simplicity we consider here the nat

tion we find ural relative chromaticitgy = &, = —1 which yields

FIGURE 8. Scattering and trapping of a particle during 100
synchrotron oscillations. The longitudinal tuneQg = 10~°.

AN o 8
N ° ’

8 ~ 0| ~ 0|
®) onzon(l—f), QyOZQyO(l—?p)7 (10)
which together with Eq. 6 yields

AN where now we denote with the tunes of the off-
=T M‘. (9) ~momentum particle in the absence of space charge.
N AQx When Egs. 10 are added to Egs. 4 the dynamics be-

If the maximum amplitude of the fixed points is beyond COmes more complex. A first consequence is that the
30, then Eq. 9 underestimates the fraction of particlestun€ Qx of a test particle can distinguish if the particle
which will be extracted from the bunch and brought S gaining or losing longitudinal momentum. The con-
to large amplitude populating the halo. If the externaltribution of the chromaticity to the detuning &Qy. =

part of the halo intercepts the beam pipe or a dynamicEQo+/&/B.—2%/BZ/In| with n the slip factor. The
aperture chaotic region, then more thaN /N particles ~ SI9n +/- is used for loss/gain of longitudinal particle mo-

are lost during long term storage. mentum. If the test particle has small transverse ampli-
tude the total transverse detuning becomes
EFFECT OF THE CHROMATICITY
8Q(2) ~8Qee #3022 )

Until now the analysis has been carried out for zero mo-
mentum spread. When this effect is included the transwhereAQyco = Qxo+/€zrax/Bz/ 11| IS the maximum chro-
verse tunes depend on the particle off momenéyonp matic detuning for a particle with amplitudgex =
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FIGURE 9. Turns, in synch. osc. units, necessary to bring
the test particle to maximum amplitude.
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FIGURE 10. Halo radius vs tun&yg. The dot-dashed line
represents the position of the resonance. The halo radgs mi
ing is at infinity (particle loss).

v/ Bz&zax» the bucket is therefore defined Byax, AQxco.
In Eq. 11z, is the maximum amplitude of the test parti-

cle.
In Fig.11a is shown the tur@y along the bunch for a
particle withzy, = 30; in a bucket defined bgnx = 307,
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FIGURE 11. Single particle tun&)x a) and invariant b) of
a particle during one synchrotron oscillation in presente o
chromaticity.

tial coordinatex = 1.50950y, z = 30, all other coor-
dinates are zero. The difference in the maximum value
of the invariant depends on the sign &p/p. In fact

the farthest position of the island is approximately given
by the interception of the tune curve a& 0 with the
Qxres = 4+ 1/3, and the presence of the chromaticity
shifts the full tune curve of- AQ,. = 0.01 according to
whether the particle is losing or gaining momentum. The
shift is affecting the position of interception wiy res,
which is occurring at smaller transverse amplitudes when
the particle loses momentum, and at larger amplitudes
during the other half of the synchrotron oscillation. This
is shown in Fig. 12 where the transverse tune was mod-

AQyo = 0.01. The space charge tune shift is taken as

AQx=0.1. Note that, due to chromaticity, different effec-
tive maximum detunind Qs /AQ, are obtained when the
particle moves forward/backward in the bunch with re-

_ AQe /%) AQu
1+ [x/(200)]%2 " Zmax

elled as
V2 -2 (12)

AQ(x,2)

spectto its average velocity. In Fig. 11b is shown the evo-This approximation for amplitudes > 30y has a rel-

lution of the single particle invariant in one synchrotron
oscillation forQ, = 5 x 10~°. The test particle has ini-

ative error with respect to the numerical values less
than 2x 104, By imposing in Eq. 12 the condition
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FIGURE 12. Tune dependence on amplitudezat O for the FIGURE 13. Halo radius vsQyg in presence of chromaticity.
maximum and minimundp/p. The arrows show the position The dashed (blue) line is the halo radius Wiy = 0.
of the islands.

. ] ] shifted by 0.01, which is exactly the maximum chro-
Qo — Qxres = AQx(X, 2) we find approximately the po-  maticity. At Qo = 4.35 the halo extension is. Foy for
sition of the islandx"and of the value of the invariants the curve without chromaticity, and &% for the curve

(¢ 2 i i i . . ! ..

&/ &0 = (X/1.5)%, from which we retrieve then Fig. 62, wjth chromaticity. These two halo radii correspond to

and Fig. 11b. & /&0 equal to 14.5 and 100 respectively. The discrep-

ancy with Figs. 6a, and 11b stems from the fact that in

CHROMATICITY INDUCED those two examples the particles trapped remained al-
STOP-BAND ways close to the fixed pointsdk and &y respectively).

When the bare tun@g is set in the ban@y res < Qxo < EFFECT OF CHROMATICITY ON THE
Qx res +AQxc0 Zm/ Zmax the limit tuneQy(x — ) for weak HALO
resonances always crosses twice the resonance during

one synchrotron oscillation. That means that the islandgpomaticity has an interesting consequence on the halo
are always (virtually) broughtto infinity. All the partide  5rmation. For example in Fig. 12 in the synchrotron

with maximum amplitudem such that oscillation half, in which the particle loses momentum,
Qo — Oxres the halo radiush, is located at 8y, whereas in the
Zn > Zm = Tmo’zmax (13)  other half the haldy, is located at Boy. This leads to

the simultaneous presence of two halos that may share

and whose transverse amplitude is crossed by the resghe same particles. However these two halos have been
nance will be eventually lost. The time scale in which thecomputed for a test particle with maximum amplitude
particles are lost is dependent on the scattering and trag;, = 30,. Inside the bunch each particle has its own
ping process (see Fig. 9). Note that according to Eq. 13naximum amplitudes,, and consequently its own halo
whenQyo — Qxres thenzy — 0, but that does not mean  radii hy, hy. In Fig. 14 we show the extension of the halos
that all particles of the bunch are lost. In fact in this casefor particles with differentzy,. The two halos merge at
the islands are pushed to very large amplitudes, but not,, = 0 because a particle of zero longitudinal amplitude
for all particles the islands will reach= 0. This limits  has dp/p = 0. Fig. 14 suggests that the effect of the
then the fraction of unstable particles. An estimate of thechromaticity is to make the global halo non-uniform.
fraction of particles which are unstable via space charge As for on-momentum beams, each particle has a char-
and chromaticity will be the subject of future studies.  acteristicZ where the islands merge into= 0. This

In Fig 13 we show the position of the outer most parti- quantity is a function of the maximumdp/ p of the test
cle during 2x 10° turns as function of the tur@y. For  particle considered, argl éan be computed with Eq. 11.
better showing the effect of the chromaticity we plot in By using Eq. 6 we find; = 1.890, and from Eq. 11 we

dashed blue the halo radius curve i@ = 0. Note  find that for the haldy the interception points of the
that the tunes, where the halo is brought to infinity, is



islands with the closed orbit satisi, > % > z. This

ACKNOWLEDGMENTS

means that the fraction of particles to be brought to the

haloh; is again larger thaAN /N = (Qxg — Qx res) /AQx.
For the smaller halb, we findZ < z and therefore the
number of particles, which populate it is larger than in
h;.
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FIGURE 14. Halo radius for particles with different maxi-
mum longitudinal amplituden,.

CONCLUSION

The problem of the long term storage of a high intensity
bunch has been described in terms of the single particle
dynamics in a simplified model. We have investigated the
effect of the chromaticity on the previously studied trap-
ping mechanisms [2]. We found that the chromaticity in
addition to space charge and synchrotron motion creates
a stop band as large as the maximum chromatic detun-
ing. The beam loss in the stop band is then a function of
the vicinity of the bare tune to the resonance. This effect
of chromaticity may help to explain the loss regime ob-
served in a previous experiment [3], but detailed simula-
tions are needed to quantify the effect. On the emittance
growth regimes we find that the presence of a momen-
tum spread in a bunch does not destroy the process of
trapping/detrapping but rather enhances the halo radius.
In this study we found evidences that the simultaneous
presence of two halos does not change substantially the
time (turns) needed to reach full trapping and transport
to maximum halo amplitude. The effect of the simulta-
neous presence of two halos and of two crossing regimes
on beam loss merits further studies.
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