BREAKTHROUGH IN THE LIFETIME OF MICROCHANNEL-PLATE PMTS

- CONTEXT: DIRC DETECTORS FOR PANDA AT FAIR
- CHALLENGE: STATUS IN 2011
- MCP-PMT LIFETIME IMPROVEMENT

APPROACHES AGING TESTS

• SUMMARY AND OUTLOOK

For more detail see A. Lehmann's talk at LIGHT14 https://conference.mpp.mpg.de/light-14/

PANDA AT FAIR

J. Schwiening, IEEE NSS N36.1, Nov 2014

PANDA AT FAIR

J. Schwiening, IEEE NSS N36.1, Nov 2014

PANDA: rich program of QCD studies using anti-proton beam with unique intensity and precision.

Hadronic Particle ID: two DIRC detectors

• Barrel DIRC – similar to BABAR DIRC with several key improvements.

Goal: $3\sigma \pi/K$ separation for p=0.5...3.5 GeV/c.

• Novel Endcap Disk DIRC

Goal: $3\sigma \pi/K$ separation for p=0.5...4.0 GeV/c.

PANDA Cherenkov Group:

JINR Dubna, FAU Erlangen-Nürnberg, JLU Gießen, U. Glasgow, GSI Darmstadt, HIM and JGU Mainz, SMI OeAW Vienna.

For more info on the Barrel DIRC see M. Zühlsdorf talk N41-8 today

PANDA DIRCs require compact, fast multi-pixel sensor with single photon sensitivity in strong magnetic field with trigger-less DAQ and 20MHz average interaction rate.

• Good geometrical resolution over a large surface multi-pixel sensors with ~5x5 mm anodes

(much finer segmentation needed for Endcap Disk DIRC, ••••••) 0.5mm anode pitch prototype being tested, see J. Rieke, poster N24-31)

- Single photon detection inside B-field high gain (> 5×10⁵) at 1-2 Tesla
- Time resolution for photon time of propagation and/or dispersion correction very good time resolution of <100 ps for single photons
- Few photons per track

high detection efficiency PDE = QE * CE * GE low dark count rate

• Photon rates in the MHz regime

high rate capability with rates up to MHz/cm² long lifetime with integrated anode charge of 0.5 to 2 C/cm²/y Hamamatsu 6x128 PHOTONIS 3x100

PANDA Barrel DIRC Prototype

DIRC SENSOR CANDIDATES

• Multi-anode Photomultipliers (MaPMTs)

used successfully in DIRC prototypes, was sensor of choice for SuperB FDIRC ruled out by 1T magnetic field

• Geiger-mode Avalanche Photo Diodes (SiPMs)

high dark count rate problematic for reconstruction (trigger-less DAQ) radiation hardness an issue in PANDA environment

• Micro-channel Plate Photomultipliers (MCP-PMTs)

good PDE, excellent timing and magnetic field performance issues with rate capability and aging

MCP-PMT PERFORMANCE EXAMPLES

Detailed study of MCP-PMT performance:

- prototypes from BINP, PHOTONIS, Hamamatsu
- single photon time resolution
- gain and quantum efficiency scans
- charge sharing/cross-talk
- rate capability
- tests with and without magnetic field

MCP-PMTs meet *most* PANDA DIRC goals.

J. Schwiening, IEEE NSS N36.1, Nov 2014

The main issue with using MCP-PMTs for PANDA DIRCs:

aging of photocathode

Status of our MCP-PMT lifetime measurements in 2011

The main issue with using MCP-PMTs for PANDA DIRCs:

aging of photocathode

None of the MCP-PMTs in 2011 would have survived for more than 2 months in PANDA. \rightarrow needed factor ~50 ("breakthrough") improvement in MCP-PMT lifetime

MCP-PMT AGING

Ion feedback

- Ionization of residual gas atoms
- Desorption of atoms from MCP material (especially H and Pb)
- Damaging of MCP surfaces \rightarrow gain may change
- Ions accelerated towards photo cathode
 - Production of secondary pulse
 - Ions may react with PC
 - PC gets damaged and work function may gradually change
 - Degradation of Quantum efficiency (QE)

Neutral molecules from residual gas

Passing between MCPs and walls

 CO_2 , O_2 and H_2O react with PC

- Stop feedback ions by thin Al₂O₃ film (5-10 nm) Initially in front of first MCP layer (loss of CE) Later between MCP layers (need higher HV)
- Improve vacuum quality
- Improve cleaning of MCP surfaces Electron scrubbing
- Improve ceramics, seal off anode region Block flow of neutral molecules from anode region
- More resistant photocathode

Na₂KSb(Cs), Na₂KSb(Cs)+Cs, Na₂KSb(Cs)+Cs₃Sb

- Deposition of ultra-thin atomic layer (MgO, Al₂O₃) on MCP substrate (ALD)
- Use of alternate substrate material?
- Ion suppression grid between MCP and photocathode?

NIM A639 (2011) 148

Simultaneously age all MCP-PMTs at rates comparable to PANDA DIRC environment

- common systematics, results easy to compare and interpret
- continuous illumination (460nm LED, 0.25-1MHz rate, single photon level)
- permanent monitoring (MCP pulse heights, LED intensity)
- frequent QE mesurements (250-700nm, monochromator)
- setup in operation for more than three years started with standard MCP-PMTs lifetime-improved MCP-PMTs ~3 years ago

MCP-PMT AGING MEASUREMENTS

Summary of MCP-PMTs measured in setup

	BINP		PHOTONIS			Hamamatsu	
			XP85012	XP85112	XP85112	R10754X-01-M16	R10754X-07-M16M
pore size (µm)	6	7	25	10	10	10	10
number of pixels	1	1	8x8	8x8	8x8	4x4	4x4
active area (mm²)	9² π	9² π	53x53	53x53	53x53	22x22	22x22
total area (mm²)	15.5² π	15.5² π	59x59	59x59	59x59	27.5x27.5	27.5x27.5
geom. efficiency (%)	36	36	81	81	81	61	61
photo cathode	multi-alkali		bi-alkali			multi-alkali	
peak Q.E.	21% @ 495 nm	21% @ 495 nm	20% @ 380 nm	23% @ 380 nm	22% @ 380 nm	21% @ 375 nm	22% @ 415 nm
comm ents		better vacuum, new cathode	better vacuum, polished surfaces	better vacuum, polished surfaces	better vacuum, ALD surfaces	protection layer between MCPs	further improved lifetime (ALD)
# of tubes measured	1	2	1	1	3	1 (+1 L4)	2
		0					

J. Schwiening, IEEE NSS N36.1, Nov 2014

MCP-PMT AGING MEASUREMENTS

Summary of MCP-PMTs measured in setup

		Integrated charge	Diff. charge# of(maximum)measurement		# of QE	
	Sensor ID	(as of Oct. 1, 2014)				Comments
		[mC/cm ²]	[mC/cm ² /d] s		scalls	
PHOTONIS XP85112	9001223	7852	13.5	151	14	Start: 23 Aug. 11 ongoing
	9001332	4948	21.8	55	7	Start: 12 Dec. 12 ongoing
	9001393	1879	11	19	3	Start: 23 Jan. 14 ongoing
Hamamatsu R10754X	JT0117 (M16)	20 86	14.1	86	7	Start: 23 Aug. 11 Stop: 24 Jul. 12
	KT0001 (M16M)	4331	30.1	31	5	Start: 20 Aug. 13 ongoing
	KT0002 (M16M)	2312	20.1	26	6	Start: 21 Oct. 13 ongoing
BINP	1359	3616	10.6	90	8	Start: 21 Oct. 11 Stop: 06 May 13
	3548	5925	11.8	128	11	Start: 21 Oct. 11 ongoing

MCP-PMT LIFETIME RESULTS

Latest MCP-PMTs with ALD technique meet all requirements for the PANDA Barrel DIRC.

Impossible to describe all our results (3+ years) or the excellent MCP-PMT lifetime studies by Belle II and TORCH groups in this talk.

In the remaining time: a few highlights

For a more complete review: A. Lehmann's talks at RICH 2013 and at LIGHT14

Gain vs. integrated anode charge

 \rightarrow Only moderate gain changes, can be recovered by raising HV

Quantum efficiency for different wavelengths vs. integrated charge

Hamamatsu film: QE drops significantly after $\sim 1 \text{ C/cm}^2$

Hamamatsu ALD: only minor QE degradation at >4 C/cm²

Quantum efficiency for different wavelengths vs. integrated charge

PHOTONIS Planacon with 1 layer ALD: no QE loss up to 5 C/cm²

#9001223: steep QE drop after 6 C/cm²

Latest Planacon with unfired lead glass, 2-layer ALD process: no QE loss yet at 2 C/cm².

Quantum efficiency scans (372nm) for different integrated charges

film Hamamatsu R10754X-M16

new PC BINP 3548

 \rightarrow QE degradation evolves from rims and corners, both film and new PC fail.

Quantum efficiency scans (372nm) for different integrated charges

 \rightarrow no visible QE degradation up to 6C/cm², loss limited to illuminated half.

MCP-PMT LIFETIME RESULTS

Relative quantum efficiency for different wavelengths vs. integrated charge

 \rightarrow Clear difference in wavelength-dependent aging between different methods.

Spectacular lifetime increase of latest MCP-PMTs due to recent design improvements.

Equipping the two PANDA DIRCs and other high rate RICH counters (TOP, TORCH, DIRC@EIC,...) with MCP-PMTs seems possible.

Application of ALD technique appears to be most promising single step (>5 C/cm² anode charge now feasible).

Similar good performance observed in R&D for Belle II TOP and for TORCH.

Further improvements could possibly be reached by combining ALD with

- modified photo cathodes (see BINP tubes);
- MCP materials with less outgassing (e.g. borosilicate glass instead of lead glass).

See presentations at RICH 2013 K. Matsuoka, T. Gys, J. Milnes