

Nucleon Structure in Time and Space Like Dimensions

Inti Lehmann University of Glasgow

Recent Results in Nuclear Physics 9th June 2010, UWS Paisley

Open Questions

- Form factors not yet fully understood
 - G_E/G_M discrepancy, addressed at OLYMPUS(DESY)
- Generalised Parton Distributions
 - powerful tool
 - first results from HERMES(DESY)
 - future CLAS12(JLab)
- Spin structure
 - main contribution unexplained
 - results from HERMES(DESY) and HallA(JLab)
- Time like structure functions
 - Iargely uncharted territory
 - future PANDA(FAIR)

Naive Picture of the Hadron

- Baryons
 - e.g. proton, neutron
 - □ 3 quarks
 - half integer spin

- Mesons
 - e.g. pion
 - quarkantiquark
 - integer spin

Closer Look

Reality is more complicated

Experimental Approach

- Perform scattering experiments
- Measure
 - differential cross sections
 - asymmetries
- Form factors (Sachs)
 - G_M magnetic
 - G_E electric
 - Fourier transform density distribution
 - probe impact parameter space

5

Experimental Approach

Radial EM Distribution

- Series of space like form factor measurements
 - access to radial charge and magnetic distributions

Recent Calculations

- New refined results (infinite momentum frame)
 - from experimental form factors, unpolarised:

C.E. Carlson and M. Vanderhaeghen, Phys. Rev. Lett. 100, 032004 (2008)

Inti Lehmann, 9/6/2010

Recent Puzzle in G_E/G_M

BLAST at BATES...

...moved to former ARGUS position at DORIS, DESY

Measurement

- e⁺/e⁻ at Q² = 0.6-2.4(4.1) (GeV/c)²
- data taking in 2012

OLYMPUS (DESY)

- Decisive experiment
- Theory predictions vary significantly

O Yount+Pine 1962

Browman 1965

△ Mar 1960

1.15

OLYMPUS projected 2.0 GeV

Blunden, E-2 GeV (g.s.)

Borisyuk, E=2 GeV (g.s.)

Gorchtein, E=2 GeV (inel.) Afanasev, Q²=2 (GeV/c)² Afanasev, Q²=5 (GeV/c)²

Blunden (g.s. + Delta)

Yang, E=2 GeV

Comparison

Density in transverse impact parameter space

Momentum fraction in longitudinal space

Combined approach...

Inti Lehmann, 9/6/2010

Generalised Parton Distributions

Inti Lehmann, 9/6/2010

Interpretation of GPDs

- Fourier transformation of GPDs at $\xi=0$ yields 2+1 dimensional picture of the nucleons
 - i.e. longitudinal in momentum fraction and transversal in impact parameter space

$$q(x,b_{\perp}) = \int \frac{d^2 \Delta_{\perp}^2}{(2\pi)^2} H(x,0,-\Delta_{\perp}^2) e^{-i\Delta_{\perp} \cdot b_{\perp}}$$

Inti Lehmann, 9/6/2010

How to Access GPDs \rightarrow DVCS

Indistinguishable and cross section dominated by BH
 extraction using interference term

 $d\sigma(eN \to eN\gamma) \propto |\mathcal{T}_{BH}|^2 + |\mathcal{T}_{DVCS}|^2 + \mathcal{T}_{BH}\mathcal{T}_{DVCS}^* + \mathcal{T}_{BH}^*\mathcal{T}_{DVCS}$

BH: precisely known from QED DVCS: access to the GPDs

Inti Lehmann, 9/6/2010

HERMES (DESY)

- Asymmetries from DVCS measurements at HERMES
 - Relation to real and imaginary parts of Compton form factors, which directly relate to respective GPDs

UWS, N

Inti Lehmann, 9/6/2010

Spin Structure

- Proton spin
 - $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{L_q}{2} + \Delta G + L_g$
- $\Delta\Sigma$: quark spin
 - fraction about 1/3
- ∆G : gluon spin
 first results
- L_q : quark angular momentum
 unknown
- L_g : gluon angular momentum
 unknown

Inti Lehmann, 9/6/2010

Spin Structure

Proton spin

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \boldsymbol{L_q} + \Delta G + L_g$

Ji sum rule:

$$J_{q} = \frac{1}{2} \int_{-1}^{1} x \, dx [H_{q} + E_{q}] \, .$$

GPDs

- ΔΣ : quark spin
 fraction about 1/3
 - ∆G : gluon spin • first results
- L_q: quark angular momentum
 unknown
 - L_g : gluon angular momentum
 unknown

HERMES/JLab Constraint on J_u/J_d

 In result quark angular momenta can be constraint

Erratum: arXiv:0810.3899 Model error: factor 1.5-2

CLAS(JLab) Beam Spin Asymmetry

- All three final state particles (electron, photon, proton) detected
- Statistics allows 3-d binning in x, Q² and t
- First glimpse at what future JLab experiments will be able to do

Future CLAS12 at JLab

- High statistics measurements at 11 GeV with upgraded CLAS12 detector
- Constrain GPD H from BSA

Model Calculations

• GPD model, constrained by experimental form-factor data

Density distribution in impact parameter plane for quarks.
 Proton transv. polarised along x axis.

[P.Kroll, AIP Conf.Proc.904:76-86,2007] Inti Lehmann, 9/6/2010 UWS, Nucleon Structure

Space and Time Like Processes

- Space like
 - elastic lepton scattering
 - deep virtual Compton scattering

- Time like
 - electron-positron collisions
 - proton-antiproton annihilations

e

γ

π⁻,**K⁻,p**,**D**

Relation between regions

- $R = \mu_p G_E / G_M$ Using Dispersion Relation
 - fit only to double polarisation measurements in space like region
 - scarce data in time like region

Inti Lehmann, 9/6/2010

Time Like Form Factors

PANDA Physics Performance Report: arXiv:0903.3905

Inti Lehmann, 9/6/2010

Conclusions

- Structure of the nucleon still not well understood
- Space like form factors
 - were believed to be understood...
 - discrepancy in G_E/G_M needs resolution OLYMPUS
- Space like GPDs
 - first constraints achieved HERMES
 - more precise data required CLAS 12GeV
- Spin structure
 - progress by HERMES and JLab
- Time like information
 - scarce to date
 - precise G_M and G_E/G_M PANDA
- Goal
 - 3D map of the nucleon