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Abstract. A micromap approach to space charge is presented as a concept easily
implemented in a computer code. A map of arbitrary length is found to be a suitable
tool to include space charge by means of a kick approximation. We adopt space charge
description where a transverse elliptic particle symmetry is assumed, and all analysis
is carried out in a coasting beam approximation. This approach is particularly useful
to investigate the single particle dynamics when the working point of a machine lies
in a resonance driven by a skew quadrupole. Since the improvement of the multiturn
injection efficiency due to linear coupling is based mainly on the exchange of emittance
between x- and y- planes, we have investigated the emittance exchange dynamics when
space charge is not negligible. We found that a coherent effect of space charge improves
the efficiency of the exchange with respect to the case of single particle emittance
exchange with space charge neglected.

I MICROMAP

We will describe the transverse dynamics of a single particle in a magnetic fo-
cusing lattice in a coordinate system where x,y denotes the horizontal and vertical
axes perpendicular to the reference orbit (x = y = 0) and s is the axial (curvilinear)
coordinate. The particle evolution in the horizontal x — y plane is calculated as a
function of s. In these coordinates the transverse equations of motion are

¢ = (ko) = b ) o= o+ (o (1a)
y +k(s)y = fy(z,y,s) (1b)

where ' = d/ds, k(s) is the quadrupole gradient, p(s) is the z—plane radius of cur-
vature of the reference orbit, ép is the off momentum, and f;(z,y, s) and fy(z,y, s)
describe the nonlinearities of the applied focusing lattice [1].



In a linear lattice (f; = f, = 0) the solution of the Eq. (1) for the initial condition
x(s) = (z,2, 9,9 )s can be expressed in terms of the transfer map

X(s + As) = L 54 asX(8) + Ds 51 As0D (2)

where L s+ a5 is a block-diagonal matrix [1] and Dy syas = (Dss1as, D;,5+As) is a
particular solution of Eq. (1a) corresponding to the initial condition z(s) = 0 and
z'(s) = 0.

If the lattice is not linear we can represent the effects of f,, f, in the dynamics
while preserving the simplecticity of the transfer map Eq. (2) by using a single
kick approximation [1]. The nonlinear effects on the particle moving in the interval
[s, s + As] are compressed in a kick K as follows

x(s) = x(s)" — x(s + As) (3)

with K(x) = (2,2 + Asfe,y,y + Asfy)s. Therefore, the transfer map with kick
approximation nonlinear forces is

x
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X(S + AS) = Ls,s—|—AS + Ds,s—|—As(5p (4)
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Validity of this method requires that the space step As be chosen consistently with
the strengths of f; and f, and how they change with s.

In order to include space charge effects in the transverse map given by Eq. (4)
using the single kick approximation, we have to evaluate the space charge contri-
bution f¢ s to the functions f, and f, (here ( = z,y). If we consider a particle
moving in a drift, its equation of motion is
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It is straightforward to show that the relative error AA between dp./dt and
mryo(dve/dt) is less then (7 — 1)(x %2 + y 2) where 7 = (1 — §2)7'/2. Using
the parameters of the SIS ring [2], ¢, = 200 mm mrad, ¢, = 20 mm mrad,
Yemaz = 0.86, Vymaz = 1.98, Brmaz = 16.46, Bymae = 28.52, and B = 0.155, we find
that AA < 5.2-1073. Here we have denoted the z— and y—plane emittances as €,
and €y, Yoy maz a0 By maes denote the maximum values of the z— and y—plane
~ and beta functions describing the particle orbits, and [, is the relativistic factor
of the design particle.
For such parameters Eq. (5) is well approximated as

C” = fC,sc (6)

where f¢ s = qE¢ s¢/VoPo7s, ¢ is the electric charge of the particle, E¢ ;. is the space
charge electric field, vy and py are the axial velocity and momentum of the design



particle, and 2 represents the leading order correction to the electric force law due
to self-magnetic fields.
The final form of the transverse micromap with space charge kicks is

X

T+ AS(fom + -2225)
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x(s+ As) = L; 51 s

The evolution of an off-momentum particle in the step As is obtained by using the
micromap in Eq. (7)

In order to include the effect of the bend frame, the axial space step As is related
to the time step At by means of the formula

1

As=——=—
1+%(5p

At

where v is the axial velocity of the particle, p the radius of curvature of the bend,
and D is the dispersion function [3]. Note that each particle moves a different axial
As for a fixed timestep.

IT COASTING BEAM MODEL

A Macroparticle Description

In a coasting beam model with elliptic symmetry the particle density has the
form

n(x,y,s) = n(¢)

where ¢ is the isodensity parameter ¢ = z°/a2 + y®/a;, and a,,a, are the rms
transverse radii of the beam. Fig. 1 shows the scheme followed to introduce a
macroparticle description of the coasting beam. We fix a series of transverse planes
separated a distance dL from each other (Fig. 1la). Then we concentrate the
particles between two successive planes as a macroparticle distribution on a single
transverse plane as shown in Fig. 1b. We choose, arbitrarily, to put each of the
macroparticles accumulation planes at the end of the accumulation interval. Each
of the macroparticles has mass M* and charge ¢*. If n is the particle density of the
coasting beam, the two dimensional particle density on a macroparticle plane « is
0=mn-dL.

We can fill the transverse macroparticles planes of the beam with a sufficient
number N* of macroparticles to preserve the initial transverse symmetry of the
beam. Since we have chosen to keep the macroparticle distribution on planes sepa-
rated by a distance dL, it is also reasonable to keep the same average inter-particle



distance dL, in the transverse direction. From this assumption we find a relation

between N* and dL
TAB
L =
d \/ N

where A = 2a, and B = 2a,. These assumptions determine the charge ¢* and mass
M* of the macroparticles.

B Space Charge Calculation

The symmetry of the beam allows us to calculate the transverse component of
the elettrostatic space charge electric field and the longitudinal component is zero
by assumption. We assume free boundary condition. The transverse electric field
components are given by the formulas [4]
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FIGURE 1. Scheme used to introduce the macroparticles description of a coasting beam: the
real beam is represented by a macroparticle distribution on a series of transverse planes separated
by an axial distance dL.



and A = 2%/(a + s) + y*/(a2 + s) with u = z,y. To evaluate the integral in Eq.
(8) we, analogously to a previous bunched beam analysis [5], employ the change of
variables s = a?(1/u? — 1), where a = (aza,)'/®. Then E,, for instance, becomes

PRy n()2u'du o)
2¢p Jo [(% —1)u? + 1]3/2[(%% — 1)u? 4 1]1/2

Following [5,6], we expand n(¢) in a Fourier series as
> 1
n(¢) = %4 > cecos (Lgb)
2 = P

where

<1>/ cos< ¢> d (10)

and ® is the maximum value of ¢ (i.e. n(®) = 0 defines the beam edge). The
relation between the volume of the radial shell where ¢ € [¢;, d; + A¢] and the
number of macroparticles AN contained within the shell is

AN
wawaydL

n(¢i)A¢

It is straightforward to see that c, can be expressed as

i (ro;
“= (Pwawayszl ( )

If we substitute the expansion for n(¢) in Eq. (9), we can express the electric
field, for instance E,, as

c oo
Ea: = goFg(x,y,z)—l—chF;(x,y,z) (11)
=1

where F(x,y,2) = xM,q:/ex and M, is given by Eq. (9) with the density n
replaced by cos({r¢/P).

This method of describing the particle density as smooth distribution can repre-
sent the electrostatic field produced an arbitrary transverse density profile that is
constant on elliptical surfaces.

C Space Charge and Difference Resonances

When there is coupling between the transverse equantions of motion, the space-
charge ellipse of the coasting beam can be rotated about the longitudinal axis.



Such coupling can be produced by skew quardupoles and enhance various reso-
nance effects. The rotation angle o of the space-charge ellipse is function of the
longitudinal coordinate s. In this case, we can employ the previous technique to
calculate the space charge through an appropriate symmetry transformation. The
coordinate of a particle x = (z,y) in the laboratory frame is rotated back by an
angle o to X = (Z,9) = R(—a)x, where Z,§ are the coordinates in the rotated
frame. The space charge is then computed for the untilted ellipse in the rotated
frame and then transformed back to the laboratory frame. If E(x) is the electric
field for the untilted ellipse in the rotated frame, then the laboratory frame electric
field is given by
E(x) = R(a)E(R(-a)x)

where R(«) denotes a counter-clockwise rotation by angle a. To determine
the tilting angle o from the spatial particle distribution, we use the fact
that the quantity Zy = 0 in the rotated frame. The condition Z§ =
(xcosa — ysina)(zsina + ycosa) = 0 leads to the equation

—m*Ty +m(x? —y2) — 75 =0

where m = tan a. Solving this quadratic equation for m then determines . The
precision of this method in evaluating m depends of the number of macroparticles,
the tilting angle «, and the ratio a,/a,. If ay/a, ~ 1, the relative error of m is
large. Hence we take m = 0 when the correlation coefficient o = 7%/ (22 - y?2)
satisfies o0 < 0.2.

IIT EMITTANCE EXCHANGE WITH SPACE CHARGE

One limitation of multiturn injection schemes [7,8] is the loss of particles hitting
the vertical septum. A skew quadrupole couples the transverse planes exciting
a difference resonance. When the bare tune is on such a resonance, horizontal
oscillation energy is transfered to the vertical plane and the horizontal amplitude
of the injected particle will diminish during the few revolutions of the multiturn
injection. This effect can be exploited to move particles away from the septum,
thereby improving the injection efficiency.

The single particle dynamics nearby a skew quadrupole driven resonance will be
analyzed in sections B and C. When a coasting beam is considered, space charge
can be important for the single particle dynamics since it changes the single particle
tunes. Since the bandwidth of the resonance can be small, space charge can be a
significant effect: the amplitude of exchange and the period of exchange is strongly
dependent on the location of the single particle tunes with respect the resonance.
As a consequence, the evolution of the emittance exchange is not similar to that
of a single particle evolving in the external focusing fields. If the current is strong
enough, space charge can push the single particle tunes out of the resonance and
suppress the exchange process.



A Lattice Used

The SIS (Schwerlonen-Synchrotron) is a 18 Tesla-meter fast cycling synchrotron
that can be used to accelerate a variety of ions. The SIS [2] has a strictly periodic
lattice with 12 identical cells. The ion beam is injected at 11.4 MeV/u and a
triplet focusing system is employed in each cell. A skew quadrupole scheme is under
consideration in the SIS to improve the injection efficiency. We will consider a beam
of U'® with ¢, = 200 mm mrad and €, = 20 mm mrad. The emittance exchange
is expected to take ~ 30 turns. We have introduced a thin skew quadrupole in the
SIS lattice in order to simulate a real skew quadrupole. The skew quadrupole is
located at the beginning of the second cell.

B Single Particle Emittance Exchange

As reported in [9], if the bare tunes are on a difference resonance (¢ —¢g, = k—0
with k integer and 0 << 1) and if the initial vertical emittance is zero, then the
emittances exchange is described by the formula

4Q?sin? ©

€x = €59 — mGwo (12)
Here,
02
and

€; + €, = const

with initial values €, and €,0 = 0, where ¢,,¢, are the instantaneous Courant
Snyder invariants, (). is proportional to the strength of the skew, and N, is the
number of turns.

Eq. (12) shows the mechanism for the emittance exchange: when the initial ver-
tical emittance is zero, €, is oscillating and the exchange is due to the preservation
of €; + €,. On the other hand, Eq. (12) was derived by neglecting second-order
derivatives in the equation of motion and assumes only slowly varying amplitudes.
These assumptions are strongly related to the strength of the skew: if we require a
fast exchange they are not satisfied and the evolution of the Courant Snyder emit-
tances can differ from Eq. (12). For instance, single particle simulations showed
that €, + ¢, can exhibit a dependence on the longitudinal position (Fig. 2a). How-
ever in spite of this difference, simulations indicate that even for a strong skew
strength, the sin?-like evolution of the Courant Snyder emittance predicted by Eq.
(12) is still present besides a modulation. Thus it makes sense to consider the
amplitude and the period of emittance exchange. Some simulations indicate that
an integrated gradient of 5 = 0.01 m~! leads to an emittance exchange in 25 turns.
Such a simulated exchange is plotted in Fig. 2b.



C Resonance Bandwidth

In this section we present how the evolution of the emittances can change as
function of the tunes. with space-charge neglected. Fig. 2b shows the definition
of the amplitude and period of the emittance exchange for a single particle. The
discontinuities in the second-derivative of the curve are due to the strong skew kick
experienced each turn. Fig. 3 summarizes the simulated behaviour of a single parti-
cle near the resonance. In Fig. 3 we have taken 40 working points on a line orthog-
onal to the resonance ¢, — ¢, = 1 with g, = 4.29 and ¢, = 3.29. For each working
point we determined €, ;,q; and €5 min, by tracking a particle with initial coordinates
& = \/€s,p =0, and § = /€, p, = 0 ("= Courant Snyder coordinates) for 2000
turns. The exchange amplitude was calculated as Ae; = €5 may — €xmin (Fig. 3a,c).
The period of the exchange T was computed as follows. 20000 turns were simulated
using the same initial condition and measuring (in turns) the position when the
instantaneous emittance €, crosses the average emittance (€zmaz + €zmin)/2. All
these crossings were used to determined a series of periods from which the average
period T was calculated (Fig. 3b,d). When the particle is exactly on the resonance,
the linear coupling allows a periodic exchange of energy between the two planes. As
the particle moves from the resonance at ¢, = 4.29, the difference in phase between
the horizontal and vertical oscillations reduces the time in which the exchange acts
in one direction. This change reduce both the amplitude and period of exchange.
The peak near ¢, = 4.5 in Fig. 3a,b shows a higher order effect.
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FIGURE 2. Simulated single-particle emittance exchange. a) the sum of the x— and y— emit-
tances is not conserved; b) definition of amplitude and frequency of emittance exchange.



D Simulations of a Coasting Beam on Resonance

We employed the micromap technique to simulate the evolution of a coasting
beam in the presence of space charge with an initial transverse K-V distribution.
Simulations were carried out with dp = 0 and for currents of I = 20 mA and I = 140
mA. 1000 macroparticles were used and the space charge was calculated up to the
5th order (i.e., in Eq. (11) the sum is cut off for £ > 5). The bare tunes of the
machine were chosen to lie exactly on a g, — g, = 1 resonance with ¢, = 4.29 and
gy = 3.29. The time step was chosen to correspond to a longitudinal increment of
1/20 of an SIS cell, i.e. At =0.02 us. In Figs. 4a,b,c,d are plotted the horizontal
and vertical rms emittances (€ yms and €, yms) and beam sizes (Zrms and Yrms)-
The discontinuity between the short horizontal lines in Figs. 4c,d show the effect
of the skew quadrupole kick, which reaches its maximum strength when €, ~ ¢,.
The evolution in the rms beam sizes is driven by the emittance exchange. In Figs.
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FIGURE 3. a) Amplitude and period of emittance oscillations as a function of ¢,. b) Period of
€, oscillation; c) €, oscillation amplitude; d) Period €, oscillation.



4a,b the thickness of the band of z,,,s; and ¥,,,s values is due to the time step: since
At is small with respect the time needed to go through one cell, the rms size shows
envelope oscillations which when plotted in discrete time intervals look like a band
rather than a continuous line. For I = 20 mA the initial tuneshifts due to the space
charge are Ag, = —0.0049 and Ag, = —0.0178, so that the tunes of each particle are
still near resonance (see Fig. 3) and then a complete rms emittance exchange occurs
in 25 turns. Each particle "exchange” starts from different initial conditions, but
the evolution of the rms emittances preserve the quantity €; ,ms + €, rms better than
for the single particle emittances (Fig. 2a). Figs. 5 shows results of a simulation
repeated for a current of I = 140 mA, with initial tuneshifts of Ag, = —0.034 and
Ag, = —0.12, which brings the single particle tunes to the border of the resonance.
In this case the ”"exchange” is weaker but not as much as indicated by the single
particle results in Fig. 3: The exchange period 7T is reduced to ~ 22 turns and
A€z = Aey = 80 mm mrad, while from Fig. 3 we would expect that Ae, = Ae, = 40
mm mrad and 7" = 4 turns. This decreased exchange rate stems from the collective
motion driven by the skew and a coherent effect of the space charge. In fact the
skew quadrupole causes the emittance exchange that in turn induces a variation in
the single particle tunes through the resonance, causing a partial sampling of the
resonance. Figs. 3b,d show that the wave number ©/V; of the exchange function in
Eq. (13) depends on the single particle tune. Therefore, the phase advance results
from the integration of the wave number over the number of turns. In order to have
half emittance oscillation, the (phase advance = 7) we need more turns since T is
not constant. An analogous argument can be used to explain the larger amplitude
of emittance exchange obtained in Fig. 5 with respect the 40 mm mrad predicted
in Figs. 3a,c. In these simulations were also included the coherent tuneshift which
could be relevant in the exchange process.

IV. . CONCLUSION

We presented a micromap technique as an extension of a standard transfer map
to include space charge defocusing forces for a coasting beam. A macroparticle
model was developed to calculate the space charge forces under the assumption of
elliptic beam symmetry. A code employing this procedure was written and used to
study emittance exchange driven by a skew quadrupole. Results provide evidence
of a coherent effect of space charge which improves the exchange with respect the
single particle exchange in the absence of space charge. This improvement stems
from the coherent motion of the beam. More detailed simulations are needed to
investigate this process when the working point of the machine doesn’t lie near a
resonance and when non-K-V distributions are used to model the initial particle
distribution of the beam.
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