
Go4 Multi-tasking Class Library with ROOT
J.Adamczewski, M.Al-Turany, D.Bertini, H.G.Essel, M.Hemberger, N.Kurz, M.Richter

Gesellschaft für Schwerionenforschung
64291 Darmstadt, Planckstr. 1, Germany

Abstract In the situation of monitoring an experiment it is
often necessary to control several independently running
tasks from one Graphical User Interface (GUI). Such a GUI
must be able to execute commands in the tasks even if they
are busy, i.e. getting data, analyzing data or waiting for data.
Moreover, the tasks, being controlled by data streams (i.e.
event data samples or slow control data), must be able to send
data asynchronously to the GUI for visualization.

A multi-tasking package (C++ class library) that meets
these demands has been developed at the GSI in the
framework of a new analysis system, Go4, which is based on
the ROOT system [CERN, R.Brun et al.]. The package
provides a thread manager, a task handler, and asynchronous
inter task communication between threads through sockets.
Hence, objects can be sent at any time from a task to the GUI
or vice versa. At the GUI side an incoming object is accepted
by a thread and processed. In a task an incoming command is
queued by the accepting thread and executed in the execution
thread.

Utilizing the package one can implement nonblocking
GUIs to control one or several tasks processing data in
parallel and updating graphical elements in the GUI. The
package could also be useful in building data dispatchers or
in slow control applications.

All components have been tested with Go4 analysis tasks
and a very preliminary GUI.

I. INTRODUCTION
t GSI a new Object Oriented On-line Off-line analysis
system, Go4 [1], is under development. It is based on

the ROOT system [2] developed at CERN, because ROOT
provides a powerful framework to analyze data from high
energy and nuclear physics experiments. One requirement
for Go4 is the possibility to monitor and control a running
analysis without blocking the controlling GUI, especially
on-line.

For the required asynchronous operations usually the
technique of multi-threading is applied. After detailed
investigations, however, it was clear that threads cannot be
used in general with the ROOT library because it is not
inherently thread save, i.e. there are conflicts if two
threads simultaneously create objects or perform ROOT
system calls. This is because ROOT works internally with
lists as object registries, and does not have an internal
memory allocation lock.

The Go4ThreadManager package has been
implemented to control these conflicts, e.g. by providing
locking mechanisms against the ROOT application loop. It
is based on the ROOT TThread library which had to be
brought to a functional working status first. However, it is
still not possible to run two threads both modifying the

same ROOT objects simultaneously, or both using
extensively the ROOT system, e.g. for data streaming,
without explicit locking.

Therefore, and since at least two main working threads
(data analysis and user display) were required for the Go4
framework, we were forced to split them into two tasks.
For the implementation of such multi-tasking systems the
Go4TaskHandler package has been developed.

Furthermore, the problem of common objects in
different tasks had to be solved. The solution of using
shared memory is limited with C++. The shared memory
mechanism provided by ROOT forces an update (copy) of
the whole memory for each shared access, so it is not
really shared. Measurements showed, however, that local
socket transfer reaches memory copy speed.

Therefore socket channels between the tasks have been
implemented using ROOT TSockets which allow to
transport entire objects by means of the powerful ROOT
object streamer mechanism. Since Go4 depends on the
ROOT environment, more general but external solutions
such as CORBA have not been chosen.

It is an additional benefit, that by means of socket
connections between the tasks it is as well possible to run
the controlling GUI and the controlled application
(analysis) on different machines.

The layers of the two packages described in the
following are shown in Fig. 1. The Go4 event analysis
loop and GUI are used as examples of task handlers.

ROOT Framework
TThread

Go4ThreadManager

Go4TaskHandlerGo4 GUI
(Server)

Go4 Event Analysis Loop (Client)

Fig.1. The software layers of ROOT and Go4

II. THREAD MANAGER
The Go4ThreadManager package provides foundation

and service classes to launch any number of named threads
within a ROOT application. It implements the concept of
runnable classes (like JAVA). Fig. 2 shows a simplified
UML diagram of the thread manager classes. The
TGo4ThreadManager (usually there is only one thread
manager object per task) aggregates a thread-safe list of
TGo4Thread objects, i.e. the TGo4ThreadHandler. The

A

thread objects encapsulate the ROOT TThread classes and
can be accessed by name from the TGo4ThreadHandler.

TUserRunnableTUserThreadManager

TGo4ThreadManager

TGo4ThreadHandler TGo4Thread

TGo4Runnable

TGo4AppControlTimer

*1

1

1

1

1

1

1

1 *

Fig. 2. Class diagram of thread manager.

Each TGo4Thread instance is linked to a TGo4Runnable

instance which defines the action being executed within the
thread in a virtual Run() method. By sub-classing
TGo4Runnable and TGo4ThreadManager this framework
can be adopted to any user application. The TGo4Thread
calls the TGo4Runnable::Run() method in a loop which can
be stopped and started by the thread manager without
cancelling the TThread itself. The stopped TGo4Thread
then waits for a TThread condition signal from the thread
manager to start the runnable loop again.

Command
Thread

Status
Thread

Data
Thread

Command
Thread

Status
Thread

Data
Thread

Work
Thread

Watcher
Thread

Logging
Thread

Connector
Thread

Launch
Thread

GUI
Callback

Data
Loop

qu
eu

e

qu
eu

e

qu
eu

e

qu
eu

e

qu
eu

e

qu
eu

e

IP Network

Drawing
Thread

Display Task (Server)

Analysis Tasks
(Client 1,2,...)

Ta
sk

 H
an

dl
er

Ta
sk

 H
an

dl
er

Fig. 3. Functional sketch of display server with analysis clients,

connected by task handler instances.

Since the ROOT system is not thread-safe itself, a timer
(TGo4AppControlTimer, Fig. 2) pending on a TThread
condition is used to block or release the main application
loop on demand, and to terminate the application. Other
critical operations, like initializing a non thread-safe ROOT
TServerSocket, may be executed by additional timers
polling on status flags (e.g. the TGo4TaskConnectorTimer
of the task handler, Fig. 4)

Exceptions are handled independently in each thread.
Any exception thrown in the runnable function are caught

from the corresponding TGo4Thread instance. The user
may specify the exception reaction by overriding virtual
exception handling methods of TGo4Runnable. Moreover,
the Go4 exception hierarchy allows the user to create
exception sub-classes containing their specific virtual
handling method which may be overridden. This method is
called from the framework by default on throwing this
exception class. For the Go4 packages, we apply special
exceptions both for rapid command action purposes and for
error handling.

III. THE GO4 TASK HANDLER
To control several independent, distributed analysis

clients (slaves) from one user interface server task (master)
the Go4TaskHandler package and the related service
packages (Go4Socket, Go4Queue, Go4CommandsBase,
and Go4StatusBase) have been implemented. Fig. 3 shows
a functional overview of this system.

The client-server communication is done via three socket
channels (data, command, and status channel). Each of
these channels is processed by a dedicated thread and is
buffered against the user’s application by means of a
thread-safe template queue. The entire communication
setup is encapsulated within the TGo4TaskHandler class.
Fig. 4 shows the simplified UML diagram of the relevant
classes. The TGo4TaskHandler object may run in client or
server mode, with different directions of the transport
channels (see also Fig. 3). The three communication threads
of the task handler are defined by three different classes:
TGo4CommandRunnable, TGo4DataRunnable, and TGo4-
StatusRunnable, respectively. These are sub-classes of the
TGo4TaskHandlerRunnable, which is aware of the parent
task handler and which may be accessed by the task handler
exceptions.

TGo4TaskHandler

TGo4Connector
Runnable

TGo4TaskConnector
Timer

1

1

1

1

1

3

1

*

TGo4ServerTask TGo4ClientTask

TGo4TaskHandler
Runnable

TGo4Command
Runnable

TGo4Data
Runnable

TGo4Status
Runnable

TGo4ThreadManager TGo4ThreadManager

TGo4ServerCommand
Runnable

Fig. 4. Class diagram of task handler.

For each connected client, the TGo4ServerTask has one
instance of the TGo4TaskHandler which it keeps in a
thread-safe list, and which may be accessed by name. In
addition, a connector thread of the server
(TGo4ConnectorRunnable, Fig. 4) listens on a separate
socket for any external client request, i.e. to set up a new
connection or to shutdown an old one. A new client could
be launched externally and connect to a running GUI

server. But in most applications a new client will be started
from within the GUI via remote shell, send a connection
request back to the server and the connection will be
established.

Because ROOT has problems with handling creation and
termination of server sockets in a thread, an additional
ROOT timer (TGo4TaskConnectorTimer, Fig. 4) to
initialize and shut down the connection is used. This timer
polls for a socket connection or disconnection request from
the connector thread and then creates or deletes the socket
instances. Once the socket is created by the timer, it is
passed by class member pointer to the responsible
communication thread (data, command, or status thread,
respectively). These threads then can use the existing socket
to send and receive ROOT objects until the client
disconnects. This disconnection request again is handled by
the connector thread which lets the task connector timer
discard the existing connection in a ROOT compatible
manner.

If a client-server connection breaks down (e.g. by a
crashing or killed analysis client), an exception takes care
for proper termination of the client. The server and the
other clients continue.

Exchange of information between server and client is
done by command objects and status objects. A command
design pattern with an invoker singleton [3] and a modified
memento pattern for the status objects have been
implemented. Commands are created by the server and are
usually sent to one of the remote clients. Local commands,
like launching a new client by remote shell or quitting the
server, are added to a local command queue and are
executed by a special launcher thread
(TGo4ServerCommandRunnable, Fig. 4). This prevents the
GUI from being blocked in these cases.

Status objects are created by the client and are sent to the
server which may e.g. display the current analysis status. In
addition, any named ROOT object created by the analysis
client (e.g. a histogram) can be transported to the GUI via
the task handler data channel.

IV. APPLICATION OF THE TASK HANDLER
To adopt the Go4 task handler framework for a special

application purpose, sub-classes of the TGo4ClientTask
and TGo4ServerTask classes must be implemented. They
provide additional working threads. The queues of the three
inter-task communication channels are accessible by public
methods of the task handler instance. Thus the application
threads may wait for these queues to get a remote object or
they may add new objects to these queues which are then
sent by the task handler to the remote side.

In the following the Go4 GUI and the Go4 analysis are
taken as an example of a task handler application. Fig. 5
shows the class diagram of this example.

A. Server Task
The TUserServer class inherits from TGo4ServerTask

and hence also from TGo4ThreadManager. Therefore it

contains all services required to launch own threads and to
establish connections to a client.

TUserDrawing
Runnable

1

1

1

1
TUserServer TUserClient

TUserApplication

TUserWatch
Runnable

TUserLogging
Runnable

TUserMain
Runnable

TGo4ServerTask TGo4ClientTask

TUserGUI

TGo4ThreadManager TGo4ThreadManager

Fig. 5. Class diagram of a user client server setup implementing

subclasses of the Go4 ThreadHandler framework.

It has a TUserGUI component which handles the
controlling input and which may display the information
fetched from the client. Pressing a GUI button, for instance,
may raise a callback feeding a new command into the task
handler command queue. The command is then being
transported to the client and executed on the remote side
(Fig. 3). Two runnable classes (TUserDrawingRunnable
and TUserLoggingRunnable) specify the threaded user
actions of the server: in the example the threads wait to
display any client objects scheduled in the status and data
queues, respectively.

B. Client Task
Similarly, the TUserClient inherits from TGo4ClientTask

and from TGo4ThreadManager. It has the
TUserApplication class as component, which may be a data
analysis, but may as well be a control application. The
client also has two additional threads working on the
application (Fig. 5). The client status information is sent to
the server regularly by thread TUserWatchRunnable, while
thread TUserMainRunnable is doing the main work (e.g.
data analysis loop) and executes the server commands
scheduled in the task handler command queue.

It should be pointed out that the number of additional
user threads is not limited in principle, since a new thread
can be added dynamically to the thread manager at any
time. But there can be only one thread with unlimited
functionality because of the restrictions mentioned above.

C. Go4 Analysis and GUI Example
The structure and functionality of the Go4 analysis

(client) and the Go4 GUI (server) is shown in Fig. 3 and
Fig. 5, a screen shot in Fig. 6. The example server has a
simple GUI with a control panel, a ROOT canvas and a
status window. The two server threads (Fig. 5) are
responsible for independent data and status display.
Pressing a GUI button, a histogram is requested from the
currently selected client by command, sent to the server and
drawn on the canvas (Fig. 6).

The Main runnable of the analysis client (Fig. 5)
executes in the TGo4Thread loop methods of the analysis
class (TUserApplication) which process one single analysis
event. In addition, at the beginning of the thread loop it
polls the task handler command queue and executes the
waiting server commands. Hence the calculation on the data
and the command execution is done sequentially by the
same thread to avoid conflicts. However, some commands
like killing the main thread or quitting the client are
executed asynchronously by the task handler command
thread itself, directly after receiving them from the
command socket and without queuing.

The Watch runnable is monitoring the current analysis
status independently from the main thread, i.e. it delivers
information about the client to the server GUI even if the
main thread in the client is stopped or killed.

Fig. 6. Two analysis tasks controlled from one (very simple) test GUI.

D. Using Qt with ROOT
In addition to the standard ROOT widgets, we also tested

the example display server together with the Qt graphics
library [4]. A Qt-ROOT interface has been developed for
this purpose. It showed up that the Go4 task handler is
working well with a Qt GUI. Moreover, standard ROOT
GUI components, such as the TBrowser [2], can be run in
the same application together with the Qt GUI. This opens
the option to implement a controlling display using the
powerful Qt library for the GUI in connection with the
ROOT based Go4 framework for the object and
communication management.

V. CONCLUSION
The available Go4ThreadManager library provides a

useful framework for multi-threading applications within
the ROOT system. The still existing restrictions from the
non-thread-safe ROOT kernel allow only one general

working thread, but several dedicated threads with limited
functionality.

Multi-tasking systems can be implemented using the
Go4TaskHandler package which is based on the
Go4ThreadManager. This available package provides
services to create, manage and use independent command,
data and status channels between the server and each client.
By means of sub-classing, these framework services can be
adopted to various user applications.

A test implementation with a preliminary GUI server and
an example analysis client has in long term tests
successfully demonstrated the stability of the Go4 task
handler system. This client-server example has been proved
to run seven client tasks on four different nodes connected
to one server task. This promises a stable operation of the
task handler system.

The Go4Analysis framework is to be extended in the
next development phase. This phase will include the design
and implementation of command classes, dynamic object
organization structures, and functional patterns for a
flexible and powerful GUI. Moreover, the system shall be
capable of using both the native ROOT widget classes and
external libraries like Qt.

Current information on further developments can be
found on http://go4.gsi.de.

VI. REFERENCES
[1] Status of ROOT based Analysis System Go4,

J.Adamczewski, H.G.Essel, H.Göringer, M.Hemberger, N.Kurz,
M.Richter.
GSI Annual Report 1999,232, March 2000
See also http://go4.gsi.de/.

[2] ROOT - An Object Oriented Data Analysis Framework,R.Brun and
F.Rademakers
Proceedings AIHENP'96 Workshop, Lausanne,
Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86.
See also http://root.cern.ch/.

[3] Design Patterns: Elements of Reusable Object Oriented
Software, E.Gamma, R.Helm, R.Johnson,
J.Vlissides;Addison-Wesley 1999

[4] Qt 2.30 Tutorial and Reference, Troll Tech AS,
http://www.trolltech.com/

http://root.cern.ch/
http://root.cern.ch/
http://www.trolltech.comno/

	Introduction
	Thread Manager
	The Go4 Task Handler
	Application of the Task Handler
	Server Task
	Client Task
	Go4 Analysis and GUI Example
	Using Qt with ROOT

	Conclusion
	References

