Form factor measurements in the presence of two-photon exchange

Inti Lehmann
for the Olympus collaboration
University of Glasgow
IOP Glasgow, 6 April 2011
Form Factors

- Elastic scattering (Born approx.)

\[\langle N(P')| J_{\text{EM}}^\mu(0) | N(P) \rangle = \]
\[\bar{u}(P') \left[\gamma^\mu F_1^N(Q^2) + i \sigma^{\mu\nu} \frac{q_\nu}{2M} F_2^N(Q^2) \right] u(P) \]

- Electric and magnetic form factors \(G_E \) and \(G_M \)
 - Fourier transforms of resp. distributions

\[G_E = F_1 - \tau F_2; \quad G_M = F_1 + F_2, \quad \tau = \frac{Q^2}{4M^2} \]
Classical Approach

- Assume single photon exchange – Born approximation
 - Measure cross section (Rosenbluth)
 \[\left(\frac{d\sigma}{d\Omega} \right)_{\text{Rosenbluth}} = \left[\frac{|G_E|^2 + \tau|G_M|^2}{1 + \tau} + 2\tau|G_M|^2 \tan^2 \frac{\theta}{2} \right] \left(\frac{d\sigma}{d\Omega} \right)_{\text{Mott}} \]
 - Extract \(G_E \) and \(G_M \)

\[\sigma_{\text{red}} = \frac{\left(\frac{d\sigma}{d\Omega} \right)_{\text{Rosenbluth}}}{\left(\frac{d\sigma}{d\Omega} \right)_{\text{Mott}}} \epsilon \left(1 + \tau \right) \]

\[= \epsilon |G_E|^2 + \tau |G_M|^2 \]

- with \(\tau = \frac{Q^2}{4M_p^2} \)

\[\epsilon = \left[1 + 2(1 + \tau) \tan^2 \frac{\theta}{2} \right]^{-1} \]
Multi-Photon Contributions?

- Long standing beliefs:
 - $G_E \sim G_M$
 - Multi-photon contribution 1-2% only
- Experimental arguments
 - Linearity of Rosenbluth plot
 - $e^+/e^- (and \mu^+/\mu^-)$ ratio found to be 1
 - as required in Born approximation
Recent Puzzle in G_E/G_M

Rosenbluth separation

Double polarisation measurements

Additional JLab results here
How to address the issue

- Measure cross section ratio e^+/e^- versus epsilon
 - exactly unity in Born approximation
 - two-photon effects at low epsilon
 - several percent effect at $Q^2 \sim 2 \text{ GeV}^2$
 - 3 experiments: OLYMPUS, CLAS, VEPP3

\[\epsilon = \left[1 + 2(1 + \tau) \tan^2 \frac{\theta}{2} \right]^{-1} \]

![Graph showing saturation at $Q^2 \sim 2-3 \text{ (GeV/c)}^2$](image1.png)

![Graph showing $R_{e^+e^-}$ ratio](image2.png)

J. Guttmann, et al., arXiv: 1012.0564
Measurement Concept

- Electron and positron beams
- Proton target
- OLYMPUS features
 - $E \sim 2$ GeV
 - Frequent switch between e^+ and e^-
 - Lepton-proton coincidence measurement
 - Windowless, pure proton target
 - Large theta coverage, i.e. epsilon range
 - Minimal systematic uncertainties
 - symmetric arrangement
 - reversible magn. field
 - Precise luminosity measurement
 - ratio e^+ to e^- with precision <1%
 - Redundancy
Where to go

DORIS at DESY, Hamburg

- e^+ and e^- beams
 - frequent switch
- $E = 2.0 \ (4.5) \text{GeV}$
 - $Q^2 = 0.6-2.4(4.1) \ (\text{GeV/c})^2$

- ARGUS location

Inti Lehmann
2-Photon, IOP Glasgow, 6/4/2011
Experimental Set-Up

- Use BLAST detector from MIT-Bates
 - refurbished
 - add-ons
- Symmetric spectrometer
- Luminosity monitors
 - precise + redundant
- Toroidal field
 - frequent reversal
Experimental Set-Up
Expected Performance

- Theoretical predictions
 - large variations

\[\epsilon = \left[1 + 2(1 + \tau) \tan^2 \frac{\theta}{2} \right]^{-1} \]
Expected Performance

- Theoretical predictions
 - large variations
- Existing data
 - not conclusive
Expected Performance

- Beam $E = 2$ GeV
 - $Q^2 = 0.6 - 2.2$ (GeV/c)2
 - $\varepsilon = 0.37 - 0.9$
 - sys. uncert. 1%

\[
e = \left[1 + 2(1 + \tau) \tan^2 \frac{\theta}{2} \right]^{-1}
\]
Other Experiments

- Projected resolutions
 - scaled to fit scales
- CLAS/PR04-116
 - secondary e^+/e^- beam
 - syst. challenging
- Novosibirsk/VEPP-3
 - storage ring/intern. target
 - low statistics

![OLYMPUS Q^2=2GeV](image1)

![CLAS](image2)

![VEPP3](image3)
Conclusions

- Form factors
 - old but still hold surprises
- Discrepancy in G_E/G_M
 - unpredicted, 2-photon exch. not sufficient
 - no experimentally verified explanation
- Experimental approach
 - measure e^+/e^- ratio over large ε range
 - systematic uncertainties $\sim 1\%$
- The OLYMPUS experiment
 - symmetric toroidal spectrometer at DESY
 - preparation progressing well and in time
 - measurements in 2012
- Decisive information
 - nature of discrepancy
 - sensitivity to nucleon EM structure
- Further future: time-like form factors (PANDA)
Olympus Collaboration

- Arizona State University
- DESY Hamburg
- Hampton University
- INFN Bari
- INFN Ferrara
- INFN Rome
- Massachusetts Institute of Technology
- Petersburg Nuclear Physics Institute
- Universität Bonn
- University of Colorado
- University of Glasgow
- University of Kentucky
- Universität Mainz
- University of New Hampshire
- Yerevan Physics Institute
BLAST at MIT-Bates

- **BLAST Detector Set-Up**
 - Fulfils most criteria
- **MIT-Bates South Hall Ring**
 - Too low Q^2 to study the observed effect

C.B. Crawford et al., PRL 98 (2007) 052301
Normalisation

- 2 symmetric luminosity monitors
 - 12deg telescopes: GEMs + MWPCs (coincident)
 - Moller/Bhabha calorimeters
- Regular change of both
 - particle type: $i = e^+$ or e^-
 - magnet polarity: $j = \text{pos or neg}$
- Combination
 - efficiency and acceptance effects cancel to first order

\[N_{ij} = \tilde{L}_{ij} \sigma_i \kappa^p_{ij} \kappa^l_{ij} \]

\[\sigma_{e^+} \sigma_{e^-} = \left[\left(\frac{N_{e^+} + N_{e^-}}{N_{e^-} + N_{e^-}} / \frac{A_{e^+} + A_{e^-}}{A_{e^-} + A_{e^-}} \right) \right]^{1/2} \]
Recent Puzzle in G_E/G_M

- Nobody predicted this effect
- Polarization measurements
 - measure asymmetry ratio
 \[
 \frac{P_\perp}{P_\parallel} = \frac{A_\perp}{A_\parallel} \propto \frac{G_E}{G_M}
 \]

 \[\quad - \sigma_0 \vec{P}_p \cdot \vec{A} = \sqrt{2\tau\epsilon(1-\epsilon)} G_E G_M \sin \theta^* \cos \phi^* \]
 \[\quad + \tau \sqrt{1-\epsilon^2} G_M^2 \cos \theta^*\]

- Rosenluth separation at high Q^2
 - G_E difficult to extract
 - 2γ corrections large
Recent Puzzle in G_E/G_M

- Observed effect
 - mostly explicable by 2-photon exchange
 - experimental proof missing

Rosenbluth data with two-photon exchange correction

Aside: Time Like Form Factors

- PANDA (FAIR)
 - \(R = \mu_p G_E/G_M \) with unprecedented precision
 - Absolute value of \(|G_M| \) up to \(30(\text{GeV/c})^2 \)

Existing data extracted assuming \(|G_E| = |G_M| \)

• Lowest epsilon ~ 0.4 only for $E < 2.3$ GeV
• At epsilon = 0.4, require $E > 2$ GeV to maintain $Q^2 > 2 \text{ (GeV}/c)^2$
Unofficial Novosibirsk information

e^+p/e^-p cross section ratio

Q^2: 1.4-1.76
ε: 0.32 to 0.51

P.G. Blunden et al.,
Rosenbluth separation for e^+p

PT results

<table>
<thead>
<tr>
<th>R_{L-T} [Bosted fit]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{Pol}</td>
</tr>
<tr>
<td>R_{Pol} + TPE (e^-)</td>
</tr>
<tr>
<td>R_{Pol} + TPE (e^+)</td>
</tr>
</tbody>
</table>

$\mu_p G_E/G_M$ vs $Q^2 \ [GeV^2]$
Two-Photon Exchange

- Secondary beams
 - low luminosity
- data taken
 - at high Q^2
 - OR large θ
- Unobserved correction?
 - at large θ (small ϵ)
Further Model Predictions

\[\frac{\sigma_{e^+}}{\sigma_{e^-}} \]

\[\epsilon \]

\[\text{FIG. 3: Predictions for the ratio} \]

\[\text{FIG. 4: The ratio} \]

\[\text{FIG. 4: The ratio} \]

\[\text{FIG. 4: The ratio} \]