Hard Exclusive Processes at HERMES and Future Prospects

IHEP Seminar, Beijing 16 October 2007

Table of Contents

- Glimpse on Physics
- Results from HERMES
- Recoil at HERMES
- Future Prospects
- Summary

A short History...

- Proton consists of 3 quarks (Gell-Mann, Zweig 1964)
- ... and gluons and sea quarks (QCD)
- Partons (Feynman/Bjorken) identified with quarks and gluons and verified in scattering experiments
- Proton has spin 1/2, and so do the quarks
- 2004 Nobel Prize for Gross, Wilczek, Politzer

How is the spin distributed?

Nucleon Spin Structure

Proton spin (naive)

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{L_q}{2} + \Delta G + L_g$$

- $\Delta\Sigma$: quark spin
- $\Box \quad highest precision \\ measurement by HERMES \\ \Delta \Sigma = 0.330 \pm 0.011 (theo.) \pm 0.025 (exp.) \pm 0.028 (evol.)$

A. Airapetian et al, Phys. Rev. D75(2007)012007

- ΔG : gluon spin
 - first measurements
- L_q : quark ang. momentum
 - unknown
- L_g: gluon ang. momentum
 - unknown

Nucleon Spin Structure

Ji Sum Rule:

$$J_{q} = \frac{1}{2} \int_{-1}^{1} x \, dx \left[H_{q} + E_{q} \right]$$

GPDs

- Knowing of GPDs H_a, E_a:
 - \square access L_q !

Proton spin (naive)

$$\frac{1}{2} \neq \frac{1}{2}\Delta\Sigma + L_q + \Delta G + L_g$$

• $\Delta\Sigma$: quark spin

- □ highest precision measurement by HERMES $\Delta\Sigma = 0.330 \pm 0.011$ (theo.) ± 0.025(exp.) ± 0.028(evol.) A. Airapetian et al, Phys. Rev. D75(2007)012007
- ΔG : gluon spin
 - first measurements
- L_q: quark ang. momentum
 - unknown
- L_g: gluon ang. momentum
 unknown

What are GPDs?

Generalised Parton Distributions

Generalised Parton Distributions GPDs

- Functions of 3 variables
 - parton momentum fraction x

 $H(x,\xi,t), E(x,\xi,t),$

 $\widetilde{E}(x,\xi,t)$

spin odd

 \Box skewedness ξ

unpolarised

polarised

 $H(x,\xi,t)$

spin even

- **p momentum transfer** t
- 4 (chirality conserving) quark GPDs

Inti Lehmann

Generalised Parton Distributions GPDs

Limits of GPDs:

Parton Distribution Functions

 $\begin{aligned} q(x) &= H_q(x,0,0) \\ \Delta q(x) &= \tilde{H_q}(x,0,0) \end{aligned}$

• Form factors $F_{1}^{q}(t) = \int_{-1}^{1} dx H^{q}(x,\xi,t)$ $F_{2}^{q}(t) = \int_{-1}^{1} dx E^{q}(x,\xi,t)$ $g_{a}^{q}(t) = \int_{-1}^{1} dx \tilde{H}^{q}(x,\xi,t)$ $h_{a}^{q}(t) = \int_{-1}^{1} dx \tilde{E}^{q}(x,\xi,t)$

Inti Lehmann

Interpretation of GPDs

- The Fourier transform of GPDs at ξ=0 leads to a
 2+1 dimensional picture of the nucleon:
 - Iongitudinal momentum fraction and transverse impact parameter space.

 $q(x,b_{\perp})=\intrac{d^2\Delta_{\perp}^2}{(2\pi)^2}H(x,0,-\Delta_{\perp}^2)e^{-i\Delta_{\perp}\cdot b_{\perp}}$

Model Prediction

GPD Model restricted by form factor data exists:

parameter plane. Proton polarised in x-direction

Inti Lehmann

How to Measure GPDs → DVCS

Measure Asymmetries

Beam Spin Asymmetry

 $A_{LU} = \frac{d\sigma(\mathbf{e}^{\rightarrow}, \phi) - d\sigma(\mathbf{e}^{\leftarrow}, \phi)}{d\sigma(\mathbf{e}^{\rightarrow}, \phi) + d\sigma(\mathbf{e}^{\leftarrow}, \phi)} \propto \Im m(\mathcal{H}) \sin(\phi)$

Beam Charge Asymmetry

 $\mathbf{A}_{\mathbf{C}} = \frac{d\sigma(\mathbf{e}^+, \phi) - d\sigma(\mathbf{e}^-, \phi)}{d\sigma(\mathbf{e}^+, \phi) + d\sigma(\mathbf{e}^-, \phi)} \propto \Re e(\mathcal{H}) \cos(\phi) \mathbf{\psi}$

Longitudinal-Target Spin Asymmetry

 $A_{UL} = \frac{d\sigma(\mathbf{p}^{\rightarrow}, \phi) - d\sigma(\mathbf{p}^{\leftarrow}, \phi)}{d\sigma(\mathbf{p}^{\rightarrow}, \phi) + d\sigma(\mathbf{p}^{\leftarrow}, \phi)} \propto \Im m(\widetilde{\mathcal{H}}) \sin(\phi)$

Transverse-Target Spin Asymmetry

 $A_{UT} = \frac{d\sigma(\mathbf{p}^{\uparrow}, \phi) - d\sigma(\mathbf{p}^{\downarrow}, \phi)}{d\sigma(\mathbf{p}^{\uparrow}, \phi) + d\sigma(\mathbf{p}^{\downarrow}, \phi)} \propto f(\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}, \phi, \phi_S)$

Kinematical Coverage of DVCS Experiments

- HERA collider
 experiments H1 and
 ZEUS have small
 skewedness
- $x_B < 0.01 \ Q^2 : 5...100 \ GeV^2$
 - Fixed target experiments are crucial to explore GPDs !

Table of Contents

- Glimpse on Physics
- Results from HERMES
- Recoil at HERMES
- Future Prospects
- Summary

HERMES at HERA, DESY

Long. polarized • 27.6 GeV

HERMES at HERA, DESY

DVCS Asymmetries: Beam Spin

DVCS Asymmetries: Beam Charge

- Constrains the GPD H
- t-dependence constrains models

- Here E is not suppressed
- Sensitive to variation in quark angular momentum J_a

DVCS Asymmetries: Constrain J_u/J_d

Large 2005 data sample not yet included

Inti Lehmann

Analysis: J_u/J_d from the Neutron

 $A_{LU}^{\sin\phi} \propto \Im C_{\text{unpol}}^{I} = F_{1}^{n}(t) \Im \mathcal{H}^{n}(\xi, t, Q^{2})$

At HERMES we measure ALU:

$$A_{LU} = \frac{d\sigma(\mathbf{e},\phi) - d\sigma(\mathbf{e},\phi)}{d\sigma(\mathbf{e},\phi) + d\sigma(\mathbf{e},\phi)}$$

Dominant on the proton

$$+\frac{x_B}{2-x_B}\left(F_1^n(t)+F_2^n(t)\right)\Im\tilde{\mathcal{H}}^n(\xi,t,Q^2)$$
$$-\frac{t}{4m^2}F_2^n(t)\Im\mathcal{E}^n(\xi,t,Q^2)$$

Dominant on the neutron

$$\Im \mathcal{F}(\xi, t, Q^2) = \pi \sum_{q} e_q^2 \left[F^q(\xi, \xi, t, Q^2) \mp F^q(-\xi, \xi, t, Q^2) \right]$$

Sensitive on the quark angular momentum J_q

Inti Lehmann

DVCS Asymmetries: Constrain J_u/J_d

Table of Contents

- Glimpse on Physics
- Results from HERMES
- Recoil at HERMES
- Future Prospects
- Summary

Inti Lehmann

HERMES Recoil Detector

Silicon Strip Detector

16 silicon sensors:

- 10 x 10 cm² area
- 300um thickness
- double-sided strips
- Arranged in 2 layers
- Challenge
 - Detector + electronics close to e beam
 - Inside vacuum

Purpose

- detect 135-500 MeV/c protons
- Momentum and track
 reconstruction
- Particle Identificantion

Inti Lehmann

Scintillating Fibre Detector

2 barrels with each:

- 2 layers parallel with resp. to beam
- 2 layers 10° stereo angle
- Readout:
 - 64 channels PMT (Hamamatsu)
 - totally 5120 channels
- Purpose
 - Momentum and track reconstruction
 - Particle Identification
 - **Range:** p_p = 250-1200 MeV/c

Photon Detector

- 3 layers of tungsten and scintillator
 - □ 1st layer parallel to beam
 - □ 2nd layer +45° resp. to beam
 - □ 3rd layer -45° resp. to beam
- Purposes
 - □ Photon detection from π° decays ($\Delta^+ \rightarrow p \pi^{\circ}$)
 - Particle Identification
 - Background reduction

11mm Scintillator

11mm

3mm Tungsten

Scintillator

Bars

 $z \neq 0$

Advantages of the Recoil Detector

- Remove background from associated BH/DVCS with intermediate △-production and from semi-inclusive processes
 - Reduction from 17% to about 1%
- Improve t-resolution at small t (with Si-detector)
- High luminosity with unpolarised target

First Results From the Recoil Detector

Elastic scattering:

e and p back-to-back

Momentum resolution: <u>Ap/p = 1-15% for protons</u>

Monte Carlo ∲_{rec}(rad) 5 0 0.25 Protons SSD only Protons SSD+SFT MC Pions **lata** 0.2 4 0.15 d/d∆ 3 0.1 2 0.05 0.6 0.2 0.4 0.8 1 1.2 0 MC Momentum [GeV/c] 2.5 5 U $\phi_{\text{spect}}(\text{rad})$

First Results From the Recoil Detector

Energy Deposit in Silicon Detectors

Track Reconstruction Through Curvature 450 Fiber Tracker 400F Data **HERMES** Data 350 Energy Deposit [P.E.] 200 120 120 120 p π 100 π 50 0 -0.5 0.5 0 Reconstructed Momentum [GeV/c]

Detectors operational:

- Momentum reconstruction
- Particle identification: pions, protons, photons, ...

Inti Lehmann

Table of Contents

- Glimpse on Physics
- Results from HERMES
- Recoil at HERMES
- **Future Prospects**
- Summary

CLAS : High Statistics Beam Spin Asymmetry

- Experiment E01 113, preliminary data, still unpublished
- All three final state particles (electron, photon, proton) detected
- Statistics allows 3-d binning in x, Q² and t
- First glimpse at what future JLab experiments will be able to do

Inti Lehmann

Antiproton Annihilations → **PANDA**

- **'Cross channel' or 'time-like' version of DVCS complementary:**
 - Generalised Distribution Amplitudes or
 - **Transition Distribution Amplitudes**

- Time-like form factors
 - Measure GE and GM separately
- Putting data together (with DIS)
 - First 3-dimensional picture of the nucleon

FAIR at Darmstadt

Primary Beams

- 10¹²/s; 1.5 GeV/u; ²³⁸U²⁸⁺
- 10¹⁰/s ²³⁸U⁷³⁺ up to 35 GeV/u
- 3x10¹³/s 30 GeV protons

Secondary Beams

- broad range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 higher in intensity than presently
- antiprotons 3 30 GeV

Storage and Cooler Rings

- radioactive beams
- 10¹¹ antiprotons 1 15 GeV/c, stored and cooled

cooled beams, rapid cycling superconducting magnets

Technical Challenges

PANDA at FAIR

Properties

- Fixed target
- Antiproton beam
 - p= 1.5 15 GeV/c
- □ Δp/p = 10⁻⁵
- 4π detector charged + neutral
- High luminosity

Main physics topics

- Charmonium spectroscopy
- Gluonic excitations (hybrids, glueballs)
- Open and hidden charm in nuclei
- γ-ray spectroscopy of hypernuclei
- Structure of the nucleon

Summary and Outlook

- Hard exclusive reactions
 - Potential to picture the nucleon GPDs, GDAs
- HERMES is contributing a lot
 - Many results were not shown
 - Much more data is on tape
 - Data with Recoil Detector have large potential
- This subject will become more important
 - Currently: (HERMES), CLAS, COMPASS
 - □ Future: CLAS12, PANDA, ...
- Glasgow is strongly engaged
 - Coordinate EU FP6 Network <u>http://gpd.gla.ac.uk</u>
 - New EU FP7 in preparation