## Physics with High Energy Anti-Protons at FAIR

Inti Lehmann

**Uppsala University** 

## **A Brief History**

- 1930's: nucleus: protons + neutrons
  => nucleons
- 1950's 60's: nucleons not elementary
  => hadron zoo
- 1960 ff: Quark model + QCD
  - Gell-Man: Nobel Price 1969
  - Friedman, Kendall, Taylor: Nobel Price 1990
  - Gross, David, Wilczek: Nobel Price 2004

### everything understood???

## **Some Open Questions**

- Perturbative QCD is powerful at high energies but not applicable for hadronic matter!
- Only few % of the nucleon masses can be explained by the current quark masses!
- Why are only 2 and 3 quark states established?
  - 4,5-quark states, Hybrids, Glueballs should exist!
  - Hints on Pentaquarks and Glueballs...
- Particles found (PDG) outnumber the possible states in the multiplets!

A Short Introduction to Strong Interaction: e.g. proton-neutron interaction

Yukava's prediction



massive exchange particle  $m_{\pi} \approx 100 MeV$ 

A Short Introduction to Strong Interaction: e.g. proton-neutron interaction quark picture



very light quarks  $m_q \approx 2-9 MeV$ are confined by colour charge mass: quark-gluon condensate

## **A Little Comparison**

| interaction          | el-magn               | strong                       |
|----------------------|-----------------------|------------------------------|
| charge               | positive,<br>negative | 3 colours,<br>3 anti-colours |
| exchange<br>boson    | 1 photon<br>(neutral) | 8 gluons<br>(charged)        |
| coupling<br>constant | α = 1/137             | α <sub>s</sub> =0.1-1        |
| theory               | QED                   | QCD                          |

## **Some PANDA Issues**

- charmonium spectroscopy
- gluonic excitations (hybrids, glueballs)



- in medium mass modifications
- γ-ray spectroscopy of hypernuclei

## **Charmonium Spectroscopy**

- transition between massless and heavy quark limit!
- narrow states!

 precision measurements on D-states!



## **Gluonic Excitations**

 glueballs: gluonic states without valence quarks



## **Gluonic Excitations**



• glueballs: gluonic states without valence quark contribution



 hybrids: "ordinary" quark states containing excited glue

## **In-Medium Mass Modifications**

- HADES, CBM:
  ρ, ω, φ studies
- PANDA: extension to the charm sector



# **Spectroscopy of Single and Double Hypernuclei**



## What is Experimentally Needed?

- gluon-rich environment!
  - ⇒ proton-antiproton anihilations all quantum numbers!
- - ⇒ production exp. i.e. large acc. detector precise resonance scan!
- - ⇒ high precision hadron beam (cooled) high statistics samples!
- - $\Rightarrow$  high luminosity and prod. cross section
- energies where gluon degrees of freedom become relevant!



• 1999: Planning of a Charm-Glue Factory at GSI!

**HESR** int.  $4\pi$  detector p = 1.5 - 15 GeV/c

 $L = 2x10^{32}/(cm^2 s)$ 

An International Accelerator Facility for Research with lons and Antiprotons

FAIR

- 2003: Positive evaluation and commitment to FAIR by the German Government!
- 2004: Approval of Lol!
- Jan 2005: Technical Proposal!



## **Pellet Target**

## delivers required target density in conjunction with low gas load

#### **WASA** target



- in operation for data taking since 2000!
- density as required for PANDA!
- divergence and frequency are to be improved by factors of 2-4!
- vacuum situation is studied at the PTS!

## **Pellet Target**

#### **Pellet Test Station (PTS)**

- independent system!
- improved but parts interchangeable!
- flexible design and full access!
- simulating PANDA vacuum-wise!



## **Electro-Magnetic Calorimeter**

- test experiments at KVI and MAMI
  - crystal type
  - photo sensors
  - size, shape, position
  - radiation hardness



- joint efforts Uppsala-Stockholm
  - energy and timing resolutions
  - radiation hardness to neutron flux

## Simulation of Benchmark Channels e.g. charmonium hybrid



 $\Rightarrow p\bar{p} \rightarrow l^+ l^- 7\gamma$ 





 $\Rightarrow$  design of the EMC!

#### E-Cooler for HESR TSL: Dag Reistad...

#### CELSIUS 300 keV

# **HESR** proposal 10 MeV 12 m

## Summary

- last decades
- open questions
- Uppsala's role

and the constant

 → enormous progress Quark model, QCD
 → some answers in pp-exp.

FAIR

→ strong contribution PANDA, HESR, ESR, NESR

#### Gräftåvallen, January 4-9th, 2005

#### Programme dedicated to the physics at the future FAIR facility



- nuclear astrophysics
- heavy-ion physics
- hadron physics

Claus Rolfs (Bochum): "Nukleosynthesis-Key-Questions" and "Plasma effects in metals" Hans Fynby (Aarhus): Helium burning in stars Emma Olsson (Uppsala): Neutron star cooling Fred Harris (Hawaii): Results from the BES electron-positron collider experiment Bingsong Zou (Beijing): Exotic hadron-hadron s-wave interaction Alex Dzierba (Indiana). GlueX at CEBAF Eberhard Widman (Tokyo/Vienna): Low-energy antiproton physics Dieter Roehrich (Bergen): What have we learned from heavy-ion experiments? Joakim Nystrand (Bergen): Overview of RHIC experiments Ana Marin\* (GSI): Results from recent CERN heavy-ion experiments?

#### please register at: www5.tsl.uu.se/panda/gra15

scientific contributions welcome!