
DISTRIBUTED OBJECT MONITORING FOR ROOT ANALYSES WITH
GO4 V3

J. Adamczewski, H.G. Essel, S. Linev; GSI, Darmstadt, Germany

Abstract
The new version 3 of the ROOT based GSI standard
analysis framework Go4 (GSI Object Oriented Online
Offline) has been released. Go4 provides multithreaded
remote communication between analysis process and GUI
process, a dynamically configurable analysis framework,
and a Qt based GUI with embedded ROOT graphics. In
version 3 a new internal object manager was developed.
Its functionality was separated from the GUI
implementation. This improves the Go4 GUI and browser
functionality. Browsing and object monitoring from
various local and remote data sources is provided by a
user-transparent proxy architecture. The Go4
communication mechanism between GUI and analysis
processes was redesigned. Several distributed viewers
may now connect to one analysis. Even a standard CINT
session may initiate the Go4 communication environment
to control an analysis process with the native ROOT
browser. Similarly, standard analysis ROOT macros may
be controlled by either a remote Go4 GUI or ROOT
browser. Besides Linux, a lightweight binary Go4 v3
distribution (without Qt GUI) for MS WindowsXP is now
available. Cross platform connections between Go4
environments are possible.

GO4 INTRODUCTION
The Go4 (GSI Object Oriented Online Offline)

software package is well established in the atomic and
nuclear-structure physics community at GSI. It is based
on the ROOT system [1]. Go4 v3 was released in
November 2005 and can be downloaded from the Go4
website [2] under GPL conditions.

The Go4 analysis framework applies flexible interface
classes for data structures, IO, event processing, and
runtime initialization. The analysis can be set up
modularly by means of �analysis step� objects. The
experiment specific analysis code is written in user-
defined subclasses and virtual methods. All ROOT and
C++ features may be applied here, thus it is also possible
to adapt code from other frameworks. Implementations
for the GSI standard DAQ system MBS [3], and ROOT
TTree IO are already provided.

The same Go4 analysis may either run in batch mode
(compiled or as CINT macro), or in an interactive mode
controlled by a non blocking GUI. Here analysis and GUI
run in separate processes, connected for asynchronous
command and data exchange via sockets. This multi
threaded inter-task communication is managed by
dedicated Go4 libraries [4].

The Go4 GUI was designed by means of the Qt
graphics library [5]. It implements regular ROOT

Figure 1: Go4 inter-task communication: one analysis server (slave) is connected from several GUI clients
(masters). There is only one controller GUI allowed that may modify the analysis set up and running state.

graphics inside Qt widgets [6]. A multi document
interface (MDI) workspace offers subwindows for object
browsing, histogram display, editing, analysis
configuration, etc. Moreover, it is possible to extend the
standard GUI functionality by experiment specific
windows, as defined by the user with the Qt designer
tool.

To enhance functionality and maintainability, some
internal components have been redesigned for Go4
version 3. This mainly concerns the inter-task
communication, and the object management of the GUI.

NEW DEVELOPMENTS FOR V3.0

Inter-task Communication
The design upgrade of the Go4TaskHandler

architecture [4] resulted in a decoupling of the
client/server functionality from master/slave roles. Thus
the analysis can run in the network both as server or client
task. Vice versa, the GUI can run either as client or as
server. As a benefit, one analysis server can be connected
by many Go4 GUIs (Fig.1). A crash of one GUI will
simply remove the connection at the server, without
affecting the analysis. Moreover, all GUIs may even
disconnect from the running analysis completely without
shutting it down.

A simple account management prevents conflicts of
control between the different GUIs. For login of the GUI
at the analysis task, there are observer, controller, and
administrator accounts. The observer may only request
exisiting data and display it, but can not modify data, or
change the analysis set-up or running state. The
controller may in addition start and stop the run, and
change the analysis parameters. Finally, the
administrator may even shut down the analysis server
completely and thus disconnect all other GUIs.

There can be only one controller (or adminstrator)
connected to the analysis at the same time. The number of
observers is not restricted in principle, but may practically
be limited by the performance of the server task. A test
was done with 15 GUIs at one analysis, distributed over
different nodes, with many permanent monitoring
requests from all observers. The analysis server showed to
run stable until it was stopped after 3 days. However,
analysis event rate dropped by a factor of 3-5 compared to
the case with only one GUI. This of course strongly
depends on the kind of analysis, and on the number and
frequency of requested objects.

The changed task handler design made it also possible
to use a Go4 analysis server in a regular ROOT CINT
session. This is described in more detail in section
�distributed monitoring�.

Object Manager
The new object manager (OM) is a general registry for

data from different sources, using full pathname
identifiers. It defines a common API also suitable for
interactive work.

The OM keeps a hierarchical structure of containers,
with proxy objects for transparent access to different data
sources (see Fig.2). There are proxy implemenations for
ROOT TFile, TDirectory, TFolder, TTree, TCanvas,
respectively; the socket connection to the remote Go4
analysis task is also wrapped inside a proxy class.

The OM applies the standard ROOT cleanup
mechanism for consistency of data references.
Additionally, if a data element is changed, a message
passing mechanism between different OM branches
ensures the notification of dependent elements, e.g. to
refresh a corresponding view.

In the Go4 v3 GUI, the OM handles all data objects,
views, editors, and browser widgets. However, the object
management is completely decoupled from the views.
Thus an alternative Go4 GUI can be implemented using
other widget libraries than Qt. As an example, Go4 v3
offers a lightweight master task environment that uses a
CINT session with ROOT graphics (see section
�distributed monitoring�).

GUI Enhancements
As a consequence of the OM redesign, many elements

of the Qt GUI were improved.
The object browser was completely re-implemented as

one browser panel with branches for different data
sources, e.g. remote analysis, histogram servers, root files,
etc. It supports a local memory workspace with copy and
paste, drag and drop, clipboard, and renaming
functionalities. Other features are context menus, a
general monitoring management, and a property filter.
The internals of the renewed editor and property
windows (for conditions, parameter structures, dynamic
histogramming settings, etc.) are also fully driven by the
OM.

Simlilar changes were done for the viewpanels that
embed ROOT TCanvas graphics in the Qt MDI
environment. Because the OM separates data and view,

Figure 2: Object manager for GUI using
containers (orange), proxy objects (violet), and
message passing in between (dashed arrows).

the same object may be displayed multiple times with
different draw options and ranges simultaneously.

A new mbs status widget monitors an MBS data
acquisition node [3] directly. Trending histograms of
event rates vs. time may be created in the local
workspace of the Go4 browser.

DISTRIBUTED MONITORING

Go4 GUI remote features
The separation of analysis (slave) and GUI (master)

into different processes leads to a non-blocking GUI that
may control the slave asynchronously. Moreover, since
the inter-task communication is done by TCP sockets,
both tasks may also run on different nodes. The task
handler improvements, as described above, make it even
possible to use several observer GUIs for monitoring of
one analysis slave, all arbitrarily distributed over the
network.

 The Go4 GUI offers by default some interesting
features for remote control and object monitoring [7]. The
objects on the slave side can be registered to the
framework in a hierarchical folder structure, sorted by
type (histograms, conditions, parameters, event data, etc.).
This structure is available from remote by means of the
Go4 GUI browser. The contained objects may be
inspected by properties and drawn into a view panel. The
fetching of object copies from the slave is done in a user
transparent way, i.e. working on remote objects has the
same �look and feel� as for local memory or file objects.
Besides, Go4 provides a �monitoring� functionality:

objects may be selected in the browser to be fetched
automatically from the slave in frequent time intervals;
their graphical representation will be refreshed on the
GUI. These features are available for all observers.

If the GUI is connected with controller priviliges, it
may additionally modify, create or delete objects in the
remote process. Furthermore, a controller GUI may
schedule any ROOT macro or CINT command to be
executed in the remote process.

It should be pointed out that the above features are
independent of the Go4 analysis framework itself, but
use the Go4 communication layer and object registry
only. If in addition the slave process applies the Go4
analysis loop and the event classes, the controler may also
initialize the analysis, start/stop the loop run, and get
event rate information. New histograms may be set up in
the remote analysis �on the fly� to be filled from event
data in memory, or from a ROOT TTree, respectively.

Go4 GUI controlling remote ROOT sessions
The Go4 analysis server environment was extended to be
run in a regular ROOT CINT session. The provided
initialization script loads the Go4 libraries and launches
the task handler threads in the background of the ROOT
command line. To ensure thread safety for any user code
that might be executed in CINT, a ROOT timer with 200
ms period is used. This timer locks all Go4 mutexes
during the processing of an interpreter line, and releases
them for a dedicated time interval of 50 ms when the
timer is fired. The Go4 threads can use the mutex
protected ROOT framework code within this interval

Figure 3: Go4 GUI controlling remote ROOT macro

only, i.e. in between two lines of a macro.
Having started this environment, the ROOT session can
be controlled from a Go4 master process (Qt GUI or other
root session, see below). All Go4 remote features are
available here: the GUI process may inspect and request
data from a running analysis macro. If this macro in
addition uses some methods of the Go4 API, the GUI can
control the running state with the Start/Stop buttons and
monitor the event rate. Figure 3 shows the screenshot of a
Go4 GUI process connected to a ROOT session in
another process. Here a slightly modified hsimple.C
macro from ROOT tutorials is controlled. Main remote
functionalities of the GUI are highlighted in the figure.

ROOT sessions controlling Go4 analysis
The separation of the Go4 GUI object management

from the graphics layer makes it possible to replace the
standard Qt widgets by any other surface. Hence a first
leightweight UI for the Go4 master task was developed
that purely uses ROOT graphics. This master
environment can be started in a regular CINT session,
similar to the analysis server environment as described
above. Some extensions of the regular TBrowser provide
the Go4 remote browsing and monitoring functionalities,
with standard TCanvas graphics for display. In addition, a
command line API offers full control over the connected
analysis task. This may be used both interactively and in
set-up macros.

As a benefit, Go4 can also be installed and run in
environments where Qt graphics is not applicable. This is
the case for MS Windows XP: although the Qt library is
available, the current Go4 Qt-ROOT interface [6] does
not work here for principal reasons. However, using the
lightweight master UI only, Go4 could be ported
successfully to this platform. A binary Go4 distribution
for Windows XP is available for download [2].

Some use cases
The new Go4 functionalities may be used for

distributed object monitoring in various scenarios:
A compiled Go4 based analysis runs in a slave server

task on a linux node and receives online data from a
DAQ system. The run is permanently controlled by one
administrator GUI at the measurement site. Observer
GUIs at the facility may connect to the server and display
data of dedicated subdetectors each. Additionally, guest
observers may connect at any time from anywhere in the
network, e.g. a windows notebook running a pure ROOT
observer, or a full featured Go4 GUI on a Linux PC in a
university office.

A compiled Go4 analysis is set up from a controller
GUI to process offline data from file. After analysis start
the controller may disconnect; it may reconnect again
later from a different node to inspect results, or to change
settings, respectively.

A compiled Go4 analysis server uses an external
ROOT based analysis framework in the Go4 eventloop.

A controller GUI process is permanently connected and
may start or stop the run, or modify object contents (e.g.
zero histograms). The event rate, and the registered
objects may be displayed on any remote observer GUIs.

A ROOT macro with a Go4 analysis server task is
processing tree data and has registered all ROOT memory
objects in Go4. This analysis job may work without GUI
in a pseudo batch mode for a long time. Go4 observer
GUIs may connect to this process and display
intermediate results.

A ROOT session with a Go4 observer client task runs
a macro that connects subsequently to different Go4
analysis server nodes, retrieves result histograms from
each, disconnects again and continues with the next
analysis node. All results are copied to the local Go4
workspace and may be merged together, or processed
further, at the end of the retrieval cycle.

Of course there are many other use cases to imagine
here. Practically all combinations of the following are
possible:

• roles (UI master, analysis slave)
• tasks (server, client)
• environments (compiled Go4, ROOT CINT

session, compiled ROOT)
• analysis jobs (Go4 analysis steps, foreign

framework, plain ROOT)
• platforms (Linux, Windows)
• number of nodes and degree of distribution

CONCLUSIONS
The Go4 framework, as established in GSI since 2002,

has been further developed to release version 3. The
redesign of inter-task communication architecture and a
new object management have extended functionality.
Many distributed observer tasks may monitor one analysis
process via the network. The remotely observed analysis
process may also be a regular ROOT session. The Go4 Qt
GUI was improved. An alternative user interface for
regular ROOT sessions is provided. Because of this, Go4
could be ported without the Qt-ROOT layer to the
Windows XP platform.

REFERENCES
[1] http://root.cern.ch
[2] http://go4.gsi.de
[3] http://daq.gsi.de
[4] J.Adamczewski et al., Go4 multitasking class library

with ROOT, IEEE TNS Vol.49, No.2, April 2002, pp
521-524

[5] http://www.trolltech.com
[6] http://www-linux.gsi.de/~go4/qtroot/html/qtroot.html
[7] J.Adamczewski et al., Go4 online monitoring,

IEEE TNS Vol.51, No.3, June 2004, pp 565-570

http://root.cern.ch/
http://go4.gsi.de/
http://daq.gsi.de/
http://www.trolltech.com/
http://www-linux.gsi.de/~go4/qtroot/html/qtroot.html

	DISTRIBUTED OBJECT MONITORING FOR ROOT ANALYSES WITH GO4 V3
	GO4 INTRODUCTION
	NEW DEVELOPMENTS FOR V3.0
	Inter-task Communication
	Object Manager
	GUI Enhancements

	DISTRIBUTED MONITORING
	Go4 GUI remote features
	Go4 GUI controlling remote ROOT sessions
	ROOT sessions controlling Go4 analysis
	Some use cases

	CONCLUSIONS
	REFERENCES

