

Go4: Multitasking Multithreaded Class Library

J. Adamczewski, M. Al-Turany, H. G. Essel, H. Göringer
DVEE, GSI Darmstadt

At the beginning of the GSI Online-Offline-Object-Oriented
analysis project GO4, the principle of a multi threaded analysis
based on the ROOT framework [1] had already been demon-
strated by a first prototype [2]. In the following phase, the soft-
ware has been redesigned completely using UML tools such as
RationalRose 2000 [3] and, more recently, Together 4.2 [4], in
connection with the Sniff++ development environment [5].

Go4 Thread Manager
The Go4ThreadManager package provides foundation and
service classes to launch any number of named threads within a
ROOT application. It is based on the ROOT TThread library
which had been updated in the course of the first Go4 proto-
type. The Go4ThreadManager implements the concept of run-
nable classes (like JAVA) which the user may specialize by
inheritance for any job without changing the Go4 thread classes
themselves.

Go4 Task Handler
The first goal of the Go4 kernel was to control several inde-
pendent, distributed analysis clients (slaves) from one user
interface server task (master). Therefore, the Go4TaskHandler
package and the related service packages (Go4Socket,
Go4Queue, Go4CommandsBase, and Go4StatusBase) were
designed for such inter task connections.
The client communicates with the server via three sockets
(data, command, and status channel). Each of these channels is
processed by a dedicated thread and is buffered against the
user’s application by means of a thread safe template queue.
The entire communication setup is encapsulated within the
Go4TaskHandler class.
Exchange of information between server and clients is done by
command objects and by status objects. Here we use a com-
mand design pattern [6] with an invoker singleton, and a modi-
fied memento pattern, respectively. Commands created by the
server may be either sent to one of the remote clients, or added
to a local command queue to be executed in a local thread pre-
venting the blocking of the GUI.
Status objects are created by the clients and are sent to the
server which may e.g. display the current analysis status. Addi-
tionally, any named ROOT object created by an analysis client
(e.g. a histogram) can be sent to the GUI via the task handler
data channel.
A new client process may either be launched from an existing
GUI server process and can be added to the list of clients; or the
client may be started independently and may request a new
connection to the server process at any time.

Test of Go4 Multitasking
As a first test of the Go4TaskHandler package, we built an
example client (subclass of TGo4ClientTask), and an example
display (subclass of TGo4ServerTask). The client has two addi-
tional threads working on an example application (the actual
analysis later on) . The client status information is sent to the
server regularly by thread one, while thread two executes

commands and processes the analysis (here a random histogram
fill). The server has a simple GUI control panel, a ROOT can-
vas and a status window.
Two server threads wait to display any client objects appearing
at the status and data queues, respectively. Pressing a GUI
button, a histogram is requested from the currently selected
client by command, sent to the server and drawn on the canvas.
This example was running successfully over >24 hours with 1
server task connected to 7 client tasks on 4 different nodes,
which promises a stable operation of the task handler system.

Go4 Viewer
In addition to the design of the Go4 framework, the Go4Viewer
is being built as a first tool for visualization and interactive
manipulation of histograms, ntuples and root TTrees. Based on
native ROOT GUI classes it features access to data from differ-
ent sources: from GSI histogram servers like LeA, GOOSY and
MBS, from local root or paw files, and from the GSI mass
storage system using the root TRFIO classes. Histograms and
ntuples from any data sources are converted on the fly to
ROOT file format and may be analyzed later by all means of
the ROOT system.

Conclusions and Outlook
The Go4 Task handler package might be a flexible tool for any
kind of distributed tasks using the ROOT environment. In con-
trast to the existing parallel root facility PROOF (which is
specialized for parallel processing on the same dataset), the
Go4TaskHandler is capable of controlling independent clients
with threaded applications, required both for non blocking
online analysis or slow control jobs.
The next step will be the implementation of the actual analysis
framework, containing abstract interfaces for the event related
classes, a dynamic list which will keep and process online gen-
erated histogram objects, and a system of analysis condition
classes. Here we will still benefit from the first Go4 prototype
experiences.
The Go4Viewer may be a test bed for the future GUI layout,
until the first test analysis of the Go4 framework will produce
viewable data.
Documentation of Go4 can be found at http://go4.gsi.de.

References
[1] http://root.cern.ch
[2] Status of ROOT Based Analysis System Go4,
J.Adamczewski, H.G.Essel, H.Göringer, M. Hemberger, N.
Kurz, M.Richter; GSI scientific report 1999, p.232
[3] http://www.rational-software.de
[4] http://www.togethersoft.com
[5] http://www.windriver.com/products/html/sniff.html
[6] Design Patterns: Elements of Reusable Object-Oriented
Software, E.Gamma, R.Helm, R.Johnson, J.Vlissides ; Addi-
son-Wesley 1999

	Go4: Multitasking Multithreaded Class Library
	J. Adamczewski, M. Al-Turany, H. G. Essel, H. Göringer
	DVEE, GSI Darmstadt
	Go4 Thread Manager
	Go4 Task Handler
	Test of Go4 Multitasking
	Go4 Viewer
	Conclusions and Outlook
	References

