

Abstract-- Go4 developed at GSI is an analysis framework with a
general purpose non blocking GUI. Go4 is based on ROOT. The
GUI is implemented in Qt using GSI's QtROOT interface.
Analysis and GUI run in separate tasks communicating through
asynchronous object channels. Therefore the framework is espe-
cially useful for on-line monitoring where an analysis should run
continuously, but controlled at any time from the GUI. The
analysis also should be able to update graphical objects in the
display. The HADES experiment at GSI integrated an existing
ROOT based monitoring analysis into Go4.

A Go4 analysis may use any ROOT features. It can be organ-
ized in steps, which can be controlled from the GUI according to
the user specifications. Each step is composed of event objects,
the event processing, and event IO.

Go4 composite event classes allow the construction of arbi-
trary complex events hierarchically composed of objects. The IO
of the composite event objects to and from ROOT trees/branches
is provided without explicit programming. Arbitrary hierarchy
levels of composite events can be browsed by the Go4 tree
viewer.

The GUI provides hooks to attach user written GUIs. These
GUIs have access to all objects of the analysis, i.e. events for
asynchronous event display. Using the Qt designer the develop-
ment of such GUIs is very efficient. The HADES experiment
implemented a dedicated GUI for the on-line monitoring.

The Go4 fit package (API and GUI) is a powerful and ex-
tendable tool to model and fit experimental data.

I. OVERVIEW
he GSI on-line off-line object oriented analysis
framework Go4 is based on ROOT [1]. The Go4

Graphical User Interface (GUI) is implemented using the Qt
graphics library [2]. It interoperates with ROOT through the
QtRoot interface developed at GSI [3].
The main features of Go4 are:

• It provides a framework for atomic and nuclear phys-
ics experiments.

• The analysis is written by the user (unlimited ROOT).
• The GUI controls and steers the analysis.
• The GUI is never blocked by a running analysis. The

analysis is never blocked by the GUI. Both features
are important for on-line use.

• The analysis may update graphics in the GUI asyn-
chronously.

• The GUI can be extended by user written GUIs.
• The analysis may run without modifications in batch

mode.

Manuscript received June 6, 2003; revised October 10, 2003.
J.Adamczewski@gsi.de, M.Al-Turany@gsi.de, D.Bertini@gsi.de,
H.Essel@gsi.de, N.Kurz@gsi.de, S.Linev@gsi.de, M.Richter@gsi.de
Gesellschaft für Schwerionenforschung, GSI
64291 Darmstadt, Planckstr. 1, Germany.

II. GUI TASK AND ANALYSIS TASK

A. Inter-task Communication
To control an on-line or off-line analysis without blocking
from the GUI, analysis and GUI run in separate tasks con-
nected via sockets and communication threads [4]. Fig. 1
shows a schematic view of the tasks with their functional
components. A complete object transfer between both tasks is
provided by means of the ROOT streamer mechanism. Ex-
change of command, data, and status objects allow control of
the analysis task from the GUI. Any ROOT object from the
analysis side can be requested from the GUI side. Both, the
Go4 remote object browser, and user written GUIs may re-
quest and receive analysis objects. Such objects also can be
sent asynchronously by the analysis. The optional histogram
client/server connection is described below.

Fig. 1. Analysis and GUI tasks

B. The GUI Registry
The dispatching of the incoming objects on the GUI side is

handled by the GUI registry. GUI commands that request an
object from the analysis register here which action shall hap-
pen when the object arrives, e.g. drawing a histogram, or
passing a parameter object to an editor window. The regis-
tered action will be executed on arrival synchronized with
other GUI activities. Similarly, a user GUI can register names
of objects to be handled by itself. By this the user GUI can
handle user objects sent by the analysis without a correspond-
ing request from the GUI (e.g. on-line event information that
are only sent when an “interesting” event occurs).

C. Histogram Client/Server
Go4 allows the histograms of a single analysis to be accessed
by many clients, e.g. Go4 GUIs. This is achieved by an op-
tional histogram server/client mechanism shown in Fig. 1.

Go4 On-line Monitoring
J. Adamczewski, M. Al-Turany, D. Bertini, H.G. Essel, N. Kurz, S. Linev, M. Richter

T

This mechanism uses a standard GSI histogram API library
written in C (available from the Go4 web site as part of the
GSI event API library). The API provides functions to build
histogram servers and clients. At GSI, servers are imple-
mented in the Go4 analysis, the standard GSI data acquisition
MBS [5], and the GSI analysis frameworks LeA [6] and
GOOSY. Clients are available in the Go4 GUI, LeA, and as
add-on in Origin of OriginLabs [7]. Other clients can be eas-
ily implemented using the API. Any client can access histo-
grams from any server in an IP network. It might be espe-
cially useful in Origin to have direct access to histograms of a
running Go4 analysis.

In the Go4 GUI the histograms (having their own format
on the different servers) are converted to ROOT histograms.
They can be modified and saved into ROOT files.

D. Object Server
Since the GSI histogram API is dedicated for histograms

only, it can not transport other ROOT objects, e.g. condi-
tions, parameters, or user defined ones. Therefore Go4 offers
an additional object server running in the analysis. It uses a
ROOT streamer and socket mechanism similar to the inter-
task connection between analysis and controlling GUI (Fig.
1). A user written ROOT application may apply the corre-
sponding object client class to request any analysis object
from this server.

III. ANALYSIS FRAMEWORK
The Go4 analysis framework can run both in batch mode

or in GUI controlled multi-threaded mode. Many kinds of
user analysis codes can be implemented using the framework,
i.e. Go4 classes and interfaces.

A. Base Classes
User analysis and event classes inherit from a set of Go4

base classes. These define interfaces for the framework to
handle any analysis in a common manner. Base classes exist
for event structures, event processors (algorithms), event IO
(source and store), and the analysis frame itself. Classes for
standard GSI event sources and several types of events are
provided. The implementation of other event sources is sup-
ported by examples. Event objects are stored/retrieved in
ROOT trees.

B. Analysis Steps
A Go4 analysis is organized in steps. Each step has an

event source, an input event structure, an event processor, an
output event structure, and an event store. Fig. 2 shows an
example with two steps: "Unpack" and "Calibrate". These are
implemented by the user. The steps are set up at initialization
time by a factory instance for each step.

Fig. 2. Analysis steps data flow.

Analysis steps run sequentially, each working on the output

event of the previous step. Moreover, each step can work
independently, getting input from its own event source (file),
and writing output into its own event store (file) (Fig. 2). The
execution of the steps and the event IO is set up in the factory
(e.g. used in batch mode) and can optionally be controlled
from the GUI.

C. The Go4 Composite Event.
The composite event classes can be used to build complex

hierarchically structured event objects reflecting the natural
experimental setup. Complex events are built out of simple
data objects and/or composition of data objects uniformly.

Fast direct access of components is realized by indexing.
Full or Partial IO is achieved by mapping the event object
into a ROOT TTree. Composite events are stored using stan-
dard ROOT IO mechanisms without changes in TTree or
TBranchElement. Event store/retrieval, fully or partially, is
done in the base classes by recursive mechanisms without the
need of extra user written code. The Go4 tree browser re-
solves the tree hierarchy up to unlimited levels.

IV. GUI CONTROLLING THE ANALYSIS

A. Analysis Control
A Go4 analysis can run in batch mode, command line

mode, or in the ROOT CINT interpreter. It also can be
started from the GUI. In this case the complete analysis setup
can be controlled from the GUI. The analysis configuration
window in the GUI is formatted according to the analysis
steps defined by the user. In Fig. 3 at the right side one sees
the configuration window for the example of Fig. 2 with two
pads for "Unpack" and "Calibrate", respectively. Each step
can be (de-)activated, and the event IO can be specified.

In the configuration window one also can write all regis-
tered objects like histograms, parameters, conditions into the
auto-save file. A configuration file can be saved/restored.

Fig. 3. Analysis configuration panel.

B. Remote Object Browser
At the left side of Fig. 3 one sees the browser pads. Any

ROOT object located in the analysis can be viewed and re-
quested from the GUI via a remote object browser (Analysis
pad). For an object to be visible in the browser the analysis
must enter it into (sub-) folders of the framework. Objects
like histograms can be copied into the local memory (con-
trolled by the Memory pad) or selected for monitoring (con-
trolled by the Monitor pad). They can be displayed in a Go4
view panel. Other objects like parameters can be fetched by
double click to be edited in the corresponding editor window.
In Fig. 3 the top folders of the analysis are shown at the left
side. In Fig. 4 some folders are opened. Two other pads are
provided for file browsing (Disk) and histogram server access
(HistClient), respectively.

C. Condition Editor
The Go4 analysis conditions are a set of classes dedicated

to test values against given boundaries (windows or polygon
shapes). These can be visualized and edited from the GUI.
Fig. 4 shows an example of polygon conditions.

Fig. 4. Condition editor.

All conditions can be frozen to be always true or false, re-
spectively. Using this feature one can use conditions to steer
the analysis by executing parts of the code only when a
condition is true. The test and true counters provide useful
information about the statistics of the condition results.

D. Generic Parameter Editor
The TGo4Parameter base class offers a mechanism to edit

user defined structures of values on the GUI and apply them
in the analysis for any purpose. The user parameter subclass
may contain members of any basic data type or arrays of
these.

The member declarations are evaluated for display in the
generic parameter editor, using the ROOT class information.
An example is shown in Fig 5. New values can be entered.
Pressing "Apply" the parameter object will be sent to the
analysis.

Fig. 5. Parameter editor.

E. Histogramming on the Fly
The Go4 dynamic list is a mechanism to define connec-

tions between histograms, conditions, and event data values
on the fly without recompiling the user analysis. The histo-
grams and conditions can be created interactively. Two alter-
native approaches are implemented:

1. using the standard ROOT TTree::Draw mechanism.
Tree output must be enabled in the analysis configuration.
Then the events stored in that tree are processed in regular
intervals. When the tree is processed it is reset. Composite
events are supported.

2. by direct pointer access to the event object members us-
ing the ROOT dictionary meta information. Only events con-
taining basic data type members are supported. The histo-
grams are filled event by event.

Both variants can be controlled from the GUI.

V. GO4 FITTER
The Go4 fitter package is an independent add-on to ROOT

[8]. It features a modular extensible design capable of using
any kind of minimizers, fit functions, and models, inside and
outside ROOT. The Go4 GUI offers a fitter window to per-

form fits on any 1 and 2 dimensional histograms in memory
or in a ROOT file (Fig. 6).

Fig. 6. Fit panel with example fit.

Automatic peak finders allow a fast setup of fit models and

initial parameters for a given histogram. All peaks in Fig. 6
have been set up by the peak finder. The models can be modi-
fied if necessary. Fit and results can be controlled both in an
intuitive wizard mode, and in an expert mode with full access
to entire functionality of the Go4 Fit API.

VI. STATUS
The Go4 framework has been developed to replace all out-

dated analysis programs at GSI, especially GOOSY based
ones. Many experiments at GSI like the Fragment Separator
(rare isotopes) [9] or SHIP (heavy elements) [10] have al-
ready implemented analysis programs using Go4. Currently
these programs run for testing on-line in parallel to the well
proven GOOSY based ones.

The new RISING [11] experiment is using Go4 for on-line
(several recent beam shifts) and off-line analysis.

The HADES collaboration [12] uses Go4 based programs
on-line. Their existing ROOT based analysis programs have
been embedded into the Go4 framework. Go4 offers hooks to
attach a user written GUI to the main Go4 window, with the
possibility of full interaction with the analysis, i.e. sending
commands, requesting analysis objects, etc. The HADES user
GUI makes heavy use of these features. It has been developed
with Trolltech’s Qt designer tool delivered with Qt [2]. Fig. 7
shows a screenshot. The information in the graphics window
is updated from the analysis continuously. The buttons send
user commands to the analysis for execution.

Fig. 7. HADES online display user GUI.

VII. CONCLUSION
Go4 is a versatile framework that has already proved to

fulfill most of the requirements for the GSI medium sized
experiments. It is still under continuous improvement. The
standalone Go4 GUI can be used as an interactive analysis
tool for all ROOT based data.

Many existing event loop styled ROOT analysis programs
could be adopted to run inside the Go4 framework, with the
benefit of non-blocking GUI control from a remote task. New
analysis programs can make use of the Go4 analysis steps
logic, and may run both in batch or GUI mode. User defined
GUIs can be added with full access to all analysis objects.

Go4 v2 is now available for download from the web site
http://go4.gsi.de/. It is tested on Linux (Debian 2.2, Debian
3.0, RedHat 7.2, Suse 8.0) with several compilers (gcc 2.9,
gcc 3.2, icc 7.0).

REFERENCES

[1] R.Brun and F.Rademakers, "ROOT – An object oriented Data Analy-

sis Framework", Nucl. Inst. Method Phys. Res., vol.A389, pp. 81-86,
1997

[2] Qt 3.1 Tutorial and Reference, Troll Tech AS,
http://www.trolltech.com/

[3] The QtRoot interface,
http://www-linux.gsi.de/~go4/qtroot/html/qtroot.html

[4] J.Adamczewski, M.Al-Turany, D.Bertini, H.G.Essel, M.Hemberger,
N.Kurz, et al.: "Go4 multitasking Class Library with ROOT", IEEE
Trans.Nucl.Sci, Vol.49, No 2, pp. 521-524, April 2001

[5] MBS, http://daq.gsi.de/
[6] LeA: http://lea.gsi.de/
[7] OriginLab, http://www.originlab.com/www/products/origin
[8] J.Adamczewski, M.Al-Turany, D.Bertini, H.G.Essel, S. Linev: The

Go4 Analysis Framework: Fit Tutorial,
http://go4.gsi.de/Docs/Go4FitTutorial.pdf

[9] FRS: http://www-wnt.gsi.de/frs
[10] SHIP: http://www.gsi.de/ship
[11] RISING: http://www-linux.gsi.de/~gsgweb/index.html
[12] J. Markert, J.Adamczewski, M.Al-Turany, D.Bertini, T.Christ,

A.Gabriel, et al., "HADES online-monitoring with Go4", GSI Scien-
tific Report 2002, p. 215.

http://go4.gsi.de/
http://www.trolltech.com/
http://www-linux.gsi.de/~go4/qtroot/html/qtroot.html
http://daq.gsi.de/
http://lea.gsi.de/
http://www.originlab.com/www/products/origin
http://go4.gsi.de/Docs/Go4FitTutorial.pdf
http://www-wnt.gsi.de/frs
http://www.gsi.de/ship
http://www-linux.gsi.de/~gsgweb/index.html

	Overview
	GUI Task and Analysis Task
	Inter-task Communication
	The GUI Registry
	Histogram Client/Server
	Object Server

	Analysis Framework
	Base Classes
	Analysis Steps
	The Go4 Composite Event.

	GUI Controlling the Analysis
	Analysis Control
	Remote Object Browser
	Condition Editor
	Generic Parameter Editor
	Histogramming on the Fly

	Go4 Fitter
	Status
	Conclusion

