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Abstract. We show that the influence of space charge on resonances of coasting beams in circular machines
can be discussed in terms of a coherent frequency shift leading to a “coherent advantage”, and of space charge
induced resonant instabilities absent in the zero space charge limit. These mechanisms are exemplified for the
SNS ring as well as the SIS18 of GSI.

INTRODUCTION

While resonances in circular machines driven by system-
atic or imperfection lattice terms have been widely ex-
plored since the early times of accelerators, the role of
space charge has found comparable attention only in re-
cent years [1, 2, 3, 4, 5, 6, 7]. The most obvious effect
of space charge is the incoherent tune shift and spread,
which leads to an extended foot print of single particle
tunes in the tune diagram. Less obvious is the observa-
tion that the response on a resonance may be modified
by the coherent motion of all or a large fraction of parti-
cles. This leads to an additional oscillating force, which
must be added to the external forces and may cause a
coherent shift of the resonance condition; furthermore a
different response is obtained, depending on whether the
resonance is crossed from above or below, which was
first studied in Ref. [1]. The main point of this paper is
to show that a systematic study of space charge effects
needs to consider the existence of both, resonances and
instabilities. Such structure instabilities have been stud-
ied earlier in the context of linear transport systems [8],
but these findings can be applied also to circular accel-
erators. Our model is that of a coasting beam or, equiv-
alently, a constant line current beam in an ideal barrier
bucket. In usual bunched beams in an rf bucket the com-
bined effect of synchrotron motion and line current varia-
tion leads to additional effects due to resonance crossing
discussed elsewhere in this conference [9].

COHERENT SHIFT OF RESONANCE

The analytical basis for calculating coherent frequency
shifts is the calculation of eigenfrequencies for charge
density oscillations with arbitrary tune and emittance ra-
tios, hence fully anisotropic beams, by using the disper-
sion relations derived in Ref. [3] for KV beams and in
smooth approximation. These eigenmodes can be excited
resonantly in a circular accelerator by appropriate ex-
ternal field perturbations (for round isotropic beams see
also Ref. [5]); furthermore, they can be excited by space

charge itself, or a combination of both. Hence, the coher-
ent space charge contribution leads to a shifted condition
of resonance of the coherent frequency ω with a field
perturbation at harmonic n according to

ω � mνx
�

lνy
� ∆ω � n � (1)

Here we express the “mode tune” ω in units of the revo-
lution frequency similar to single particle tunes, and in-
troduce ∆ω as coherent shift due to the resonant den-
sity oscillations. The importance of such a shift was first
pointed out by Smith [10] for second order, and ex-
tended to any order by Sacherer [11]. Numerically, it was
demonstrated in Ref. [1] – using particle-in-cell simula-
tion – for an example of fourth order resonance crossing.

In order to more easily quantify the effect of the co-
herent shift, a coherent mode coefficient Cmk defined by
the equation n � m � ν0 � Cmk∆ν � , thus including the inco-
herent and coherent space charge effect, was proposed in
Ref. [4] for isotropic beams and uncoupled modes, based
on the dispersion equations of Ref. [3]. Here m is de-
noting an azimuthal, and k a radial mode number, while
∆ν � ν0 � ν . The radial mode number reflects the or-
der of the perturbed space charge potential; the azimuthal
one gives the multiple of ν0 for vanishing space charge.
Note that for non-KV beams ν and ∆ν must be under-
stood as rms values. Cmk can thus be interpreted as coef-
ficient of attenuation of the single particle space charge
shift ∆ν by the coherent motion, provided that C � 1.
The intensity can thus be increased by the factor 1 � C
compared with the single particle based resonance condi-
tion, which expresses the “coherent advantage”. For the
symmetric breathing mode the result is C � 1 � 2, which
reflects the strong density perturbation by the cross sec-
tional breathing. This allows increasing ∆ν by a factor
2 compared with the corresponding single particle reso-
nance condition n � 2ν ; for the quadrupolar mode the co-
efficient is only 3/4, hence an allowed intensity increase
by the factor 4/3. The general case for split horizontal
and vertical tunes (also unequal emittances) leads to a
coefficient C close to the arithmetic mean, e.g. 5/8, for
both modes, hence a “coherent advantage” by the fac-



tor 1.6. In fourth order we find that C � 0 � 87 is a good
approximation for a broad variation of tune splitting and
emittance ratios. This implies a weakening of the “coher-
ent advantage” if fourth order resonances are expected to
play a role. We note here that modes with C � 1 may
appear, in principle, as solutions of the analytical KV-
based dispersion relations. Following the discussion in
Ref. [12] they should, however, be discarded as artifact
of KV-distributions associated with “negative energy”.

SECOND ORDER RESONANCES
APPLIED TO SNS

We first discuss the appearance of an imperfection driven
second order resonance for the fictitious un-split working
point � ν0x � ν0y � � � 4 � 6 � 4 � 6 � driven by a harmonic n � 9
gradient error. The effect of the error resonance depends
primarily on the tune and not the details of the focusing
lattice, hence we can assume a constant focusing for
simplicity. The expected resonance condition is

2νx
� ∆ω � 9 � (2)

An anti-symmetric error in x and y (as would be pro-
duced by a single quadrupole) then drives a quadrupolar
mode resonance, whereas a symmetric error is needed to
drive the breathing mode resonance. Note that for suf-
ficiently split tunes a single quadrupole error will drive
both modes. We assume equal emittances in x and y, and
solve the envelope equations with a symmetric relative
gradient error Fourier harmonic of 0.001 at n � 9 as well
as a small initial envelope mismatch of 2%. If the sin-
gle particle tune is exactly on resonance there is only a
small beating of the envelope due to proximity of the co-
herent resonance (Fig. 1 top). The resonance of the in-
phase mode should be expected at νx y

� 4 � 4 based on
the calculated value for C. At this value, in fact, the en-
velope response is significant though not yet maximum
(Fig. 1 bottom). The complete picture is shown in Fig. 2
for both, symmetric and anti-symmetric gradient errors.
Due to the nonlinear nature of the envelope response the
maximum is reached for even slightly stronger tune de-
pression, with a sharply dropping response beyond. As
expected, the zero-current case has infinite response at
νx y

� 4 � 5. For the actual simulation the particle-in-cell
ORBIT code was applied to the SNS lattice with a work-
ing point � ν0x � ν0y � � � 6 � 45 � 4 � 6 � . The response to an er-
ror in a single quadrupole leads to a similar behavior of a
shifted curve and steeply dropping maximum envelope
slightly beyond the envelope resonance condition. Re-
sults for the out-of-phase mode excited by crossing the
resonance condition in the y-plane are shown in Fig. 3,
where intensity is plotted in terms of a normalized tune
shift defined as actual space charge tune shift relative to
the distance of the bare tune from the half-integer, i.e.
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FIGURE 1. In-phase mode envelope evolution at the single
particle resonance condition νx y=4.5 (top), and at the point of
coherent resonance, νx y=4.4 (bottom) for ν0 x y=4.6.
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FIGURE 2. Maximum envelope response (normalized to ini-
tial envelopes) for both eigenmodes and bare tune ν0 x y=4.6 as
function of depressed incoherent tune.

∆νsc � ∆νinc. The solid vertical line indicates the coher-
ent resonance condition, where the normalized tune shift
equals 1 � C, the long-dashed the r.m.s. incoherent reso-
nance condition, and the short-dashed line the incoherent
limit due to the small-amplitude particles in a waterbag
distribution. As with the simple envelope model above,
we find again that the resonance happens at significantly



higher intensity than for single particles in good agree-
ment with the theoretical expectations. In this context the
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FIGURE 3. Maximum envelope response for SNS lattice as
function of normalized tune shift and for ν0x,ν0y =(6.45,4.6).

question arises, if fourth order resonances might play a
role over the 103 turns required for filling the ring. For
the typical value of C � 0 � 87 the corresponding normal-
ized tune shift would only be 1.15, hence nearly cancel-
ing the second order “coherent advantage”.

RESONANCE AND INSTABILITY FOR
THE SIS18

We next consider the working diagram of the SIS18 lat-
tice with 12 super periods and triplet focusing. In Fig. 4
we indicate the usual fourth order systematic single-
particle resonance line 4νy

� 12, its coherent counterpart
given by 4νy

� ∆ω � 12 (dotted), which nearly coincides
with the lower harmonic of the fourth order coherent
resonance 2νy

� ∆ω � 12 � 2; furthermore the coherent
second order resonance condition 2νy

� ∆ω � 6, which
could be excited by a 6-th harmonic imperfection gradi-
ent error (not studied here). The coherent shifts are calcu-
lated for an incoherent space charge tune shift ∆νy

� 0 � 4
and found practically independent of ν0x.

In Table 1 we summarize analytically calculated co-
herent mode coefficients relevant for the resonances in
Fig. 4. They are practically independent of both tunes
provided that the incoherent shift is not comparable with
or larger than the tune splitting between x and y, in which
case corrections are needed.

TABLE 1. Some coherent mode coefficients C for
different emittance ratios.

εx/εy 2nd 4th / resonance 4th / instability

4 0.66 0.88 0.87
1 0.61 0.85 0.89

For the simulation study we have employed the MI-
CROMAP 2D particle-in-cell code employing 5x104

simulation particles on a 128x128 rectangular grid with
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FIGURE 4. Incoherent and coherent shifted resonance lines
of SIS18 for fixed ν0y=3.4 and variable ν0x.

conducting boundary conditions [13]. We have used rms
matched waterbag distributions generated by filling a
4D hyper-ellipsoid uniformly and deforming it accord-
ing to the rms matching. Carrying out the self-consistent
simulation with ν0x

� 4 � 9 (which is relatively arbitrary
in this context) and ν0y

� 3 � 4 we find in Fig. 5 that
there is a significant emittance growth in y in the re-
gion 2 � 7 � νy � 2 � 95. In fact, we expect two distinct
mechanisms to play a role and cause this broad a stop-
band. Firstly, the structure envelope instability described
by the equation 2νy

� ∆ω � 12 � 2 is expected. It is char-
acterized by a phase advance of 1800 of the underlying
envelope mode per focusing period, hence a 1:2 (half-
integer) relationship between mode and lattice periodic-
ity; secondly we expect a structural fourth order reso-
nance or instability. Such structure instabilities for sec-
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FIGURE 5. Saturated r.m.s. emittance effect after 200 turns
in an ideal linear lattice with ν0x,ν0y =(4.9,3.4) as function
of νy (εx/εy=4). Also shown is 10x(λ -1) of the theoretical
envelope instability growth factor λ .

ond and higher order have been systematically explored
for periodic axi-symmetric transport systems in Ref. [8].
These findings apply equally to rings with different fo-
cusing in x and y with appropriately modified resonance



conditions. Thus, it is sufficient for an instability of the
envelopes to have the zero current phase advance per pe-
riod sufficiently close to, but above 900 in at least one
of the directions. In order to confirm the appearance of
an envelope instability we have used the envelope eigen-
value solver KVXYG [14] and found that the present
linear lattice with a zero-current phase advance per cell
σ0y

� 1100 is subject to envelope instability in the region
2 � 68 � νy � 2 � 84, with an associated envelope growth
per cell by a factor λ . This permits us to associate the
first part of the simulation stop-band with this mode,
while the rest of the simulation stop-band can be only
due to the structural fourth order resonance or instability
as predicted analytically in Fig. 4 and Table 1. To verify
the fourth order nature in this part of the stop-band we
show in Fig. 6 the associated structure in phase space for
νy

� 2 � 86 at an early and a more advanced stage. Note
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FIGURE 6. Phase space projections in y for fourth order
structural response and νy=2.86 after turn 2 and 30.

that the location of the coherent fourth order resonance
was calculated as νy � 2 � 95 in Fig. 4, hence close to the
right edge of the simulation stop-band . The asymmetry
of the latter is a general nonlinear feature of resonances
with significant space charge already identified in the
nonlinear envelope simulation of Fig. 1. It is a combined
effect of the tune spread existent in a waterbag simulation
as well as the space charge detuning effect associated
with emittance growth of the fraction of particles on reso-
nance. There is still an effective “coherent advantage” of
about 50% compared with the single-particle resonance
picture, where one expects the small amplitude particles
of a waterbag to be on resonance for νy � 3 � 1.

In our case of strongly split tunes we find that the in-
stability has almost no effect in the x-direction. In or-
der to distinguish between resonances and instabilities
we point out that in case of a resonance the driving term
is assumed to be given by the lattice or by the space
charge of the matched beam; for instabilities the driv-
ing term initially exists only on the noise level, but rises
– under resonant conditions – exponentially in time. A
characteristic feature of such instabilities is their com-
plete absence in the zero-current case. In contrast, the
second order resonance 2νy

� ∆ω � n, which could be

driven by a n � 6 imperfection gradient term would not
be distinguishable from the envelope instability in our
example, but it would be observable in the zero current
limit, where the envelope instability vanishes. A more
complete study of second order resonances and the enve-
lope instability in rings (including a weak imperfection
driven envelope instability) is found in Ref. [7]. For the
fourth order mode above we postulate the simultaneous
presence of resonance driven by the structural fourth or-
der term in the waterbag space charge potential, and of
structural instability – which may exist near σ0y

� 900

following Ref. [8] – similar to the self-consistent “Mon-
tague resonance” of the next section.

THE “MONTAGUE RESONANT
INSTABILITY”

An important case of coupling resonance driven by
space charge only is the well-known “Montague reso-
nance”, a fourth order difference resonance first studied
in Ref. [15], It can be seen in a simplified way as a reso-
nance driven by the zero-th harmonic of a quartic term
in the space charge potential of a non-uniform beam.
In machines with noticeably larger horizontal than ver-
tical emittance it may lead to an exchange of emittances
and possibly loss due to vertical acceptance limitation.
It has been found in a number of synchrotrons and usu-
ally avoided by choosing a large enough tune split. For a
recent detailed experimental study see Ref. [16].

The original analysis by Montague was based on a sin-
gle particle approach using a “frozen-in" space charge
potential defined by the initial Gaussian distribution,
which neglects the effect of the induced time-varying
collective space charge force. It is, however, adequately
described only by a coherent resonance condition of the
type 2νx � 2νy

� ∆ω � 0. The self-consistent simulation
explored in detail in Ref. [17] shows, however, that this
case is in reality a combination of instability and res-
onance: it develops as a pure instability for a KV dis-
tribution, which has no initial driving nonlinearity as is
shown in Fig. 7 (top) for νy � ν0y

� 0 � 8 and εx � εy
� 2. In

this simulation the focusing ratio was re-defined for each
data point such as to obtain a scan over a range of tune
ratios. Note that for equal emittances the KV distribu-
tion leads to a symmetric loop around νx � νy

� 1 as was
recently shown in a study related to the SNS [18]. The
initial growth for the KV-case is found to be exponential,
starting from noise level (see Ref. [17]).

An initial waterbag distribution, instead, has all fea-
tures of a space charge driven resonance due to the pres-
ence of a finite nonlinearity from the beginning (bot-
tom of Fig. 7). The instability is, however, still super-
imposed on the resonance phenomenon. We conclude
this by comparing it with a case, where the initial wa-



terbag space charge distribution is “frozen-in": the max-
imum emittance exchange reaches only half the amount
shown in Fig. 7 due to absence of a coherent response.
Effective exchange occurs for specific tune ratios shifted
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FIGURE 7. Saturated emittance exchange for KV (top)
and waterbag (bottom) initial distributions, with νy/ν0y =0.8,
εx/εy=2, as function of νx/νy.

from the single particle condition 2νx � 2νy
� 0 due to

space charge. It can be shown [17] that maximum growth
rates as well as the width of the stop-band are roughly
proportional to ∆ν , while the detailed shape of exchange
profiles and maximum emittance exchange are nearly in-
dependent of ∆ν . This enables us to construct a stop-
band within the usual tune diagram of a circular machine,
which is shown in Fig. 8 for weakly split working points
(arbitrary integer parts), using the data of the waterbag
simulation in Fig. 7. The asymmetry of the stop-band
with respect to the single particle condition 2νx � 2νy

� 0
(dotted line in Fig. 8) is due to the coherent space charge
effect and the fact that εx � εy. Note that the width of
the stop-band for the waterbag case shrinks to zero for
equal emittances; in this limit there is no energy to ex-
change. The strongest growth of εy is actually closer to
2ν0x � 2ν0y

� 0 than to 2νx � 2νy
� 0.

CONCLUSION

We have found good agreement of space charge induced
shifts of resonances between self-consistent simulation
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FIGURE 8. Stop-band of self-consistent Montague reso-
nance: color scales indicate saturated growth of the originally
smaller emittance in units of ∆εy/εy.

and analytical theory results and confirmed the existence
of resonant instabilities in second and fourth order. Both
are shown to give rise to a significant “coherent advan-
tage”, which should be useful for bunch compression in
SIS18 near νy

� 3. These studies also increase our confi-
dence in the simulation codes and should be considered
as a basis for further more systematic studies.
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