
����������	

�����
���������������
�����

J. Adamczewski, H. G. Essel, H. Göringer, M. Hemberger, N. Kurz, M. Richter
GSI Darmstadt

��
��	
����
�
���
After the decision to design and build a new general purpose
analysis system for GSI specific experiments, user require-
ments have been defined and can be summarized as follows:
������������: The software shall be based on existing packages

(common in the community), platform independent, object
oriented and license free.
�	�
�����
�
��
: It shall provide command, graphical and pro-

gramming interface.
�����������
�
��: Data objects shall be persistent. Objects

like histograms shall be exchangeable with other systems.
���������: It shall support several input sources and implicit or

explicit event loops. It shall support large multi-dimensional
histograms, provide statistical analysis tools and specific fea-
tures needed in atomic physics. The controlling interface shall
run in parallel to the event loop.
���������: The GUI shall run in parallel to the event loop,

handle complex pictures and produce ready to publish figures.
Graphics output from the event loop shall be possible.
Many requirements, especially the constraints, are met by
ROOT1. Therefore ROOT has been selected as framework for
Go4, the �SI �bject-�riented �n-line �ff-line system.
In the first phase, mechanisms have been investigated to meet
three main requirements: to control a running event loop, to
inspect data during a running event loop, and to output graphics
from the event loop, e.g. for scatter plots.
����	�������������������

There are two structures to implement parallel running tasks:
the first is to run separate tasks sharing data in memory and
control them through inter-task communication; the second is
to run threads in one task, i.e. in the same address space.
Unfortunately, both methods suffer from basic problems: ob-
jects cannot be allocated in general in shared memory, and the
ROOT classes are not thread save in general.

Go4 Run Control Structure.

Therefore a structure has been designed running two tasks, the
analysis and the GUI, without shared memory as shown in the
figure. Communication threads in both tasks send commands
from the GUI to the analysis and objects from the analysis to
the GUI for visualization.
	

���������
���
The ROOT thread classes have been updated and are included
in ROOT since version 2.22. The main problem is that the

’new’ operator is not thread save. Therefore only one thread
may create new objects. In Go4 this is the analysis thread. The
communication threads work without object creation.
�������
�����������
Fortunately, the access to canvases is locked in a thread save
way, i.e. the canvas pointer is replaced by a pointer function
locking the canvas and returning the pointer. Therefore it is
possible for a thread in the GUI task, e.g. ����
� and 	����
�in
the figure, to paint on the canvas in parallel to the GUI.
Commands are sent from the GUI to the ������� thread and
executed in the ��
������� thread. If an object has to be visu-
alized, it is sent from the ��
��� ���� to the 	����
 thread
which does the graphics.
���
����� ��������������
The inter-task communication is implemented using a design
pattern called �����
2�� It separates the interface from the im-
plementation and supports several transport layers. Currently
raw TCP sockets, ROOT TMessage and TMapfile have been
investigated. We measured that sockets and TMessage are
much faster (nearly memory speed) than TMapfile.
!"
���#������$
A set of hierarchical classes has been designed and imple-
mented to handle several event sources, parse event structures,
set up conditions, and connect data fields with histograms. New
events can be generated and output to several channels, e.g.
root files or standard GSI raw data format.
!"
���%���
Since the event loop runs in a thread it can be stopped/canceled
and started from the GUI. It executes the commands between
the event processing to avoid undefined states. Commands can
be ROOT macros providing the full power of prototyping.
Designing the event analysis the user can use the dynamic fea-
tures of the event classes or fix the analysis in the code.
&����������'�������

After many basic tests a prototype of the run control mecha-
nism has been implemented on Linux to proof the principle.
Through a simple GUI one can start/stop the analysis, switch
the event input source on the fly, create objects like histograms
in the analysis task, display them, set up histogram filling con-
ditions, and display scatter plots. Event rates are calculated in
the ���� � thread, sent to the ����
� and displayed.
There are still stability problems to be investigated, caused by
the combination of threads, ROOT and Linux. On SMP ma-
chines threads are not at all running stable due to problems in
the Linux Xlib. We hope this bug will be fixed in future Linux
releases. The actual status can be found on the Go4 Web site
http://www-wnt.gsi.de/go4.

[1] Rene Brun and Fons Rademakers, !""#�$����"%&
���"��$

��
����������������'���
(��), Proceedings AIHENP’96
Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys.
Res. A 389 (1997) 81-86, http://root.cern.ch
[2] Erich Gamma et al., �
�����*���
���+�
�
�
�����
��
 ��%�

�%&
��$���
��
����
�(��
, Addison-Wesley Professional Com-
puting Series, ISBN 0-201-63361-2


