
ROOT I/O FOR SQL DATABASES

S. Linev, GSI, Darmstadt, Germany

Abstract

ROOT [1] framework of CERN has a powerful I/O
system. It allows storing any objects in ROOT files and
supports class version control via automatic schema
evolution. Up to recent time only binary format was
supported. At the same time in HEP community grows
usage of SQL databases for storage of different kind of
data like detector geometry, experiment conditions and so
on, therefore a demand for SQL object store facility
exists.

This paper describes the new TSQLFile class of ROOT,
which provides a full-functional TFile interface to SQL
database. Implementation details, table design and
performance issues are discussed.

MOTIVATION
SQL (Structured Query Language) is the most popular

computer language used to create, modify and retrieve
data from relational database management systems
(RDBMS).

ROOT provides abstract TSQLServer interface, which
allows text queries execution and manipulation of
retrieved result sets. For the moment, the following
RDBMS are supported: MySQL [2], Oracle [3] and
PostgreSQL [4]. With plain SQL queries one can
manipulate tables with basic data types, but what can be
done to store complex data (like ROOT objects) in
relational database?

First of all, one can implement custom I/O code for user
classes. Depending on complexity of user classes, this
approach requires intensive development and support
(maintenance) of I/O code. Of course, potentially such
solution can be the best in means of performance.

Another possibility for object I/O is the usage of
existing software frameworks [5]. Such framework
eliminates implementation problems, but it typically
implies strict coding, data type usage and class design
rules, which may be incompatible with ROOT I/O
scheme.

ROOT I/O already has very powerful and well
established object I/O system therefore one can consider
to use native ROOT I/O for SQL database. ROOT
provides two concepts for data store organization: TTree
and TFile classes.

TTree is suitable for storing of big amounts of similar
data like events. Tree structure with branches and leaves
one can very well map to the structure of one (or several)
database tables. Such approach was implemented in
ROOT in TTreeSQL class. It allows updating of table
content and supports normal tree-draw mechanism. In
current implementation only basic data types are

supported, therefore one cannot automatically map a class
structure to TTreeSQL and use it as object store.

TFile class provides hierarchical storage for arbitrary
objects. Subdirectory structure and keys mechanism allow
partial access to data in the file. Automatic schema
evolution supports different versions of the same class,
stored in the file at different times. Implemented for SQL
backend, one can benefit both from standard ROOT I/O
interface and from reliability and accessibility of modern
databases. Common TFile interface for different backends
(binary file, XML file, SQL database) will allows easy
developing and testing of user I/O code even with very
complex objects like detector geometries.

IMPLEMENTATION

Table design
Before one can stream an object into SQL database, one

should define structure of the tables where the data will
be stored. There are many ways to map class hierarchy
and complex data types into database tables [5]. For this
development it was important that tables structure
corresponds to existing ROOT I/O strategy and does not
impose any limitations. At the same time tables structure
should be clear and data should be easy accessible.

A strategy with one table per class version and one
column per elementary data member was taken. ROOT
I/O is organized in such a way, that each class has a
streamer which stores class members in a buffer.
Therefore for SQL I/O case class data will be streamed in
context of one table. Differences in class versions
typically indicate changes in class structure, therefore
different tables should be used for different class versions.
The table name can be composed like
<ClassName>_<ClassVersion>. For example, for current
version of TObject class, the table name is TObject_ver1.
Other examples: TH1_ver5, TAxis_ver9.

Each row in the class table corresponds to one object
instance. To identify objects, the first column of the class
table contains an unique object identifier. Other columns
contain class member data and depend from member type.

A basic data type will be mapped to an appropriate SQL
type and stored in a single column. For instance, int type
can be stored in column of SQL type INT, float in column
of type FLOAT, and so on. Name of such column should
be derived from data member name.

An array of basic types of size N can be mapped to N
columns in the table. The only limitation is that N should
be a constant. Column names will contain the array index.

With the chosen strategy of one table per class, data of
parent classes should be stored in corresponding tables,
using same unique object id. To unambiguously identify

where data of the parent class is stored, the class table
should include for each parent class a column with current
version of parent class. For example, TH1I_ver1 table
should contain column of name TH1.

More advanced treatment should be done for class
members like object instances or object pointers. One
cannot (and would not) store complete object in a single
table column. Instead, one can store such component with
another identifier in appropriate tables and only that
identifier should be kept in the appropriate column of
class table. Similar technique can be done for fixed array
of objects and objects pointers.

But not all class members can be represented in
�normalized� form in SQL tables. Arrays with variable
size or custom streamer data do not fit into one column
per class member strategy and should be represented
differently. For such data special tables with names like
TGraph_streamer_ver4 should be created. Data in such
table is stored row-wise, i.e. each elementary value like
an array entry, will use one row in that table. This data
can be stored in text format only. In more details, the
structure of such tables is described in section
�examples�.

TBufferSQL2 class
The standard streamer mechanism of ROOT uses a

TBuffer object to convert class member data to/from
binary format. To access object data and produce
correspondent SQL queries, the new TBufferSQL2 class
was introduced. It redefines most TBuffer virtual
methods.

When writing object data, TBufferSQL2 converts
streamed values (integers, floats and so on) to text and
composes SQL INSERT queries for appropriate tables.
Name and type of columns are derived from class
member info, provided to TBufferSQL2 by ROOT
streaming functions.

When reading object data, TBufferSQL2 produces
appropriate SELECT queries to retrieve object data from
SQL tables first and then performs conversion from the
text to object data members.

Custom streamer support
A custom streamer necessary when standard ROOT I/O

cannot correctly store class data or the automatic schema
evolution is not able to process all previous class
versions. In that case exact I/O code for class data
members should be written by user and will differ from
standard I/O calls. There are a lot of classes in ROOT
itself with custom streamers, therefore it is important to
support them for SQL I/O.

The main difference from standard ROOT I/O is that
custom streamer does not provide meta-information
(member names and types) for streamed data, which
would allow splitting data into columns. Therefore data,
produced by custom streamer, is converted value-by-value
into text format and is streamed into a special table. This
table contains two columns: Filed � indicates value type
(integer, version, char*) and Value. Such table created for

each class version (when required). For instance, data of
class TList will be stored directly in table
TList_streamer_ver5.

TSQLFile class
This is the core class of SQL I/O in ROOT. The main

goal of that class is to provide a complete TFile interface
to SQL databases.

For connection to database a virtual interface was used,
provided by TSQLServer, TSQLResult and TSQLRow
classes. It allows text query execution on any supported
SQL database and provides uniform access to produce
result sets.

When user writes an object to TSQLFile, a special
TKeySQL object is created (similar to TKey in TFile) and
its data is stored in KeysTable. This table contains all keys
of all file subdirectories.

Each streamed object is also registered in ObjectsTable,
where object id, class name and version are indicated.
From this data one can define in which table data of
streamed object is contained. ObjectsTable also contains
key identifier, to which object belong to.

In addition to standard TFile functionality, TSQLFile
provides database-specific features. For instance, user can
specify usage of database indexes for class tables. By
default, indexes are created only for keys and objects
tables. As option, column names in class tables can have
suffixes indicating type of column (parent class, object,
integer and so on). Different modes of transaction usage
can be specified.

User also can configure usage of SQL transactions. By
default, writing of complete key data is supplied by
START TRANSACTION � COMMIT commands. User
can switch this mode off (if database does not support
transactions) or apply commands himself for bigger
blocks of write operation.

For MySQL database the type of the tables can be
indicated. Any of these configurations can be changed
only before first object is written do TSQLFile. All
configurations are stored in small Configurations table.

Automatic schema evolution
Automatic schema evolution of ROOT allows to read

class data even if the structure of class members has been
changed. To be able to read data that was written by old
class versions, ROOT keeps a list of streamer info
objects, where description of each persistent class
member is contained.

As a TFile class, TSQLFile preserves all used streamer
infos and stores them in the database as special key
object, not seen by user. Automatic schema evolution
functions were adjusted to support also text-based
streaming (TSQLFile and TXMLFile backends).

EXAMPLES

Example with TBox class
Let�s consider a small macro, which creates TSQLFile

instance and store several TBox objects in the tables.

{ But the user can also read data from tables with any
other SQL browsing tools. TSQLFile provide
MakeSelectQuery() method, which allows to combine
object data from different tables in one SELECT
statement. For example, result of such statement for TBox
class can be seen on Figure 3. One can see data of
TObject, TAttLine, TAttFill and TBox classes together.

 TSQLFile f(�mysql://host.domain/test�,
 �create�,�user�,�pass�);
 for (int n=1;n<=10;n++) {
 TBox* b = new TBox(n,n*2,n*3,n*4);
 b->Write(Form(�box%d�,n));
 }
}
TBox class inherits from TObject, TAttLine and

TAttFill classes, and declares four Double_t members.
Figure 1 shows content of TBox_ver2 and TObject_ver1
tables, produced by the macro.

 TObject_ver1 TAttLine_ver1 TAttFill_ver1 TBox_ver2

TBox_ver2 TObject_ver1

Figure3. Composition of TBox data

Example with TGraph class
Let�s consider following macro, where TGraph object is

created and stored: Figure1. TBox_ver2 (left) and TObject_ver1 tables
{ In both tables one can see �obj:id� columns, containing

unique object identifier. Columns fX1, fY1, fX2, fY2 in
table TBox_ver2 contains value of class data members
while columns TObject, TAttLine, TAttFill contains
versions of parent classes. TObject class streamer has
special treatment in SQL I/O, therefore column names
differ from TObject class member names.

 TSQLFile f(�mysql://host.domain/test�,
 �update�,�user�,�pass�);
 TGraph* gr = new TGraph(5);
 for (int n=0;n<5;n++)
 gr->SetPoint(n, n+1, (n+1)*(n+1));
 gr->Write(�gr�);
}
Several tables, produced by that macro, are presented in

Figure 4. In table TGraph_ver4 one can see columns
corresponding to parent classes (TNamed, TAttLine,
TAttFill, TAttMarker) and members of basic types like
fNpoints, fMinimum, fMaximum.

At the same time KeysTable is created, where all
instances of stored object are registered (see Figure 2).

KeysTable

TGraph_ver4

TGraph_streamer_ver4 ObjectsTable

TList_streamer_ver5

Figure2. KeysList table content

Each key entry contains identifier, id of parent
directory, object id, key name and title, creation time,
cycle number and object class name.

Figure4. TGraph class tables

But there are several TGraph class members, which
cannot be represented in a simple way. For example, fX
and fY is an array of double values fNpoints elements
each. Such data is converted in �raw� format and
streamed into TGraph_streamer_ver4 table. In this table
one can see data of two arrays, each 5 elements long.
Each row in this column has identifier �raw:id�, which is
used later for referencing in class table. Here fX and fY
columns contain id of TGraph_streamer_ver4 table row,
where correspondent data is started. Row identifier

User access to produced tables
The data, as produced with previous example, can be

read with standard ROOT I/O code:
{
 TSQLFile f(�mysql://host.domain/test�,
 �open�,�user�,�pass�);
 for (int n=1;n<=10;n++) {
 TString name = Form(�box%d�,n);
 TBox* b = (TBox*) f.Get(name);
 }
}

�raw:id� is also used to preserve sequence of values
when data will be read from the table.

TGraph class member fFunctions contains pointer on
TList class. This object is streamed separately with other
id and registered in ObjectsTable. Because TList class has
a custom streamer, its data is directly streamed into
TList_streamer_ver5 table and a normal clas table is not
created. Column fHistogram contains pointer on TH1
class. Zero value here means that no histogram was
assigned to it.

PERFORMACE
There are two different aspects in performance of SQL

I/O. First, how many CPU time is used to convert object
data to SQL queries and, second, how good/bad produced
SQL queries and how long execution of that queries takes
on server side.

A test was done with TClonesArray containing 10000
TBox objects. Such array was written to file and than read
back. Same code was tested with TFile, TXMLFile and
TSQLFile. CPU time, real time and number of SQL
queries are show in table 1.

Table 1: Performance measurements
Write Read

CPU Real N CPU Real N
Binary 0.03s 0.03s - 0.02s 0.02s
XML 1.21s 1.21s - 1.44s 1.44s
MySQL 3.23s 6.33s 60 2.54s 3.05s 6
Oracle 10.7s 186s 70019 7.97s 18.3s 6
Oracle* 2.86s 9.08s 14 4.31s 4.43s 6

Oracle* uses new TSQLStatement classes

For tests two RDBMS was used. First is MySQL 4.1,

running on Fedora Core 4 Linux PC (Athlon XP, 1.15
GHz, 512 MB RAM). Second is Oracle 10g RAC,
running on Linux SuSE 8 (Dual Xeon 2.4GHz, 4Gb
RAM) were used.

It can be seen that binary ROOT I/O (as expected)
much faster compared to text-based XML and SQL I/O.
The main reason is that XML and SQL requires text
conversion and intermediate buffering of all values. The
size of produced data (XML structures or SQL queries) is
also much bigger (~20 times) compare to compressed
binary format.

At the same time, SQL I/O code was optimized to
reduce as much as possible the number of queries
supplied to SQL server. Where it was possible, access to
the same table was done with single SQL query.

There are differences between MySQL and Oracle in
the way how queries are submitted to the server. Current
implementation of TSQLServer classes of ROOT allows
only pure text queries. SQL syntax of MySQL allows
multiple rows insertion in single query even in text mode,
therefore with very long queries one can insert hundreds
of rows in one communication loop to the server and gain
performance. Oracle does not provide such possibility.
Therefore one should apply hundreds of queries (one per
row) instead. From table 1 one can see, that storage of

10000 objects will require about 70000 separate queries.
As a result, performance of data writing of standard
Oracle plugin in ROOT is very poor.

One definitely requires a more advanced interface
which allows formulating more complicated queries.
OCCI (Oracle C++ Call Interface), used in ROOT,
already has such possibilities, but they are hidden via
narrow interface of TSQLServer/TSQLResult classes.

New abstract TSQLStatement class was introduced to
allow more advanced features of queries and results set
handling. A test implementation for Oracle and MySQL
was done. Results, shown in table 1 as Oracle*, were
measured with usage of this new class. Performance in
that case is much better and comparable with MySQL.

TSQLStatement class also can be extended for basic
data types support like integers or floats. This will
exclude multiple text conversions and also will improve
performance. Currently TSQLStatement class is in
development and not yet in ROOT distribution, but can be
easily integrated into ROOT.

Besides performance question, there is a problem of
support of others RDBMS in ROOT. Historically,
TSQLServer classes were developed based on MySQL
text-based C API, and later compatible support was
implemented for Oracle and PostgreSQL. To extend
number of supporting databases, one can provide
implementation of TSQLServer classes based on ODBC �
Open Data Base Connectivity interface [6]. It can be also
alternative for native MySQL API, while ODBC provides
much more extended features.

CONCLUSION
TSQLFile class provides new possibility for usage of
SQL databases with ROOT. It simplifies developing and
maintenance of user code and allows easy navigation and
access of user data in SQL tables. For better performance
and portability further development of database support
classes should be done.

ACKNOWLEDGEMENTS
I would like to thank Philippe Canal and Rene Brun for

their strong support of this work.

REFERENCES
[1] http://root.cern.ch/.
[2] http://www.mysql.org/.
[3] http://www.oracle.com/.
[4] http://www.postgresql.org/.
[5] http://en.wikipedia.org/wiki/Object-

relational_mapping.
[6] http://en.wikipedia.org/wiki/ODBC.

http://root.cern.ch/
http://www.mysql.org/
http://www.oracle.com/
http://www.postgresql.org/
http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/ODBC

	ROOT I/O FOR SQL DATABASES
	MOTIVATION
	IMPLEMENTATION
	Table design
	TBufferSQL2 class
	Custom streamer support
	TSQLFile class
	Automatic schema evolution

	EXAMPLES
	Example with TBox class
	User access to produced tables
	Example with TGraph class

	PERFORMACE
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

