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Abstract. In the FAIR [1] facility planned at GSI high space charge effects and nonlinear dynamics may play an
important role for limiting nominal machine performance. The most relevant interplay of these two effects on the
single particle dynamics has been proposed in terms of trapping of particles into stable islands [2]. Subsequent
numerical studies and dedicated experiments have followed[3, 4]. We present here the effect of the chromaticity
on the mechanisms of halo formation induced by particle trapping into resonances.
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INTRODUCTION

Beam loss control is an important issue for high-intensity
heavy ion rings of the new generation [1]. The new
design challenges need to be supported by theoreti-
cal/numerical understanding of the basic relevant beam
loss mechanisms. PIC simulation would present here a
difficulty: the long term storage of a bunched beam, typi-
cally 106 turns, results in unreasonably large CPU times.
Alternatively to the self-consistent approach, a particle-
core model of the 3D bunch in a nonlinear lattice can
be used. Even if the validity of this model is confined to
small beam loss, we expect in this limit to obtain a reli-
able indication on basic mechanisms of beam loss.

SIMPLIFIED MODEL OF A BUNCH IN A
NONLINEAR LATTICE

The linear dynamics is modelled by using the smooth
approximation in all three space directions. The motion
of one particle is then governed by three harmonic os-
cillators of strengthskx = (Qx0/R)2,ky = (Qy0/R)2, and
kz = (Qz0/R)2, where Qx0,Qy0,Qz0 are the horizontal
vertical and longitudinal tunes,R is the radius of the ring.
Consistently a stationary Gaussian bunch (with small in-
tensity) can approximately be represented with the dis-
tribution
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whereεi = x2/βi + x
′2βi are the Courant-Snyder invari-

ants,βi = R/Qi0 the beta functions,Ei the beam emit-
tances andi = x,y,z. Throughout the paper()′ = d/ds.

In the real space the distribution Eq. 1 reads
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Here σx,σy,σz are thex,y,z rms bunch sizes andσi =
√

Eiβi.
In order to simplify the problem we consider an axi-

symmetric beam (σx = σy) and we will refer throughout
this paper to the horizontal plane. In the condition of
small aspect ratioσx/σz � 1, common in realistic bunch
operation, the transverse electric fieldEx in the point
(x,y,z) is obtained in good approximation by the space
charge of the local portion of the bunch neighbouringz
which resembles a coasting beam [6]. Therefore we can
apply the approximation

Ex(x,y,z) = Ke−z2/(2σ2
z ) x

r2

[

1− e−r2/(2σ2
x )
]

(3)

where the electric field is normalized in units of the
standard equation of motion [m−1]; the perveance is
defined asK = qI/(2πε0mc3β 3γ3), andr =

√

x2 + y2.
Hereq stands for the charge of the particle transported,I
is the bunch peak current,ε0 the permettiviy,m the mass
of the particle,c the speed of light,β = vz/c with vz

the longitudinal velocity of the bunch,γ the relativistic
factor. The equation of motion for one particle becomes
then
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The quadratic term withs dependent strengtha2(s) mod-
els the effect of a sextupolar error to the lattice linearity.



For particles with small amplitude in all 3 directions the
linearization of Eq. 4 allows to relate the perveanceK
with the maximum tune shift∆Qx and we find

K =
2σ2

x

R2 (2Qx0∆Qx −∆Q2
x). (5)

In order to discuss the interplay of space charge forces
with the single particle nonlinear dynamics we take the
typical parameters of the SIS18 synchrotron foreseen to
become the injector of the SIS100 in the FAIR project
[5]: R = 34.4 m, Qx0 ∼ 4.3. The maximum tune shift is
taken as∆Qx = 0.1 andσx = 0.01 m. The numerical stud-
ies are performed by transporting a particle via the lat-
tice linear map with 101 space charge kicks per betatron
wavelength. The nonlinear lattice is obtained by concen-
trating all the nonlinear components in a single kick. We
take the integrated kick of strengthA2 = a2×2πR = 0.05
m−2.

STABLE ISLANDS OF THE FROZEN
SYSTEM

We first explore the properties of a “frozen system”, for
which we assume that the longitudinal motion is frozen
(Qz0 → 0).

In this limit Poincare’ sections can be drawn for each
z as the longitudinal motion is suppressed. In Fig. 1a we
plot at z = 0 an example of phase space orbits and in
Fig. 1b correspondent tunes obtained by FFT [7]. Note
that the position of the islands depends on the distance
of the bare tuneQx0 from its value at the third order
resonance 3Qx0 = 13. In Fig. 1 we takeQx0 = 4.35.
Qualitatively the center of the island (located atx > 0)
in this longitudinal section is obtained by the interception
of the single particle tune curve in the absence of external
sextupoles (dotted line) with the horizontal lineQx =
Qx,res. In Fig. 1b the horizontal flat indicates that the
particle is locked in to the islands, and the fractional tune
1/3 is obvious.

In Fig. 2 we show how the islands of the frozen system
change position forz = 1.3σz. At large z the islands
approach the closed orbit and have smaller size. This is
explained as result of the weakening of the transverse
space charge for increasingz, which is related to the
maximum tuneshift of the frozen system atx = y = 0:

∆Q(z) = ∆Qx e−z2/(2σ2
z ). (6)

For largez the maximum tune-shift∆Q(z) decreases,
thus reducing the space charge effectiveness in creating
the island. From Eq. 6 follows that ifQx0−Qx,res < ∆Qx
and Qx0 > Qx,res, there is a longitudinal coordinatezt

such that∆Q(zt ) = Qx0−Qx,res. There the islands merge
the origin because the resonance condition is met on
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FIGURE 1. a) phase space orbits atz = 0; b) correspondent
tunes.

x = y = 0; instead forz > zt no islands are present in the
phase space. IfQx0 − Qx,res > ∆Qx then the resonance
condition never occurs.

For the parameters used herezt = 1.89σz. In Fig. 3
we plot the projection (cut atpx = 0, x > 0) of the fixed
point and edge of the island as function ofz. The island
has the outer position and maximum size atz = 0, then
for largerz the fixed point approaches the closed orbit.
Note that the islands merge into the origin atz = 1.9σz in
good agreement with the prediction of Eq. 6. We also
computed the fractional tuneQx f on the island fixed
point (Fig. 4). The tuneQx f is maximum inz = 0 and
approaches zero atzt .

TRAPPING INTO THE RESONANCE

During the synchrotron motion a particle sees at each in-
stant, i.e. at eachz, an instantaneous phase space topol-
ogy as described by the analysis of the frozen system.
The dynamical picture is that of an island which oscil-
lates in the phase space.
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FIGURE 3. Island position: fixed point and edge vs.z.

The results of the previous section can be maintained
in terms of the single particle transverseεx and longitu-
dinal εz emittances. In fact we can define the threshold
longitudinal emittance asεzt = z2

t Qz0/R. Then for a par-
ticle with εx ∼ 0, if εz < εzt , there is no longitudinal po-
sition allowed by the synchrotron motion in which the
island intercepts the orbit of the test particle. Viceversa,
for εz > εzt , there are two longitudinal positions where
the island overlaps with the particle orbit. The resulting
dynamics is that the oscillation of the island crosses re-
peatedly the particle trajectory.

When the island crossing is "adiabatic", a particle
can be trapped into the island if the island areaS is
such thatS′ > 0 during the passage [8]. According to
this theory the particle remains trapped until the island
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FIGURE 4. Tune of the fixed point vs.z.

area returns back to the same value, where the original
trapping occurred [9]. The condition of adiabaticity is
determined by:

• The speed of the island, which we approximate as
the speed of the fixed point∂x f (n)/∂n. Herex f (n)
is the position of the fixed point;

• The size of the island∆x(n);
• The tune of the fixed pointQx f (n).

The variablen is the number of turns. If during one
revolution around the fixed point the island moves more
than its size, the particle may not remain trapped. This
condition can be formulated in terms of an adiabaticity
parameter

T ≡
∂x f (n)

∂n
1

Qx f (n)∆x(n)
. (7)

The condition of adiabaticity is expressed byT �
1. The parameterT is equivalent to the local adia-
baticity parameterε used in the analysis of the pen-
dulum with time-varying amplitude (see [10]) where
∆x(n)/(∂x f (n)/∂n) gives the characterisitc time scale of
the perturbation (locally) and 1/Qx f the time scale of
the revolution around the fixed point. TypicallyQx f (n)
and∆x(n) are depending on the space charge tune shift
∆Qx and on the strength of the resonanceA2, whereas
∂x f (n)/∂n depends also onQz0: the smallerQz0 the
slower the crossing and the more the adiabaticity is ful-
filled. In Fig. 5 are shown two examples of the depen-
dence ofT from z for different longitudinal tunes. The
adiabaticity is more critical at large synchrotron ampli-
tudes.

In Fig. 6 is shown the motion of a particle forQx0 =
4.35, Qz0 = 5× 10−5 and initial coordinatesx = 1.5σx,
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z = 3σz; all other coordinates are zero. AsQz0 is small,
the trapping in one synchrotron oscillation into the third
order island is allowed. In a) is plotted the single particle
invariant εx/εx0 during 1 synchrotron oscillation. Note
that the trapping occurs after 0.15 synchrotron oscilla-
tions which corresponds toz = 1.8σz consistently with
Fig. 5; the detrapping occurs at 0.35 synchrotron oscil-
lations, the symmetric point in the second half of the
bunch. The second trapping shown in Fig. 6a occurs dur-
ing the second half of the synchrotron oscillation. The
differences between values ofεx/εx0 before and after
trapping are due to quasi random jumps of the adiabatic
invariant at the separatrix [8, 9]. In Fig. 6b is shown that
the outer position of the trapped particle at 5σx is given
by the farthest position of the islands of the frozen sys-
tem.

If we consider synchrotron tunes closer to those used
in standard operation, for exampleQz0 = 10−3, the dy-
namics is completely different. In this case, as shown in
Fig. 5, only particles with|z/σz| < 0.7 will be crossed
by an island in an adiabatic regime. The resulting dy-
namics is shown in Fig. 7: the repeated resonance cross-
ing induces a "scattering" of the single particle invariant.
Over many synchrotron oscillations the repeated scat-
tering produces a stochastic diffusion which brings the
particle to large transverse amplitudes. When the particle
transverse amplitude is large enough the crossing of is-
lands through the particle orbit occurs at small|z/σz| en-
suring adiabatic trapping. In fact in Fig. 8 trapping occurs
whenεx/εx0 ' 5 that is for an amplitude ofx = 3.3σx.
From Fig. 3 the island can cross this particle amplitude
only at z = 0.7σz, but thereT ∼ 1 (see Fig. 5) and the
adiabatic trapping can occur.

The diffusive process is nonlinear as the scattering is
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FIGURE 6. Trapping of a particle during one synchrotron
oscillation: single particle invariant a); phase space b).

depending on the size of the island and its speed of cross-
ing the particle orbit, which are depending on the trans-
verse position. The number of turns needed to reach an
amplitude large enough to ensure particle trapping into
islands is therefore sensitive to the initial condition. For
better representing the diffusive stochastic behaviour we
track 10000 particles with different initial conditions in
the range 0< x < 4.5σx, z = 3σz (all other coordinates
zero). In Fig. 9 we plot in synch. osc. units the aver-
age time needed in order that the test particle reaches
x = 4.5σx. The average is obtained by taking the time of
a group of 50 consecutive initial conditions. The corre-
lation is clearly shown: the smaller the initial amplitude,
the larger the number of crossings to reachx = 4.5σx.

HALO FORMATION

As the outer position of the island is roughly given by the
interception ofQx,res with the effective depressed tune
Qx, the outer position of a particle is a function of the
distance from a resonanceQx0−Qx,res, the space charge
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FIGURE 7. Scattering ofεx during 1 synchrotron oscillation.

tune shift∆Qx, and the resonance strength. As guideline
the above discussed mechanism allows to infer that for
tunes approaching the resonanceQx0 → Qx,res, the fixed
points, virtually, are shifted to infinity. Eventually parti-
cles reach the dynamic aperture and get lost. In Fig. 10
we plot the outer position of a particle for different tunes.
The test particle has initial conditionx = 1.5σx,z = 3σz,
all the other coordinates are zero. The outer position is
taken over 2×106 turns.

As previously discussed, all particles withεx ∼ 0 and
εz > εzt are periodically crossed by the islands. In the
longitudinal phase space the fraction of particles∆N/N,
which satisfies this condition, is given by the area deter-
mined by the conditionεz > εzt . For a Gaussian distribu-
tion we find

∆N
N

= e−εzt/(2Ez), (8)

which together with Eq. 6 yields

∆N
N

=
Qx0−Qx,res

∆Qx
. (9)

If the maximum amplitude of the fixed points is beyond
3σx then Eq. 9 underestimates the fraction of particles
which will be extracted from the bunch and brought
to large amplitude populating the halo. If the external
part of the halo intercepts the beam pipe or a dynamic
aperture chaotic region, then more than∆N/N particles
are lost during long term storage.

EFFECT OF THE CHROMATICITY

Until now the analysis has been carried out for zero mo-
mentum spread. When this effect is included the trans-
verse tunes depend on the particle off momentumδp/p
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FIGURE 8. Scattering and trapping of a particle during 100
synchrotron oscillations. The longitudinal tune isQz0 = 10−3.

via chromaticity. For simplicity we consider here the nat-
ural relative chromaticityξx = ξy = −1 which yields

Q̃x0 = Qx0

(

1−
δp
p

)

, Q̃y0 = Qy0

(

1−
δp
p

)

, (10)

where now we denote with ˜· the tunes of the off-
momentum particle in the absence of space charge.
When Eqs. 10 are added to Eqs. 4 the dynamics be-
comes more complex. A first consequence is that the
tuneQx of a test particle can distinguish if the particle
is gaining or losing longitudinal momentum. The con-
tribution of the chromaticity to the detuning is∆Qxc =
±Qx0

√

εz/βz − z2/β 2
z /|η | with η the slip factor. The

sign +/- is used for loss/gain of longitudinal particle mo-
mentum. If the test particle has small transverse ampli-
tude the total transverse detuning becomes

∆Q(z) = ∆Qx e−z2/(2σ2
z )±

∆Qxc0

zmax

√

z2
m − z2, (11)

where∆Qxc0 = Qx0
√

εzmax/βz/|η | is the maximum chro-
matic detuning for a particle with amplitudezmax =
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√

βzεzmax , the bucket is therefore defined byzmax,∆Qxc0.
In Eq. 11zm is the maximum amplitude of the test parti-
cle.

In Fig.11a is shown the tuneQx along the bunch for a
particle withzm = 3σz in a bucket defined byzmax = 3σz,
∆Qxc0 = 0.01. The space charge tune shift is taken as
∆Qx = 0.1. Note that, due to chromaticity, different effec-
tive maximum detuning∆Q f /∆Qb are obtained when the
particle moves forward/backward in the bunch with re-
spect to its average velocity. In Fig. 11b is shown the evo-
lution of the single particle invariant in one synchrotron
oscillation forQz0 = 5×10−5. The test particle has ini-
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FIGURE 11. Single particle tuneQx a) and invariant b) of
a particle during one synchrotron oscillation in presence of
chromaticity.

tial coordinatesx = 1.5095σx, z = 3σz, all other coor-
dinates are zero. The difference in the maximum value
of the invariant depends on the sign ofδp/p. In fact
the farthest position of the island is approximately given
by the interception of the tune curve atz = 0 with the
Qx,res = 4+ 1/3, and the presence of the chromaticity
shifts the full tune curve of±∆Qxc = 0.01 according to
whether the particle is losing or gaining momentum. The
shift is affecting the position of interception withQx,res,
which is occurring at smaller transverse amplitudes when
the particle loses momentum, and at larger amplitudes
during the other half of the synchrotron oscillation. This
is shown in Fig. 12 where the transverse tune was mod-
elled as

∆Q(x,z) =
∆Qx e−z2/(2σ2

z )

1+[x/(2σx)]2
±

∆Qxc0

zmax

√

z2
m − z2. (12)

This approximation for amplitudesx > 3σx has a rel-
ative error with respect to the numerical values less
than 2× 10−4. By imposing in Eq. 12 the condition
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Qx0 −Qx,res = ∆Qx(x̃,z) we find approximately the po-
sition of the island ˜x and of the value of the invariants
εx/εx0 = (x̃/1.5)2, from which we retrieve then Fig. 6a,
and Fig. 11b.

CHROMATICITY INDUCED
STOP-BAND

When the bare tuneQx0 is set in the bandQx,res < Qx0 <
Qx,res +∆Qxc0 zm/zmax the limit tuneQx(x →∞) for weak
resonances always crosses twice the resonance during
one synchrotron oscillation. That means that the islands
are always (virtually) brought to infinity. All the particles
with maximum amplitudezm such that

zm ≥ zmt =
Qx0−Qx,res

∆Qxc0
zmax (13)

and whose transverse amplitude is crossed by the reso-
nance will be eventually lost. The time scale in which the
particles are lost is dependent on the scattering and trap-
ping process (see Fig. 9). Note that according to Eq. 13
whenQx0 → Qx,res thenzmt → 0, but that does not mean
that all particles of the bunch are lost. In fact in this case
the islands are pushed to very large amplitudes, but not
for all particles the islands will reachx = 0. This limits
then the fraction of unstable particles. An estimate of the
fraction of particles which are unstable via space charge
and chromaticity will be the subject of future studies.

In Fig 13 we show the position of the outer most parti-
cle during 2×106 turns as function of the tuneQx0. For
better showing the effect of the chromaticity we plot in
dashed blue the halo radius curve for∆Qxc0 = 0. Note
that the tunes, where the halo is brought to infinity, is
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FIGURE 13. Halo radius vs.Qx0 in presence of chromaticity.
The dashed (blue) line is the halo radius with∆Qxc0 = 0.

shifted by 0.01, which is exactly the maximum chro-
maticity. At Qx0 = 4.35 the halo extension is 5.7σx for
the curve without chromaticity, and 15σx for the curve
with chromaticity. These two halo radii correspond to
εx/εx0 equal to 14.5 and 100 respectively. The discrep-
ancy with Figs. 6a, and 11b stems from the fact that in
those two examples the particles trapped remained al-
ways close to the fixed points (5σx and 8σx respectively).

EFFECT OF CHROMATICITY ON THE
HALO

Chromaticity has an interesting consequence on the halo
formation. For example in Fig. 12 in the synchrotron
oscillation half, in which the particle loses momentum,
the halo radiush2 is located at 3σx, whereas in the
other half the haloh1 is located at 7.5σx. This leads to
the simultaneous presence of two halos that may share
the same particles. However these two halos have been
computed for a test particle with maximum amplitude
zm = 3σz. Inside the bunch each particle has its own
maximum amplitudezm and consequently its own halo
radii h1,h2. In Fig. 14 we show the extension of the halos
for particles with differentzm. The two halos merge at
zm = 0 because a particle of zero longitudinal amplitude
has δp/p = 0. Fig. 14 suggests that the effect of the
chromaticity is to make the global halo non-uniform.

As for on-momentum beams, each particle has a char-
acteristic ˜zt where the islands merge intox = 0. This
quantity is a function of the maximumδp/p of the test
particle considered, and ˜zt can be computed with Eq. 11.
By using Eq. 6 we findzt = 1.89σ , and from Eq. 11 we
find that for the haloh1 the interception points ˜zt of the



islands with the closed orbit satisfyzm > z̃t > zt . This
means that the fraction of particles to be brought to the
haloh1 is again larger than∆N/N = (Qx0−Qx,res)/∆Qx.
For the smaller haloh2 we find z̃t < zt and therefore the
number of particles, which populate it is larger than in
h1.
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FIGURE 14. Halo radius for particles with different maxi-
mum longitudinal amplitudezm.

CONCLUSION

The problem of the long term storage of a high intensity
bunch has been described in terms of the single particle
dynamics in a simplified model. We have investigated the
effect of the chromaticity on the previously studied trap-
ping mechanisms [2]. We found that the chromaticity in
addition to space charge and synchrotron motion creates
a stop band as large as the maximum chromatic detun-
ing. The beam loss in the stop band is then a function of
the vicinity of the bare tune to the resonance. This effect
of chromaticity may help to explain the loss regime ob-
served in a previous experiment [3], but detailed simula-
tions are needed to quantify the effect. On the emittance
growth regimes we find that the presence of a momen-
tum spread in a bunch does not destroy the process of
trapping/detrapping but rather enhances the halo radius.
In this study we found evidences that the simultaneous
presence of two halos does not change substantially the
time (turns) needed to reach full trapping and transport
to maximum halo amplitude. The effect of the simulta-
neous presence of two halos and of two crossing regimes
on beam loss merits further studies.
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