GOOsY
Id.: BUFFER
Version: 1.0
Date: 14-Jan—1991
Revised: Jan, 14 1991

G.O.0.S Y.

GOOSY Buffer Structures

H.G.Essel et. al.

Jan, 14 1991

GSI, Gesellschaft fiir Schwerionenforschung mbH
Postfach 11 05 52, Planckstrafie 1, D-64220 Darmstadt
Tel. (0 6159) 71-0

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20

Message Control Block Structure L o Lo 6
GOOSY File Structure oL 9
Buffer Header Structure L 10
Buffer Element Header Structure 12
File Header Structure 17
Event structure type 3 (compressed) oL 21
Event structure type 4, subtype 1 (block) 22
Event structure type 4, subtype 2 (no zeros™s) L. 22
Event structure type 1 (SILENA) oo Lo 23
Event structure type 5 (LRS FERA) L. 25
Event structure type 6 (MBD buffer type 6) L. 26
Event structure type 7 (MBD buffer type 7) o oL 28
Event Structureo e 29
CAMAC Subevent Structure Lo 29
Fastbus Subevent Structure oL Lo 30
Fastbus Module header oo 30
Fastbus Data Word 0 31
Buffer Element structure type 9000, Time Stamp 32
Data structure SILENA ADC o o o e 33
Data structure LRS FERA o o o 34

Version 1.0 Jan, 14 1991 1

Version 1.0 Jan, 14 1991

GOOSY Data Formats

Chapter 1

GOOSY Data Formats

Version 1.0 Jan, 14 1991 3

GOOSY Buffer Structures- GOOSY Data Formats

1.1 Introduction

1.1.1 Buffers
The GOOSY dump file format defines the structure of

1. data streams between the processors and processes controlled by GOOSY, e.g. the frontend
equipment and the GOOSY processes,

2. dumps of data produced by GOOSY for later analysis or exchange of data between GOOSY
and other systems.

The smallest entities of data, which are transported by GOOSY in the sense mentioned above,
are called buffers. Presently these buffers have a fix length of either 16, 8 or 4 KByte. On disk,
the buffers are stored in one RMS record, on tape several buffers can be stored into one tape
record.

1.1.2 Buffer Files

If GOOSY buffers are dumped to files, the first buffer may be a file header buffer (see section
1.4.2)! If the file is written to a tape, the tape is labled by ANSI tape labels as described
in the ANSI standard (American National Standard X3.27-1978). In the appendix there is an
overview of the implementations of this standard on DEC VAX/VMS and IBM MVS/XA. In
general, GOOSY uses DEC’s standard RMS file formats. The GOOSY files contain fixed length

records.

1.1.3 Message Control Blocks
The GOOSY MCB format defines the structure of

1. control data streams between the processors and processes controlled by GOOSY, e.g. the
frontend equipment and the GOOSY processes.

1.1.4 Glossary

byte means: 8-bit-sequence

word means: 2 bytes

longword means: 4 bytes.

buffer element Whole buffer or part of a buffer.

buffer element header unified structure keeping information about the trailing buffer element
data.

4 Version 1.0 Jan, 14 1991

Introduction

buffer element data Data of any structure including other buffer elements. Always preceded
by a buffer element header.

event Data describing one physical event. Events are buffer elements in standard buffers. There
are, however, buffers containig events without headers (nonstandard buffers). Events may
be composed of subevents.

If not otherwise stated:

All length fields are given in 16-bit word units. One box line in the structure
figures represents a 32 bit word. Offsets are given in bytes. The order of bits, bytes,
and words is always from the right to the left, i.e. from the least to the most significant
bit or byte, as the VAX processes them. All character string fields are written with
7-bit ASCII coding.

Byte Order: Between machines with different byte ordering a longword swap
must be performed. All Structures in this manual refer to the VAX byte ordering
(little endian: least significant bit is in byte with lowest address). Big endian machines
must use structure declarations with swapped words and bytes.

Version 1.0 Jan, 14 1991 5

GOOSY Buffer Structures- GOOSY Data Formats

1.2 Message Control Block Structure

Control information between the VAX computers and the VME processors is packed in message
control blocks. These are composed of a header and a message field. The message field contains a
message header and a GOOSY buffer. The fields in the header are used on the local modules. No

Message control block

31 28 24 20 16 12 8 4 0 Offset
Queue forward pointer Header 0

Queue back pointer 4

Link control block pointer 8

MCB protocol state MCB queue state 12
transfer length status code control block) 16
Device status 20

AST address 24

transfer length | status code control block) 28
Device status 32

AST address 36

transfer length | status code control block) 40
Device status 44

AST address 48

Pointer to auxiliary structure 52

Pointer to back slice 56

Pointer to forward slice 60

Pointer to acknowledge 64

Pointer to next shce 68

length of rest slice 72

Length of data in bytes 76

Length of message 80

Message subtype | Message type mess.head. 84
Transaction number 88

Flags 92

Acknowledge status 96

Length of data in bytes 100

Begin of data Data 104

Figure 1.1: Message Control Block Structure

information is transferred. The message header contains information which is transferred. The

structure is found in GOOINC(SN$SMCB):

DCL 1 SN$MCB BASED(P_SN$MCB),
2 SN$MCB_CTL, /* Control part */
3 PN$MCB_NMCB(2) POINTER, /* Queue link */
3 PN$MCB_LCB POINTER, /* LCB backpointer */
3 IN$MCB_QSTATE BIN FIXED(15), /* MCB queue state */
3 IN$MCB_PSTATE BIN FIXED(15), /* MCB protocol state */

6 Version 1.0 Jan, 14 1991

Message Control Block Structure

I0SB used for NET-QIO0’s */
Operation status */

Transfer length */

Device specific information */
Completion AST */

I0SB used for NET-QIO0’s */
Operation status */

Transfer length */

Device specific information */
Completion AST */

I0SB used for NET-QIO0’s */
Operation status */

SN$MCB_PIOSB, /*

4 IN$MCB_PIOSB_STAT BIN FIXED(15), /%

4 IN$MCB_PIOSB_LGT BIN FIXED(15), /%

4 LN$MCB_PIOSB_AUX BIN FIXED(31), /%

EN$MCB_PAST ENTRY(POINTER) /%
RETURNS(BIN FIXED(31))
VARIABLE,

SN$MCB_LIOSB, /*

4 IN$MCB_LIOSB_STAT BIN FIXED(15), /%

4 IN$MCB_LIOSB_LGT BIN FIXED(15), /%

4 LN$MCB_LIOSB_AUX BIN FIXED(31), /%

EN$MCB_LAST ENTRY(POINTER) /%
RETURNS(BIN FIXED(31))
VARIABLE,

SN$MCB_TIOSB, /*

4 IN$MCB_TIOSB_STAT BIN FIXED(15), /%

4 IN$MCB_TIOSB_LGT BIN FIXED(15), /%

4 LN$MCB_TIOSB_AUX BIN FIXED(31),

/*

transfer length */
Device specific information */
Completion AST */

Pointer to application DSC */
MCB backpointer for slicing */
MCB forward pointer for slicing */
MCB pointer to acknowledge */
Point to next slice */

Length of rest slice */
Allocation size */

Total message size */

Header plus data part send */
Total message */

Message header */

Message type */

Message sub-type */
Transaction number */

Flags */

Acknowledge status */

Data size */

3 EN$MCB_TAST ENTRY(POINTER) /%
RETURNS(BIN FIXED(31))
VARIABLE,

3 PN$MCB_APPL POINTER, /*
3 PN$MCB_MCB_BACK POINTER, /*
3 PN$MCB_MCB_FORW POINTER, /*
3 PN$MCB_MCB_ACKN POINTER, /*
3 PN$MCB_BUF_PTR POINTER, /*
3 LN$MCB_BUF_LGT BIN FIXED(31), /*
3 LN$MCB_ALLOC_SIZE BIN FIXED(31), /x
3 LN$MCB_MSG_SIZE BIN FIXED(31), /*
/*

SN$MCB_MSG, /*
3 SN$MCB_HDR, /*
4 IN$MCB_MSG_TYPE BIN FIXED(15), /%

4 IN$MCB_MSG_SUBTYPE BIN FIXED(15), /*

4 LN$MCB_TSN BIN FIXED(31), /*

4 BN$MCB_MODE BIT(32) ALIGNED,/*

4 LN$MCB_STAT_ACKN BIN FIXED(31), /%

4 LN$MCB_DATA_SIZE BIN FIXED(31), /%

3 SN$MCB_DATA, /*

4 IN$MCB_DATA(1 $MCB_DATA REFER(LN$MCB

BIN FIXED(7);

/*

Message data */
_ALLOC_SIZE))
Message data array */

Version 1.0 Jan, 14 1991

GOOSY Buffer Structures- GOOSY Data Formats

1.3 Buffer Structure

1.3.1 Standard Buffers

e Buffer Element
A GOOSY buffer contains an arbitrary number of buffer elements. Buffer elements, which
are not known to GOOSY are invalid and rejected. Any buffer element is composed of two
parts:

o Buffer Element Header
Headers work like envelopes for data. Examples for headers are the buffer header (see
section 1.3.1) and the event header (section 1.3.4). The header specifies the type and size
of the following data.

e Buffer Element Data
Arbitrary structured data. The structure may contain other buffer elements. The type
specified in the buffer element header must always uniquely define the kind of data following.

Examples of buffer elements are the buffer itself, GOOSY events and GOOSY subevents. Others
are time stamps, spectra etc.. Figure 1.2 shows the buffer structure. One can see the nested
structures. The headers always contain a type/subtype number combination and the word length
of the following data. The type/subtype numbers are unique for a certain data structure. All
modules processing buffers can check if a buffer element has the correct type. If not, it may just
skip the element, output messages or skip the buffer.

1.3.2 Nonstandard Buffers

Structures, which are defined by external processors or by the hardware of a frontend system
are called ezternal structures. In standard buffers external structures are always enveloped by
headers. These headers must be added by the frontend processors. An example is the event type
1 as described in section 1.5.3, a structure, which is created by the SILENA 4418x ADC-System.
If external structures without header are copied directly into a buffer, this buffer has no standard
format. Examples of such external structures are the SILENA (section 1.7.1) and FERA (section
1.7.2) event structures, if they are not preprocessed by a frontend processor adding a header.

8 Version 1.0 Jan, 14 1991

Buffer Structure

1st
physical
block

physical
block

physical
block

-

file

header

GOOSY
buffer

GOOSY
buffer

buffer

header

GOOSY
buffer

buffer

element

buffer

element

element
header

buffer

element

buffer

element

GOOSY
buffer

GOOSY
buffer

GOOSY
buffer

GOOSY
buffer

buffer

element

buffer

element

Figure 1.2: The GOOSY data structures of a listmode dump file.

Version 1.0 Jan, 14 1991

GOOSY Buffer Structures- GOOSY Data Formats

1.3.3 Buffer Head

er

Buffer Header
31 28 24 20 16 12 8 4 0 Offset
Length of data field (buffer without header) 0
Sub Type Type 4
Fragment begin | Iragment end Used Length of Data field 8
Buffer Number for this Type - Sub Type 12
Number of Buffer Elements 16
Current Index 20
Time stamp VMS 64 bit format 24
Time stamp VMS 64 bit format 28
Byte order tag 32
Length of last event 32
2 Longwords reserved 32
2nd Data word | 1st Data word 48

Figure 1.3: Buffer Header Structure

The total length of the buffer header is 48 bytes.

Length of data field

Length of the buffer without this buffer header in 16—bit words.

(BIN FIXED (31)).

Type A number specifying the buffer type.
(BIN FIXED (15)).

Sub Type A number specifying the buffer subtype.
(BIN FIXED (15)).

Used Length of Data Field Number of 16-bit words actually used in the Data field in
this buffer.

(BIN FIXED (15)).

Fragment begin Ift

his byte is= 1, the buffer contains a fragment (the first part of a buffer

element, which is not complete) at the end of the buffer. The fragment
is missing its trailing part, which has to be found in the following buffer
of the same type and subtype.

(BIT(8)).

Fragment end If this byte is= 1, the buffer contains a fragment (the rest of a buffer
element which is not complete) at the begin of the buffer. The fragment

10

Version 1.0 Jan, 14 1991

Buffer Structure

is missing its first part, which had to be found in the preceding buffer
of the same type and subtype.

(BIT(8)).

Number of buffer elements This number is needed to decide in the case of fragment

Buffer Number

Current Index

Time stamp

Byte order tag

begin and fragment end, if there are two different fragments or only one
fragment. A fragment is counted like a buffer element.

(BIN FIXED (31)).

A current number of buffers of the same type.

(BIN FIXED (31)).

A longword to store the index of the last processed event. This filed
can be used by routines processing the buffer to store the index of the
last processed buffer element. If the buffer is stored on disk or tape this
field must be zero or 1.

(BIN FIXED (31)).

A quadword for the system time in VAX/VMS binary format. This is
the number of 100-nanoseconds since 17-Nov—-1858 00:00.

(BIT(64)).

The creator of the buffer writes a 1 here. Each program processing the

buffer must check this field. If it founds a 1, byte ordering is OK, if not,
a longword swap must be performed.

(BIN FIXED (31)).

Length of last event When the last event in the buffer is a fragment, the length field in

2 Free Longwords

Data Words

the event header keeps the size of the fragment. The length of the total
event is kept in the buffer header.

(BIN FIXED (31)).

Reserved

((2) BIN FIXED(31)).

The Data Field of the buffer has a length specified by ”Length of Data
field”, where only those words are used for data as specified in ”Used
Length of Data Field”. The structure of the ”"Data Words” field is
specified by buffer type and subtype.

(any).

Version 1.0 Jan, 14 1991 11

GOOSY Buffer Structures- GOOSY Data Formats

Structure Declaration

The PL/1 structure mapping this structure is in GOOINC(SASBUFHE):

/* =s============ GSI buffer structure s==s=====s====================x/
DCL P_SA$bufhe POINTER;
DCL 1 SA$bufhe BASED (P_SA$buthe),
2 TA$bufhe_DLEN BIN FIXED(15), /* Data length */
2 IA$bufhe_TLEN BIN FIXED(15), /* Spare = 0 */
2 IA$bufhe_TYPE BIN FIXED(15), /* Type */
2 IA$bufhe_SUBTYPE BIN FIXED(15), /* Subtype */
2 TA$bufhe_USED BIN FIXED(15), /* Used length */
2 HA$bufhe_END BIN FIXED(7), /% first buf.el.is fragmentx*/
2 HA$bufhe BEGIN BIN FIXED(7), /* last buf.el.is fragment */
2 LA$bufhe_BUF BIN FIXED(31), /* Buffer number */
2 LA$bufhe EVT BIN FIXED(31), /* number of fragments */
2 LA$bufhe_CURRENT_I BIN FIXED(31),/* for unpack */
2 LA$bufhe_TIME(2) BIN FIXED(31), /* time stamp */
2 LA$bufhe FREE(4) BIN FIXED(31), /* Byte order tag */
/* Length of last event */
/* free */
/* free */
2 TA$bufhe _DATA(1 REFER(IA$bufhe_DLEN))
BIN FIXED(15); /* data field */
[Rm—mmm e e - */

1.3.4 Buffer Element Header

Buzfger Elﬁment Header

31 20 16 12 8 4 0 Offset
Length of buffer Element without header 0

Sub Type Type 4

2nd Data word 1st Data word 48

Figure 1.4: Buffer Element Header Structure

The total length of the buffer element header is 8 bytes.

Length of buffer element Length of the buffer element without this header in 16-bit
words.

(BIN FIXED (31)).

12 Version 1.0 Jan, 14 1991

Buffer Structure

Type A number specifying the buffer element type.
(BIN FIXED (15)).

Sub Type A number specifying the buffer element subtype.
(BIN FIXED (15)).

Data Any structure of data depending on type and subtype.
(any).

Structure Declaration

The PL/1 structure mapping this structure is in GOOINC(SASEVHE):

/% ================= GSI Event header =s==s================= x/
DCL P_SA$evhe POINTER;
DCL 1 SA$evhe BASED(P_SA$evhe),
2 LA$evhe_dlen BIN FIXED(31), /* data length in words */
2 TA$evhe_type BIN FIXED(15), /* type */
2 TA$evhe_subtype BIN FIXED(15), /* subtype */
2 IA$evhe_data(l REFER(IA$evhe_dlen))
BIN FIXED(15); /* first data word */
[Rm—mmmm e - */

1.3.5 Event Spanning

Events could sometimes be bigger than a buffer. Therefore an event may span over buffer bound-
aries. The two bits in the buffer header specify if the first or last element in the buffer are
fragments. When the last element is a fragment, the length field keeps the length of the frag-
ment. The total length is in the buffer header. The next buffer contains a fragment at the
beginning. This fragment is preceeded by an element header (see above). The length field keeps
the length of the fragment, type and subtype are the same as for the first fragment.

NOTE Any software processing buffers must be prepared to get buffers with ’lonely’ fragments, i.e.
at the beginning of a file there might be a fragment. Similar the last buffer in a file may
contain a fragment at the end.

Version 1.0 Jan, 14 1991 13

GOOSY Buffer Structures- GOOSY Data Formats

1.4 Buffer Types

1.4.1 Overview

Presently the following buffer types and buffer element types are used

2000,1 File header. Buffer header plus one buffer element data.
3000,1 Acknowledge buffer. This buffer contains no data but marks the end of
a buffer stream.
1 .1 MBD buffer. This is a no standard GOOSY header. The buffer must
be processed by user written routines.
2 .1 Buffer contains J11 generated SILENA formatted events with standard
header of type:
1 .1 SILENA formatted subevents.
3 ,1 Buffer contains compressed buffer elements of type:
,1 Compress mode 1
2 Compress mode 2
4 ,1 Buffer contains events of type:
4 ,1 uncompressed events
4 ,2 compressed events (zeros suppressed)
5 ,1 Buffer contains LRS FERA events with standard header of type:
5 ,1 FERA formatted subevents
6 ,1 Buffer contains standard MBD events of type:
6 ,1 standard events with structure defined by J11
programs.
7 .8 Buffer contains standard MBD events of type:
7 .8 events with user structure defined by J11 pro-
grams.

The subtype numbers can be specified by the user.

10 ,1 Buffer contains VME formatted events of type 10,1.

14 Version 1.0 Jan, 14 1991

Buffer Types

12 ,1

15 ,1

1000,s

10101,n
10102,n
10103,n

any

10 ,1 standard event written by VME system. Event
is composed by subevents of type 10,1 and
10,2.

Buffer contains SILENA formatted events without standard header as
stored in FERA memory.

Buffer contains LRS FERA events without standard header as stored in
FERA memory.

GOOSY Data Element. Type specified by s.

1000,1 GOOSY spectrum

1000,2 GOOSY condition

1000,3 GOOSY picture

1000,4 GOOSY polygon

1000,5 GOOSY calibration

1000,6 GOOSY Data Element (any)

External user buffer type (Mainz).
External user buffer type (THD).

External user buffer type (CAVEB).

Any buffer may contain following element types

9000,1 time stamp

2001,1 CAMAC Readout table (initialization)
2001,2 CAMAC Readout table (readout)
2001,3 CAMAC Readout table (reset)
2002,1 Fastbus readout table (init)

2003,1 VME Readout table (init)

Version 1.0 Jan, 14 1991 15

GOOSY Buffer Structures- GOOSY Data Formats

1.4.2 File Header Buffer
Figure 1.5 shows the GOOSY File header structure. Note, that the File Header Buffer is a

standard GOOSY bufler.

Buffer header information:

Length of data field Depends on buffer length.

Type

Subtype

(BIN FIXED(31))

A number specifying the buffer type. For this file header always = 2000.
(BIN FIXED(15))

A number specifying the buffer subtype. For this file header always = 1.
(BIN FIXED(15))

Used Length of Data Field Depends on length of comment.

Fragment begin

Fragment end

(BIN FIXED(15))

This file header buffer contains never incomplete buffer elements. This
field is always = 0.

(BIN FIXED(T7))

This file header buffer contains never incomplete buffer elements. This

field is always = 0.
(BIN FIXED(T7))

Number of Buffer Elements For this file header always = 1.

Buffer Number

Current Index

Time stamp

4 Free Longwords

(BIN FIXED(31))

A current number of buffers of the same type.

(BIN FIXED(31))

A longword not used.

(BIN FIXED (31)).

A quadword for the system time in VAX/VMS binary format. This is
the number of 100-nanoseconds since 17-Nov—-1858 00:00.

(BIT(64)).
((4) BIN FIXED(31)).

16

Version 1.0 Jan, 14 1991

Buffer Types

File Header Buffer
28 24 20

31 16 12 8 4 0 Offset
Length of buffer without header 0
Buffer Subtype = 1 Buffer Type = 2000 4
Fragment begin= 0 | Fragment end= 0 Used Length of Data field = 1000 8
Buffer Number for this Type - Sub Type 12
Number of Buffer Elements or Fragments of Buffer Elements = 1 16
Not used 20
Time stamp VMS 64 bit format 24
Time stamp VMS 64 bit format 28
4 Longwords reserved 32
Tape label(30 char.) [Used length of tape label 48
Tape label continuation
File name (86 char.) [Used length of File name 80
File name continuation
User name (30 char.) [Used length of user name 168
User name continuation
Date ”dd-mmm-yyyy hh:mm:ss.mm” (24 character) 200
Date continuation
Run ID (66 char.) | Used length of Run ID 224
Run ID continuation
Experiment (66 char.) | Used length of Experiment 292
Experiment continuation
Number of Lines = n 360
Line 1 (78 char.) [Used length of Line 1 364
Line 1 continuation
Line 2 (78 char.) | Used length of Line 2
Line 2 continuation
Line n (78 char.) | Used length of Line n
Line n continuation

Figure 1.5: File Header Structure

Version 1.0 Jan, 14 1991

17

GOOSY Buffer Structures- GOOSY Data Formats

File header specific Information:

Used Length of Tape Label Number of characters used in the next field.

Tape Label

(BIN FIXED(15)).

Contains the tape label of the ANSI tape, if the file was created on a
tape.

(CHAR(30) VAR).

Used Length of File name Number of characters used in the next field.

File name

(BIN FIXED(15)).

Name of file at the time of creation. The used Length is specified by
the ”Used Length of File name” field. If one wants to send the output
files to the IBM, the filenames must follow some conventions:

1. Maximal length 25 char (including type)
2. Maximal 8 char or 7 digits between two underscores (No §).
3. File type must be .LMD

(CHAR(86) VAR).

Used Length of User name Number of characters used in the next field.

User name

Date

(BIN FIXED(15)).

User name of the creating VAX/VMS process.
(CHAR(30) VAR).

Character string of the creation date in the format

?dd-mmm-yyyy hh:mm:ss.mm ” where dd is the day of month, mmm is the
3 character abbreviation of the english spelled month (JAN, FEB, MAR,
APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC), and yyyy is the
year, hh are hours, mm minutes, ss.mm are seconds, e.g. 721-OCT-1986
14:34:30.10 7. This date string is always padded by a space character.

(CHARACTER(24)).

bl

Used Length of Run Identification Number of characters used in the next field.

Run Identification

(BIN FIXED(15)).

Character string to identify the experiment run corresponding to this
file. The contents is user defined. The string can have a maximum
of 66 characters. The actual length is defined by the ”Length of Run
Identification” field.

(CHARACTER(66) VAR).

18

Version 1.0 Jan, 14 1991

Buffer Types

Used Length of Experiment Name Number of characters used in the next field.

Experiment Name

Number of Lines

Used Length of line

Comment Lines

(BIN FIXED(15)).

Character string to identify the experiment corresponding to this file.
The contents is user defined. The string can have a maximum of 66
characters. The actual length is defined by the ”Length of Experimenter
Name” field.

(CHARACTER(66) VAR).

Number of 78-character lines following.

(BIN FIXED(31)).

Number of characters used in the next field.

(BIN FIXED(15)).

Character string array to characterize the contents of this file. The lines
are user defined. The header can have a maximum of 46 lines. The
actual number of lines is defined by the ”Number of Lines” field.

((*) CHARACTER(78) VAR).

Version 1.0 Jan, 14 1991 19

GOOSY Buffer Structures- GOOSY Data Formats

Structure Declaration

The file header buffer is mapped by the PL/1 structure GOOINC(SASFILHE):

/* ============= GSI file header buffer structure ===s============%/

DCL L_SA$filhe_lines BIN FIXED(31);/* number of lines */

DCL P_SA$filhe POINTER;

DCL 1 SA$filhe BASED(P_SA$filhe),
2 IA$filhe_DLEN BIN FIXED(15), /* Data length */
2 TA$filhe_TLEN BIN FIXED(15), /* Total length */
2 IA$filhe_TYPE BIN FIXED(15), /* Type */
2 IA$filhe_SUBTYPE BIN FIXED(15), /# Subtype */
2 IA$filhe_USED BIN FIXED(15), /* Used length */
2 HA$filhe_ END BIN FIXED(7), /* first event is fragment */
2 HA$filhe BEGIN BIN FIXED(7), /* last event is fragment */
2 LA$filhe_BUF BIN FIXED(31), /* Buffer number */
2 LA$filhe EVT BIN FIXED(31), /* number of fragments */
2 LA$filhe_CURRENT_I BIN FIXED(31),/* for unpack */
2 LA$filhe TIME(2) BIN FIXED(31), /* time stamp */
2 LA$filhe_FREE(4) BIN FIXED(31), /* free */
2 CA$filhe_label CHAR(30) VAR, /* tape label */
2 CVA$filhe_file CHAR(86) VAR, /* file name */
2 CA$filhe_user CHAR(30) VAR, /* user name */
2 CA$filhe_time CHAR(24), /* time and date */
2 CVA$filhe_run CHAR(66) VAR, /* run id */
2 CVA$filhe_exp CHAR(66) VAR, /* experiment */
2 LA$filhe_lines BIN FIXED(31), /* number of lines */
2 CVA$filhe_line(L_SA$filhe_lines REFER(LA$filhe_lines))

CHAR(78) VAR; /* comment lines */
[Rm—mmm e e - */

1.4.3 GOOSY Data Element Buffers

These buffers of type 1000 contain GOOSY Data Elements. These are encoded in special struc-
tures. The subtype may be used to select different Data Element types. (Not yet impl.)

1.4.4 GOOSY Listmode Data Buffers

Listmode data buffers contain buffer elements called events. The different event types are de-
scribed in the next section.

20 Version 1.0 Jan, 14 1991

Event Structures

1.5 Event Structures

1.5.1 Event Type 3 (compressed)

Figure 1.6 shows the event structure of type 3. Behind the header there follows one Data Element
which is compressed. Two compress modes are supported. One adds a BIT(32) longword for
each 32 Longwords. Zero longwords are suppressed and marked in the bitstring. The other adds
counter longwords containing the number of following zero or nonzero longwords. These buffer
elements are longword aligned!

Event Type 3

31 28 24 20 16 12 8 4 0 Offset
Data length 0

Subtype = 1,2 | Type =3 4

Compression mode 8

Length of uncompressed data 12

First compressed longword 16

Figure 1.6: Event structure type 3 (compressed)

Compression mode Two modes are provided: Bit mask mode and counter mode.

(BIN FIXED (31)).

Length of uncompressed data Length of the original Data Element.
(BIN FIXED (31)).

Usage

The analysis program can output Data Elements event by event. These Data Elements are
copied to GOOSY buffers. Two storage modes can be selected: Compress and Copy mode. With
compress mode the above structure is copied to the buffer. The original structure of the Data
Element is lost. If the buffer is input by another analysis, the compressed buffer element is
decompressed and restored. The advantage is that arbitrary data structures can be compressed,
the disadvantage, that the compress/decompress procedure is time consuming. The pack routine

is X$PACMP, the unpack routine X$UPCMP.

1.5.2 Event Type 4
Event Type 4, Subtype 1 (block)

Figure 1.7 shows the event structure of type 4. Behind the header one Data Flement follows. The
structure is processed as a word array. These buffer elements are NOT longword aligned!

Version 1.0 Jan, 14 1991 21

GOOSY Buffer Structures- GOOSY Data Formats

Event Type 4, Subtype 1
31 28 24 20 16 12 8 4 0 Offset
Data length 0
Subtype =1 Type =4 4
second data word First data word 8

Figure 1.7: Event structure type 4, subtype 1 (block)

Event Type 4, Subtype 2 (no zero’s)

Figure 1.8 shows the event structure of type 4. Behind the header one Data Flement follows. The
structure is processed as a word array. Each data word is specified by an identification number,

e.g. an ADC number. These buffer elements are longword aligned!

Event Type 4,
4

subtype 2
16

31 28 2 20 12 8 4 0 Offset
Data length 0

Subtype = 2 Type =4 4

First data word First data word id 8

Second data word Second data word 1d 12

Figure 1.8: Event structure type 4, subtype 2 (no zeros’s)

Structure Declaration

Both event structures are copied to a Data Element in the Data Base with structure

GOOTYP(SASEVENT):

GSI Event header 4,1

DCL P_SA$event POINTER;
DCL 1 SA$event BASED(P_SA$event),
2 IA$event_dlen BIN FIXED(15), /* data length in words */
2 TA$event_tlen BIN FIXED(15), /* not used =0 */
2 TA$event_type BIN FIXED(15), /* type = 4 */
2 TA$event_subtype BIN FIXED(15), /* subtype = 1 */
2 TA$event(512) BIN FIXED(15); /* data. */
[Rm—mmm e e - */
22 Version 1.0 Jan, 14 1991

Event Structures

Note that this structure contains no REFER because it is used to create the event Data Element
in the Data Base. For special purposes the user may create his own event structure. The first
four words must be declared as shown above.

Usage

The analysis program can output Data Elements event by event. These Data Elements are copied
to GOOSY buffers. Two storage modes can be selected: Compress and Copy mode. With copy
mode the above structure (subtype 1) is copied to the buffer. The original structure of the Data
Element is lost. If the buffer is input by another analysis, the buffer element is copied back to the
Data Element. The advantage is that arbitrary data structures can be copied, the disadvantage
that no compression is done. The original Data Element must have a standard header.

Both formats are also used by the CAMAC single crate system controlled by a J11. The
zero suppression can be enabled during data acquisition. The unpack routine for these events is

X$UPEVT.

1.5.3 Event Type 1 (Buffer Type 2, SILENA)

These events have a standard buffer element header. This header must be generated by the
processor reading out the ADC. Otherwise these events are stored without header in buffers of
type 12. As shown in figure 1.9, the buffer element is composed of a header followed by several
Data Elements. These Data Elements are produced by the ADC/TDC modules type SILENA
4418x. These buffer elements are NOT longword aligned!

Event Type 1

31 28 24 20 16 12 8 4 0 Offset
Data length 0
Subtype =1 Type =1 4
Pattern Word 1 | No. of Data Words | Subevent Id. 8
2nd Data Word 1st Data Word 12
Pattern Word 1 | No. of Data Words | Subevent Id.
2nd Data Word 1st Data Word

Figure 1.9: Event structure type 1 (SILENA)

Sub Event Id A number from 0 to 127 defining the sub event to which the following
pattern word belongs. This byte is NOT longword aligned!

(BIN FIXED (7)).

Version 1.0 Jan, 14 1991 23

GOOSY Buffer Structures- GOOSY Data Formats

Number of Data Words The number of data words (e.g. ADC values) following the pat-

Event Tag Bit

Pattern Word

Data Words

Usage

tern word. This number must be identical to the number of bits set in
the pattern word.

(BIN FIXED (7) but with the highest bit, the event tag bit set to 0 !!).

The bit 2!% marks the event tag word. This bit is set in subevent header
longwords.

(BIT (1)).
Fach bit in the pattern word corresponds to a data word (e.g. ADC
value) following this pattern word. The bit 2° corresponds to the first

word. The number of bits set in the pattern word must be identical to
the ?Number of Data Words” field of this Simple Event Structure.

(BIT (16)).
The number of 16 bit data words (e.g. ADC data) is defined by the

number of bits set in the pattern word or the identical ”Number of
Data Words” field in the structure.

((n) BIN FIXED (15)).

This format is presently not used.

1.5.4 Event Type 5 (LRS FERA)

These events have a standard buffer element header. This header must be generated by the
processor reading out the ADC. Otherwise these events are stored without header in buffers of
type 15. As shown in figure 1.10, the buffer element is composed of a header followed by several
Data Flements. These Data Elements are produced by the ADC/TDC modules type LRS 4300
(FERA). These buffer elements are NOT longword aligned!

Subevent Id

Data Words

Event Tag Bit

A number defining the sub event to which the following subevent be-
longs. This byte is NOT longword aligned!

(BIN FIXED (7)).

The number of data words (e.g. ADC values) following the pattern
word.

(BIN FIXED (7) but with the highest bit, the event tag bit set to 0 !!).

The bit 2!% marks the event tag word. This bit is set in subevent header
longwords.

(BIT (1)).

24

Version 1.0 Jan, 14 1991

Event Structures

Event Type 5
24

31 28 20 16 12 8 4 0 Offset
Data length 0
Subtype =1 Type =5 4
0| 1st SA 1st data word 1| # Data Words | 0 J 0] 0 | Subevent Id 8
0] 3rd SA 3rd Data Word 0 2nd SA 2nd Data Word 12
0| 1st SA 1st data word 1| # Data Words | 0 J 0] 0 | Subevent Id
0| 3rd SA 3rd Data Word 0 2nd SA 2nd Data Word

Figure 1.10: Event structure type 5 (LRS FERA)

Data Words The number of 11 bit data words (e.g. ADC data) is defined by "number
of data words”. The source of the data words is specified by the ”SA”
field.

(BIT(11)).

SA Subaddress of the source of the data word.

(BIT(4)).
Usage

This format is presently not used.

1.5.5 Event Type 6 (MBD buffer type 6)

Figure 1.11 shows the event structure of type 6 in buffers of type 6. The subevent structure
is produced by the J11 and MBD programs. These buffer elements are NOT longword
aligned!

Subevent length Length of subevent in words excluding header longword. This word
is NOT longword aligned!

(BIN FIXED (15)).

CAMAC crate The number of the CAMAC crate where the subsequent subevent data
came from.

(BIN FIXED (7))

Version 1.0 Jan, 14 1991 25

GOOSY Buffer Structures- GOOSY Data Formats

Event Type 6

31 28 24 20 16 12 8 4 0 Offset
Data length 0
Subtype =1 Type =6 4
counter | CAMAC crate Subevent length 8
Second data word First data word 12
counter | CAMAC crate Subevent length
Second data word First data word

Figure 1.11: Event structure type 6 (MBD buffer type 6)

Counter A counter to check correct order of events and subevents.

(BIN FIXED (7))

Data Words Data.
(BIN FIXED (15))

Structure Declarations

The subevent structure is mapped by the PL/1 structure GOOINC(SASME6_1):

/*======== Declaration of MBD event structure 6,1 ===========x/
DCL P_SA$ME6_1 POINTER INIT(NULL);
DCL 1 SA$ME6_1 BASED(P_SA$ME6_1),

2 TA$ME6_1_slen BIN FIXED(15), /* subevent length */

2 HA$ME6_1_crate BIN FIXED(7), /* crate */
2 HA$ME6_1_event BIN FIXED(7), /* event count */
2 TA$ME6_1_data(IA$ME6_1_slen)

BIN FIXED(15), /* data words */

2 SA$ME6_1_next,
3 TA$MEB_1_nslen BIN FIXED(15),
3 HA$ME6_1_nscrate BIN FIXED(7);

The event structure is copied to a Data FElement in the Data Base with structure

GOOTYP(SASMBD):

26 Version 1.0 Jan, 14 1991

Event Structures

NN NN

w

3
3

===== Declaration of MBD event structure 6,1 =====

DCL P_SA$MBD POINTER;
DCL 1 SA$MBD BASED(P_SA$MBD),

IA$MBD_dlen
IA$MBD_tlen
IA$MBD_type
TA$MBD_subtype

2 SA$MBD_

IA$MBD_C1_slen
IA$MBD_C1(99)

2 SA$MBD_

IA$MBD_C2_slen
IA$MBD_C2(99)

2 SA$MBD_

IA$MBD_C3_slen
IA$MBD_C3(99)

2 SA$MBD_

IA$MBD_C4_slen
IA$MBD_C4(99)

2 SA$MBD_

IA$MBD_C5_slen
IA$MBD_C5(99)

2 SA$MBD_

IA$MBD_C6_slen
IA$MBD_C6(99)

2 SA$MBD_

IA$MBD_C7_slen
IA$MBD_CT7(99)

BIN FIXED(15),
BIN FIXED(15),
BIN FIXED(15),

BIN FIXED(15),

C1,

BIN FIXED(15),
BIN FIXED(15),

Cc2,

BIN FIXED(15),
BIN FIXED(15),

C3,

BIN FIXED(15),
BIN FIXED(15),

c4,

BIN FIXED(15),
BIN FIXED(15),

Cs,

BIN FIXED(15),
BIN FIXED(15),

ce,

BIN FIXED(15),
BIN FIXED(15),

Cc7,

BIN FIXED(15),
BIN FIXED(15);

/*
/*

/*
/*

/*
/*

/*
/*

/*
/*

/*
/*

/*
/*

subevent length
data words */

subevent length
data words */

subevent length
data words */

subevent length
data words */

subevent length
data words */

subevent length
data words */

subevent length
data words */

*/

*/

Note that this structure contains no REFER because it is used to create the event Data Element
in the Data Base. For special purposes the user may create his own event structure. The first four
words must be declared as shown above. If the length of the subcrate structures are different, a
special unpack routine must be provided.

Usage

This will be the standard MBD event structure.
SA$SMBD will be filled by a standard unpack routine X$UPMBD.

The event Data Element with the structure

Version 1.0 Jan, 14 1991

27

GOOSY Buffer Structures- GOOSY Data Formats

1.5.6 Event Type 7 (MBD buffer type 7)

Figure 1.12 shows the event structure of type 7 in buffers type 7. The subevent structure is
provided by the user. These buffer elements are NOT longword aligned!

Event Type 7

31 28 24 20 16 12 8 4 0 Offset
Data length 0

Subtype = s Type =7 4

Second data word First data word 8

Figure 1.12: Event structure type 7 (MBD buffer type 7)

Type Must be 7.
(BIN FIXED (15)).

Subtype The subtype can be specified by the user. The buffer subtype must be
equal to this event subtype.

(BIN FIXED (15)).

Data Words Data. Contains subevent structures defined by the user. Different struc-
tures can be marked by different type/subtype numbers.

(BIN FIXED (15))

Usage

This type allows users to write specific applications requiring specific event structures.

1.5.7 Event Type 10 (VME)
This structure is composed by the EB. It is mapped by SA$VE10_1 in library GOOINC.

/* ================= (ST VME Event header ======================= */
DCL P_SA$vel0_1 POINTER;
DCL 1 SA$vel0O_1 BASED(P_SA$vel0O_1),

2 LA$vel0_1_dlen BIN FIXED(31),
2 IA$velO_1_type BIN FIXED(15),
2 IA$vel0_1_subtype BIN FIXED(15),
2 IA$vel0_1_dummy BIN FIXED(15),

28 Version 1.0 Jan, 14 1991

Event Structures

Event Type 10, Subtype 1

31 28 24 20 16 12 8 4 0 Offset
Data length [words]| 0
Subtype =1 Type = 10 4
Trigger Not used 8
Event counter 12
Subevent 1 16
Subevent n 164x
Figure 1.13: Event Structure
2 IA$velO_1_trigger BIN FIXED(15),
2 LA$velO_1_count BIN FIXED(31),
2 TA$velO_1(LA$velO_1_dlen-4) BIN FIXED(15),
2 LA$velO_1_next BIN FIXED(31);
[Rm—mmm e - */

CAMAC Subevent Structure 10,1

This subevent structure is written by the ROP or the FEP. It is defined in SA$VES10_1 in library
GOOINC.

Subevent Type 10, Subtype 1

31 28 24 20 16 12 8 4 0 Offset
Subevent Data length [words] 0
Subevent subtype = 1 Subevent type = 10 4
Control | subcrate Processor 1D 8
CAMAC value CAMAC module 1D 12
Figure 1.14: CAMAC Subevent Structure
/* ================= (ST VME Subevent header ======================= */
DCL P_SA$vesi0_1 POINTER;
DCL 1 SA$vesiO_1 BASED(P_SA$ves10_1),

2 LA$ves10_1_dlen BIN FIXED(31),
2 IA$vesl0_1_type BIN FIXED(15),
2 IA$ves10_1_subtype BIN FIXED(15),
2 IA$ves10_1_procid BIN FIXED(15),

Version 1.0 Jan, 14 1991

29

GOOSY Buffer Structures- GOOSY Data Formats

2 HA$ves10_1_subcrate BIN FIXED(7),

2 HA$ves10_1_control BIN FIXED(7),

2 TA$ves10_1(LA$vesl10_1_dlen-2) BIN FIXED(15),
2 LA$ves10_1_next BIN FIXED(31);

FASTBUS Subevent Structure 10,2

This subevents are written from the AEB. The header structure is defined in SASVES10_1 in
library GOOINC.

Subevent Type 10, Subtype 2

31 28 24 20 16 12 8 4 0 Offset
Subevent Data length [words] 0

Subevent subtype = 2 Subevent type = 10 4

Control | subcrate Processor 1D 8
Fastbus module header 16

Figure 1.15: Fastbus Subevent Structure

The following structure maps to the data field. It is defined in SA$vesfb in library GOOINC.

Fastbus module header

31 28 24 20 16 12 8 4 0 Offset
Longwords | Geo.addr. | Module 1D 0

1st data word 4

Figure 1.16: Fastbus Module header

/* Fastbus module header maps to IA$ves10_2(i) */
DCL P_SA$vesthb POINTER;
DCL 1 SA$vesfb BASED(P_SA$ves_fb),
2 IA$vesfb_id BIN FIXED(15),
HA$vesfb_addr BIN FIXED(7),
HA$vesfb_lwords BIN FIXED(7),
LA$vesfb_data(HA$vesfb_lwords) BIN FIXED(31),
LA$vesfb_next BIN FIXED(31);

NN NN

30 Version 1.0 Jan, 14 1991

Event Structures

/*
/*

Fastbus data word
31 28 24 20 16 12 8 4 0 Offset

| Geo.addr. | Event | R | Channels | Dummy | Data Word | 0

Figure 1.17: Fastbus Data Word

One data word looks like

Structure of data words */
Numbers from 1 to 32 can be used in POSINT */

JREPLACE FBDATA_d BY 1; JREPLACE FBDATA_d_1 BY 12;

JREPLACE FBDATA_x BY 13; YREPLACE FBDATA_x_1 BY 4
JREPLACE FBDATA_ch BY 17; YREPLACE FBDATA_ch_1 BY 7
JREPLACE FBDATA_r BY 24; YREPLACE FBDATA_r_1 BY 1;
JREPLACE FBDATA_ev BY 25; JREPLACE FBDATA_ev_1 BY 3
JREPLACE FBDATA_ad BY 28; YREPLACE FBDATA_ad_1 BY 5

DCL P_SI$FBDATA POINTER; /* maps to LA$vesfb_data(i) */
DCL 1 SI$FBDATA BASED(P_SI$FBDATA),

2 BI$FBDATA_d BIT(12) /* data word */

2 BI$FBDATA_x BIT(4), /* dummy */
2 BI$FBDATA_ch BIT(7), /* channel */
2 BI$FBDATA_r BIT(1), /* range */
2 BI$FBDATA_ev BIT(3), /* event */
2 BI$FBDATA_ad BIT(5); /* geo addr. */

Version 1.0 Jan, 14 1991 31

GOOSY Buffer Structures- GOOSY Data Formats

1.6 Buffer Element Structures

1.6.1 Buffer Element Type 9000 (Time Stamp)

Figure 1.18 shows the Time Stamp structure (buffer element structure type 9000). These buffer
elements are longword aligned!

Buffer Element Type 9000, Time Stamp

31 28 24 20 16 12 8 4 0 Offset
Data length=10 0
Subtype = 0 | Type = 9000 4
Date ”dd-mmm-yyyy hh:mm:ss.mm” (24 character) 8
Date continuation

Figure 1.18: Buffer Element structure type 9000, Time Stamp

Date Character string of the creation date in the format
?dd-mmm-yyyy hh:mm:ss.mm ” where dd is the day of month, mmm is the
3 character abbreviation of the english spelled month (JAN, FEB, MAR,
APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC), and yyyy is the
year, hh are hours, mm minutes, ss.mm are seconds, e.g. 721-OCT-1986
14:34:30.10 7. This date string is always padded by a space character.

(CHARACTER(24)).

Usage
Not yet used.

1.6.2 Buffer with GOOSY Data Elements

Buffer type 1000 contains GOOSY Data Elements. The subtype specifies the kind of Data
Element.

GOOSY spectrum

GOOSY condition

GOOSY picture

GOOSY polygon

GOOSY calibration

GOOSY Data Element

32 Version 1.0 Jan, 14 1991

Nonstandard Buffer Structures

1.7 Nonstandard Buffer Structures

1.7.1 Buffer Type 12 (SILENA)

Figure 1.19 shows the subevent structure as produced by one ADC/TDC module of type SILENA
4418x. Several modules produce several subsequent structures. These buffer elements are
NOT longword aligned!

SILENA Data Structure
28 24 20 16

31 12 8 4 0 Offset
Pattern Word 1 | No. of Data Words | Subevent Id. 0
2nd Data Word 1st Data Word 4

Subevent Id

Figure 1.19: Data structure SILENA ADC

A number from 0 to 127 defining the subevent to which the following
pattern word belongs. This byte is NOT longword aligned!

(BIN FIXED (7)).

Number of Data Words The number of data words (e.g. ADC values) following the pat-

Event Tag Bit

Pattern Word

Data Words

tern word. This number must be identical to the number of bits set in
the pattern word.

(BIN FIXED (7) but with the highest bit, the event tag bit set to 0 !!).

The bit 2'° marks the event tag word. This bit is set in the subevent
header longword.

(BIT (1)).

Fach bit in the pattern word corresponds to a data word (e.g. ADC
value) following this pattern word. The bit 2° corresponds to the first
word. The number of bits set in the pattern word must be identical to
the ?Number of Data Words” field of this Simple Event Structure.

(BIT (16)).
The number of 16 bit data words (e.g. ADC data) is defined by the

number of bits set in the pattern word or the identical ”Number of
Data Words” field in the structure.

((n) BIN FIXED (15)).

Version 1.0 Jan, 14 1991 33

GOOSY Buffer Structures- GOOSY Data Formats

Usage
Not yet used.

1.7.2 Buffer Type 15 (LRS FERA)

Figure 1.20 shows the subevent structure as produced by one ADC/TDC module of type LRS
4300 (FERA). Several modules produce several subsequent structures. These buffer elements
are NOT longword aligned!

LRS 4300 (FERA)

31 28 24 20 16 12 8 4 0 Offset

1st SA 1st data word 1| # Data Words | 0 J 0] 0 | Subevent Id 0

0] 3rd SA 3rd Data Word 0 2nd SA 2nd Data Word 4
0 | last SA | last Data Word J ol ... SA | -+ Data Word

Subevent Id

Data Words

Event Tag Bit

Figure 1.20: Data structure LRS FERA

A number defining the subevent to which the following subevent belongs.
This byte is NOT longword aligned!

(BIN FIXED (7)).

The number of data words (e.g. ADC values) following the pattern
word.

(BIN FIXED (7) but with the highest bit, the event tag bit set to 0 !!).

The bit 2'° marks the event tag word. This bit is set in the subevent
header longword.

(BIT (1)).

Data Words The number of 11 bit data words (e.g. ADC data) is defined by "number
of data words”. The source of the data words is specified by the ”SA”
field.

(BIT(11)).
SA Subaddress of the source of the data word.
(BIT(4)).
34 Version 1.0 Jan, 14 1991

Nonstandard Buffer Structures

Usage
Not yet used.

Version 1.0 Jan, 14 1991 35

GOOSY Buffer Structures- Index

36 Version 1.0 Jan, 14 1991

Index

Index
B standard 24
Buffer 4 J11 21
element 4, 8 MBD
calibration 32 standard 25
condition 32 user defined 28
data 4, 8 SILENA
Data Flement 32 no standard 33
header 4, 8, 12 standard 23
picture 32 spanning 13
polygon 32 types 14, 21, 23, 24, 25, 28, 33, 34
spectrum 32 VME 28
time stamp 32 CAMAC 29
file header 16 FASTBUS 30
files 4 word block 21
header 10 word block - no zeros 22
non standard & F

spanning 13

structure 8 FASTBUS
subtype 10, 12 . event 30
type 10, 12, 14 F}le header 16
Byte order 5 File names
IBM 18
D fragment 10
Data I
buffer 20
Element IBM
buffer 20 file names 18
E M
Endian 5 Message control block 4, 6
Fvent 5 S
compressed 21 _
FERA Spanning 13
non standard 34 V

Version 1.0 Jan, 14 1991 37

GOOSY Buffer Structures- Index

VME
event 28
CAMAC 29
FASTBUS 30

38 Version 1.0 Jan, 14 1991

Contents

Contents
1 GOOSY Data Formats 3
1.1 Imtroduction e 4
1.1.1 Buffers. e e 4
1.1.2 Buffer Files e e 4
1.1.3 Message Control Blocks 4
LL4 Glossary o o o o e e e 4
1.2 Message Control Block Structure 6
1.3 Buffer Structure e 8
1.3.1 Standard Buffers 8
1.3.2 Nonstandard Buffers 8
1.3.3 Buffer Header 10
Structure Declaration e 12
1.3.4 Buffer Element Header 12
Structure Declaration e 13
1.3.5 Event Spanningo e 13
1.4 Buffer Types e e 14
141 Overview e e e e e e e e e e e 14
1.4.2 File Header Buffer 16
Structure Declaration e 20
1.4.3 GOOSY Data Element Buffers 20
1.4.4 GOOSY Listmode Data Buffers 20
1.5 Event Structures 21
1.5.1 Event Type 3 (compressed) 21
Usage o 21
1.5.2 Event Typed o o o e e 21
Event Type 4, Subtype 1 (block) 21
Event Type 4, Subtype 2 (no zero’s) 22
Structure Declaration e 22
Usage o 23
1.5.3 Event Type 1 (Buffer Type 2, SILENA) 23
Usage o 24

Version 1.0 Jan, 14 1991 i

1.5.4 Event Type 5 (LRSFERA), 24

Usage o 25

1.5.5 Event Type 6 (MBD buffer type 6) 25

Structure Declarations oL oo 26

Usage o 27

1.5.6 Event Type 7 (MBD buffer type 7) L. 28

Usage o 28

1.5.7 Event Type 10 (VME) 28

CAMAC Subevent Structure 10,1 oL 29

FASTBUS Subevent Structure 10,2 30

1.6 Buffer Element Structures. o o000 32

1.6.1 Buffer Element Type 9000 (Time Stamp) 32

Usage o 32

1.6.2 Buffer with GOOSY Data Elements 32

GOOSY spectrum oL e 32

GOOSY condition oo 32

GOOSY picture o o 32

GOOSY polygon o e 32

GOOSY calibrationo 32

GOOSY Data Element L o 32

1.7 Nonstandard Buffer Structures, 33

1.7.1 Buffer Type 12 (SILENA) o o 33

Usage o 34

1.7.2 Buffer Type 15 (LRSFERA) 34

Usage o 35

APPENDIX 35

Index 36
il Version 0.0 Jan, 14 1991

