

PANDA - Detector and Current Developments

Inti Lehmann

Uppsala University

SFAIR, 12th Sept. 2005

A Brief History

- 1930's: atoms (ατομον) in fact divisible
 => nucleons (p + n) and electrons
- 1950's 60's: nucleons not elementary
 => "hadron zoo"
- 1960 ff: quark model + QCD
 - Gell-Man: Nobel Price 1969
 - Friedman, Kendall, Taylor: Nobel Price 1990
 - Gross, David, Wilczek: Nobel Price 2004
- 2007 ff: Higgs et al.

Open Problems

- generation of hadron masses
- strong interaction at large distances
- spin puzzle
- multi-quark systems

(flux tube animation by D. Leinweber et al.)

Non-Pertubative QCD at PANDA

- charmonium spectroscopy
- gluonic excitations (hybrids, glueballs)
- open and hidden charm in nuclei
- γ-ray spectroscopy of hypernuclei
- J/ψ -N scattering
- inverted DVCS
- •

- gluon-rich environment
 - \Rightarrow proton-antiproton anihilations

- gluon-rich environment
 - \Rightarrow proton-antiproton anihilations
- all quantum numbers

 \Rightarrow production exp. i.e. large acc. detector, fixed target

- gluon-rich environment
 - \Rightarrow proton-antiproton anihilations
- all quantum numbers

- \Rightarrow production exp. i.e. large acc. detector, fixed target
- precise resonance scan
 - \Rightarrow high precision hadron beam (cooled)

- gluon-rich environment
 - \Rightarrow proton-antiproton anihilations
- all quantum numbers

- \Rightarrow production exp. i.e. large acc. detector, fixed target
- precise resonance scan
 - \Rightarrow high precision hadron beam (cooled)
- high statistics samples

 \Rightarrow high luminosity and prod. cross section

- gluon-rich environment
 - \Rightarrow proton-antiproton anihilations
- all quantum numbers

Crystal Barrel

f_o(1500)

- \Rightarrow production exp. i.e. large acc. detector, fixed target
- precise resonance scan
 - \Rightarrow high precision hadron beam (cooled)
- high statistics samples
 - \Rightarrow high luminosity and prod. cross section
- physics topics

Micro-Vertex Detector (MVD)

hybrid pixel design

Central Tracker (STT or TPC, MDC)

- straw tubes: 11 skewed double-layers
- option (TPC with GEM readout)
- mini drift chambers

Tracker R&D

Straw Tubes

Time Projection Chamber

Charged Particle Identification

12 m

Charged Particle Identification Detection of Internally Reflected Cherenkov Light (DIRC)

Activities in Sweden

- simulation of meson hybrid and glueball production
 - ISV, Uppsala
- e-cooler for the HESR
 - TSL, Uppsala -> Dag Reistad
- hypernuclear target and Ge detectors
 - Fysikum Stockholm Univ.; KTH Stockholm
- pellet target development, design and construction
 - TSL and ISV, Uppsala -> Örjan Nordhage
- electromagnetic calorimeter (EMC)
 - ISV, Uppsala
 - Fysikum Stockholm Univ.

Simulation of Benchmark Channels e.g. charmonium hybrid

$$\begin{array}{l} p\bar{p} \rightarrow \Psi_{g} \eta \qquad J^{PC} = 1^{-+} \\ \stackrel{\leftarrow}{\rightarrow} \gamma \gamma \\ \stackrel{\leftarrow}{\rightarrow} \chi_{c} \left(\pi^{0} \pi^{0} \right)_{s} \\ \stackrel{\leftarrow}{\rightarrow} \gamma \gamma \gamma \gamma \gamma \\ \stackrel{\leftarrow}{\rightarrow} J/\psi \gamma \\ \stackrel{\leftarrow}{\rightarrow} l^{+} l^{-} \end{array}$$

$$ightarrow par{p}
ightarrow \, l^+ \, l^- \, {f 7 \gamma}$$

- \Rightarrow implications on the EMC
- \Rightarrow reconstruction difficult

Simulation of Benchmark Channels e.g. charmonium hybrid

Spectroscopy of Hypernuclei detection principle

Spectroscopy of Hypernuclei use at CELSIUS

detector telescope

in UHV, windowless in a high magnetic field germanium detectors operate at -195° C

typical set of detectors:

- 1) thin (2 mm) germanium, position sensitive
- 2) thin (1 mm) silicon
- 3) thick (12 mm) germanium

particle identification energy determination

Karl Lindberg, Per-Erik Tegnér

Spectroscopy of Hypernuclei experiments in a magnetic field

Electro-Magnetic Calorimeter scintillator material

- scintillator material
 - PWO II, III
 SICCAS, Bogoroditsk
 BGO
 SICCAS, (Saint Gobain)

Electro-Magnetic Calorimeter scintillator material

- scintillator material
 - PWO II, III, BGO

Electro-Magnetic Calorimeter scintillator material

3x3 array PWO III at -25°C and PMT read-out:

PANDA CDR: $\triangle E/E = 0.3\% + 1.54\% / \sqrt{E[GeV]}$ \Rightarrow Homogeneity and quality of crystals?

Electro-Magnetic Calorimeter packaging and mounting

- scintillator material
 - PWO II, III (BGO)
- packaging and mounting
 - cooling, alveoles, deformation,...

Electro-Magnetic Calorimeter light yield dependence on position

Electro-Magnetic Calorimeter

summary

- scintillator material
 - PWO II, III (BGO)
- packaging and mounting
 - alveoles, cooling, deformation,...
- light yield vs position
 - crystal modification, quality control
- photo sensors
- radiation hardness

Summary

- PANDA on track
 - solid technical design
 - adequate manpower
 - timely progress
- strong Swedish participation
 - Uppsala U, Stockholm U, KTH Stockholm, ...
- still a lot to do

We will work hard on it!

100000

• At present a group of **350 physicists** from 47 institutions of 15 countries

Austria – Belaruz – China – Finland – France – Germany – Italy – Poland – Romania – Russia – Spain – Sweden – Switzerland – U.K. – U.S.A.

Basel, Beijing, Bochum, Bonn, IFIN Bucharest, Catania, Cracow, Dresden, Edinburgh, Erlangen, Ferrara, Frankfurt, Genova, Giessen, Glasgow, GSI, Inst. of Physics Helsinki, FZ Jülich, JINR Dubna, Katowice, Lanzhou, LNF, Mainz, Milano, Minsk, TU München, Münster, Northwestern, BINP Novosibirsk, Pavia, Piemonte Orientale, IPN Orsay, IHEP Protvino, PNPI St. Petersburg, KTH Stockholm, Stockholm, Dep. A. Avogadro Torino, Dep. Fis. Sperimentale Torino, Torino Politecnico, Trieste, TSL Uppsala, Tübingen, Uppsala, Valencia, SINS Warsaw, TU Warsaw, AAS Wien

http://www.gsi.de/panda