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Abstract. For high-current circular machines like the SIS100, which has been proposed as driver for a future
radioactive beam facility at GSI, an exploratory study of space charge effects on resonances during long-term
beam storage is indispensable. We discuss the effect of space charge on sextupole error resonances by a 4D
model using an analytical expression for a stationary space charge. The effect of space charge induced resonance
crossing in a bunch beam is approached by a simplified model.

INTRODUCTION

Beam loss control is an important issue for high-intensity
heavy ion rings [1]. Long term bunched beam storage,
typically 106 turns, and resolution of beam loss under
the percent level are very demanding for PIC simulation.
As pointed out in [2] numerical noise generated in PIC
solvers is responsible for an artificial emittance growth.
This effect may get controlled by increasing the number
of macroparticles used in the simulations at expenses of
larger CPU time. A study of this effect in 3D simulation
was presented in [3]. Since small beam loss is of concern,
a particle-core model provides a way to avoid numerical
noise artifacts while retrieving important aspects of the
dynamics during long term beam storage. If loss are
found to be small and collective effects may be neglected
a frozen core model may give reasonable predictions.

2D MODEL

The model is based on a coasting beam in a constant
focusing lattice. We consider a 2D axisymmetric beam
with frozen transverse Gaussian particle distribution of
rms radius σ . The analytic space charge electric field
[4] used in the particle equation of motion provides a
particle-core model. In order to simplify the discussion
we consider initially the particle dynamics only in the x-
plane setting for any test particle y � y

� � 0. The equation
of motion becomes

x
� ����� ν0

R � 2
x � K

x
r2 � 1 � e 	 r2

2σ2 
 (1)

where � 
 � � d � ds, ν0 is the ring bare tune, R is the ring

radius, K is the perveance, r �
� x2
�

y2. In this case
r � x. Calling C � 2πR, and by using the coordinate
transformation x � x̃σ , s � s̃C we rescale Eq. 1 to the
dimensionless equation

¨̃x
� � 2πν0


 2x̃ � 2 � 2π 
 2 � 2ν0∆ν � ∆ν2 
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x̃ � 1 � e 	 x̃2
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 (2)

where ˙� 
 � d � ds̃. In Eq. 2 we use the tuneshift as a
measure of the beam intensity, while the perveance is
given by K � 2 � σ � C 
 2 � 2π 
 2 � 2ν0∆ν � ∆ν2 
 . Equation 2
can be integrated through a micromap + nonlinear kick
symplectic method. Dividing the ring in N integration
steps the nonlinear transport map becomes�

x̃
˙̃x � ��� � �2πν0� 2π ν0 � � � �

x̃
˙̃x
�

fn � x̃ 
 � (3)

with � � sin � 2π ν0 � N 
 , and � � cos � 2π ν0 � N 
 . The
nonlinear kick fn is fn � x̃ 
 � 2

N � 2π 
 2 � 2ν0∆ν � ∆ν2 
 � 1 �
e 	 x̃2 � 2 
 � x̃. The lattice nonlinearities can be added to
fn � x̃ 
 at any integration step through the kick Amx̃m. Here
Am is the integrated strength of a m-th order nonlinear
thin element in the frame � s̃ � x̃ � . The relation with its
integrated strength Km in the laboratory frame is Am

�
Cσ m 	 1Km.

RESONANCES AND SPACE CHARGE

With this model we study the effect of space charge on
lattice nonlinearity induced resonances. Here the space
charge acts as a perturbation leaving unchanged the main
mechanisms of single particle resonances. We consider a
ring with ν0

� 13 � 36, a beam with maximum tuneshift
∆ν � 0 � 2, and use 1060 integration steps to resolve the
dynamics with space charge. With this choice the res-
onances 3ν0

� 40, and 4ν0
� 53 can be met if the de-

pressed tune scans over ν � 13 � 16 ��������� 13 � 36. We show in
Fig. 1a the nonlinear tune ν for particles with initial co-
ordinates ˙̃x � 0. The calculation of ν is obtained with a
FFT interpolated method (see in [5]) by using the parti-
cle coordinates in a fixed ring section over 2048 turns. As
expected, at the center of the coasting beam ν � 13 � 16,
which moves asymptotically towards ν0

� 13 � 36 if the
particle is taken very far from the beam center. Note that
third and fourth order resonances are crossed at x � 5 � 5σ ,
and x � 2σ respectively. We excite these two resonances
by using 20 equal sextupolar kicks with A2

� 0 � 01, and
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FIGURE 1. a) space charge induced nonlinear tunes, b) ef-
fect of resonances on nonlinear tunes, c) Poincare’ section for
∆ν � 0 � 2, d) amplitude of 3rd order island as function of ∆ν .

53 equal octupolar kicks with A3
� 0 � 005. In Figs. 1b,c

we show the nonlinear tune and Poincaré section. The
amplitude of the island may be measured by the size of
the flat region in the nonlinear tune which crosses the res-
onance. The position of the fixed point is where ν0 � ∆ν
equals the harmonic of the nonlinearity driving term; the
area of the islands seems to depend on the gradient of
the nonlinear tune: the weaker the nonlinear tune gradi-
ent the bigger is the island. From the example in Fig. 1b
it follows that large islands are obtained at 6σ . Setting
properly the bare tune ν0 and varying ∆ν it is possible
to create islands at any position. In Fig. 1d we plot the
outer and inner separatrix of the third order resonance
(at ˙̃x � 0) as function of the space charge intensity ex-
pressed in terms of ∆ν . The bare tune is still ν0

� 13 � 36.
This picture shows consistently with the interpretation of
Figs. 1a and b) that the third order islands move outward
and increase their areas as the tuneshift increases. From
this study we find that typically we may create big is-
lands far beyond 3σ , whereas the islands within 3σ are
much smaller.

Dynamics in a Bunch

The situation may be different for the single particle
dynamics in a bunch. In fact synchrotron oscillations in-
duce oscillations of the instantaneous current: when the
particle is in the center of the bunch the local trans-
verse current is maximum whereas on the bunch head

or tail the current is minimum. The global effect is that
a single particle experiences an oscillating instantaneous
beam current with frequency much slower than the beta-
tron oscillations. We consider first a linear current ramp
which takes the tuneshift to ∆ν � 0 � 2. In first order the
current ramp causes a migration of islands consistent
with Fig. 1d. If the test particle has initial coordinates
x
� � 0 � x � 7 � 5σ the third order island eventually will

cross the particle phase space orbit. The speed of the is-
land at the crossing is crucial for the effect on a particle.
In Fig 2 we explore this effect. In the left column we
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FIGURE 2. Phase space orbit (left) and time evolution of the
particle amplitude plotted every third turn (right).

plot pictures of the single particle orbits. In the right col-
umn the time evolution of the x̃ coordinate. In the case
a) (first two pictures at the top) a positive linear ramp
brings the tuneshift to ∆ν � 0 � 2 in 2048 turns. The par-
ticle initial coordinates are x̃ � 4 � ˙̃x � 0. At the begin-
ning the particle lies on an elliptic orbit, the frequency
of the oscillations (picture on the right) decreases due to
the nonlinear tune change for effect of the space charge
ramp. The increasing space charge moves the third or-



der islands outward. When the islands reach the particle
orbit the third order resonance tries to capture the parti-
cle. This happen for half of an island revolution. After-
wards, the particle is closer the inner separatrix, and due
to the outward motion of the island it crosses the sepa-
ratrix again and gets unlocked from the resonance. The
total effect is that the particle orbit gets kicked inward
by an amplitude comparable with the island width, then
its orbit amplitude remains unaffected. The orbit jump is
visible after 1000 turns in the left picture. Simulations
showed also the inverse effect for a decreasing current:
in this case the orbit jump is outward. We conclude that
the resonance crossing causes an orbit jump which has a
direction opposite to the motion of the islands. The par-
tial capture process depends strongly on the particle and
island position in the phase space and on the speed of the
island when approaching the particle. If a particle inside
an island during half a revolution around the fixed point
moves less than the island size, it may get trapped and
follow the fixed point. In Figs. 2b,c we show two exam-
ples of particles trapped by the resonance. In b) the parti-
cle with x̃ � 3 � 3 � ˙̃x � 0 is trapped and moves outwards as
the current increases linearly to reach ∆ν � 0 � 2. In c) a
particle with x̃ � 6 � ˙̃x � 0 gets trapped and moves inward
following the island. When the trapping condition gets
broken, the orbit gets unlocked and follows the usual el-
lipse. From these simulations we conclude that a particle
in a bunch may be subject to periodic resonance crossing:
the islands oscillate back and forth periodically, kick-
ing the particle orbit in and out. The single particle dy-
namics has then a nonlinear resonance induced stochas-
tic regime. Over many synchrotron oscillations the parti-
cle may reach the trapping condition and get transported
to the farest transverse position determined by the posi-
tion of the island at the maximum intensity. Fig 3a shows
the evolution of the x̃ coordinate of one particle with
x̃ � 1 � 4 � ˙̃x � 0 over 106 turns. The space charge oscil-
lations are simulated with ∆ν � 0 � 2 � 1 � cos � 2πνsn 
�� � 2,
where synchrotron tune is νs

� 10 	 3. Note the diffusive-
like process in the first 2 � 105 turns while above it spikes
bring the particle to � 7σ . Due to the reversible nature
of the resonance trapping process the particle does not
remain long at the maximum distance but falls within 3σ
and later it gets trapped again and is brought to 6 � 7σ .
Note that � 6σ is the position of the fixed point for
∆ν � 0 � 2 as shown in Fig 1d.

4D Tracking and Outlook

We repeat the same simulation for the 4D system (the
condition ỹ � ˙̃y � 0 is removed). The bare tunes are
νx0

� 13 � 91 � νy0
� 13 � 58, and the maximum tuneshift is

∆νx
� ∆νy

� 0 � 3. We excite now the harmonics 41 by
using equal sextupolar errors with A2

� 0 � 01. In Fig. 3b
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FIGURE 3. a) Particle evolution in a bunch (2D case), b)
resonance lines and tune footprint for 4D case, c),d) particle
evolution in the 4D case.

we plot the third order resonance lines and the tune foot-
print for test particles distributed over a larger area com-
pared with the beam size. Note that the vicinity of the line
2νy � νx

� 41 is evacuated, which shows the existence of
a stop band. The position of this resonance is chosen to
be near the bare tunes. According to the 2D interpreta-
tion we expect again that the periodic resonance cross-
ing will create a diffusion, and the resonance trapping
would eventually bring the particle at the farest position.
These effects are found in Figs. 3c,d for a particle with
ỹ � x̃ � 1 � 5 � ˙̃x � ˙̃y � 0. This study shows that in a bunched
beam the most dangerous resonances appear to lie near
the bare tune and not in the most densely populated part
of the footprint corresponding to the bunch case. Conse-
quently the single particle dynamics in a bunch is then
very sensitive with respect to the particle synchrotron
amplitude as it effects the tune oscillations. In order to
quantify losses induced by the periodic resonance cross-
ing a 3D self consistent space charge calculation along
with a consistent modeling of synchrotron oscillation is
needed.
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