THE DIRC DETECTORS FOR THE PANDA EXPERIMENT AT FAIR

Jochen Schwiening

GSI

for the PANDA Cherenkov Group

- PANDA Experiment
- DIRC Concept
- Barrel & Disk DIRC Design
- Prototypes and R&D
PANDA EXPERIMENT

PANDA: Anti-Proton ANnihilation at DArstadt (450 physicists, 17 countries) future experiment at new international FAIR facility at GSI (German national lab for heavy ion research near Darmstadt)

High-intensity anti-proton beam on internal pellet/cluster target.
 • Average production rate: 2×10^7/sec;
 • Beam momentum 1.5 ... 15 GeV/c; $\Delta p/p$ as good as 10^{-5};
 • Luminosity up to 2×10^{32} cm$^{-2}$s$^{-1}$.

Study of QCD with Antiprotons
 • Charmonium Spectroscopy;
 • Search for Exotics; Hadrons in Medium;
 • Nucleon Structure; Hypernuclear Physics.

Particle identification essential
 • Momentum range 200 MeV/c – 10 GeV/c.
 • Several PID methods needed to cover entire momentum range.
 • dE/dx, EM showers, Cherenkov radiation in forward & target spectrometer configuration.

For more much detail see J. Smyrski talk
Cherenkov detectors in PANDA target spectrometers: Barrel DIRC & Disk DIRC

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector §
based on total internal reflection of Cherenkov light.

Used for the first time in BABAR for hadronic particle ID (8+ years in factory mode).

Recent improvements in photon detectors have motivated R&D efforts to improve
the successful BABAR-DIRC and make DIRCs interesting for future experiments.

§B.N. Ratcliff, SLAC-PUB-6047 (Jan. 1993)

Jochen Schwiening, TIPP 2011, Chicago, June 2011
• Charged particle traversing radiator with refractive index n with $\beta = v/c > 1/n$ emits Cherenkov photons on cone with half opening angle $\cos \theta_c = 1/\beta n(\lambda)$.

• For $n>\sqrt{2}$ some photons are always totally internally reflected for $\beta \approx 1$ tracks.

• Radiator and light guide: bar, plate, or disk made from Synthetic Fused Silica (“Quartz”) or fused quartz or acrylic glass or …

•Magnitude of Cherenkov angle conserved during internal reflections (provided optical surfaces are square, parallel, highly polished)

• Mirror attached to one bar end, reflects photon back towards readout end.
DIRC CONCEPT

• Photons exit radiator via (optional) focusing optics into expansion region, detected on photon detector array.

• DIRC is intrinsically a 3-D device, measuring: \(x, y, \) and time of Cherenkov photons, defining \(\theta_c, \phi_c, t_{\text{propagation}}. \)

• **Ultimate deliverable for DIRC: PID likelihoods.** Calculate likelihood for observed hit pattern (in detector space or in Cherenkov space) to be produced by \(e/\mu/\pi/K/p/\text{no particle} \) plus event/track background.
DIRCs IN PANDA

DIRC detector advantages

- Thin in radius and radiation length.
- Moderate and uniform amount of material in front of EM calorimeter.
- Fast and tolerant of background.
- Robust and stable detector operations.

PANDA: two DIRC detectors

- **Barrel DIRC** – similar to BABAR DIRC with several improvements.

 PID goal: $3\sigma \pi/K$ separation for $p<3.5$ GeV/c.

- **Novel Endcap Disk (or Disc) DIRC.**

 PID goal: $3\sigma \pi/K$ separation for $p<4$ GeV/c.

Institutions currently involved in the two DIRCs

- Dubna, Edinburgh, Erlangen, Gießen, Glasgow, GSI, Mainz, Vienna.
DIRC detector advantages

- Thin in radius and radiation length.
- Moderate and uniform amount of material in front of EM calorimeter.
- Fast and tolerant of background.
- Robust and stable detector operations.

PANDA: two DIRC detectors

- **Barrel DIRC** – similar to BABAR DIRC with several improvements.
 - PID goal: $3\sigma \pi/K$ separation for $p<3.5$ GeV/c.
- **Novel endcap Disk DIRC**.
 - PID goal: $3\sigma \pi/K$ separation for $p<4$ GeV/c.

Institutions currently involved in the two DIRCs

- Dubna, Edinburgh, Erlangen, Gießen, Glasgow, GSI, Mainz, Vienna.
Current PANDA Barrel DIRC baseline design:

- Barrel radius ~50 cm; expansion volume depth: 30 cm.
- 80 radiator bars, synthetic fused silica
 17mm (T) × 33mm (W) × 2500mm (L).
- **Focusing optics**: doublet lens system.
- **Compact photon detector**:
 30 cm oil-filled expansion volume,
 10-15,000 channels of MCP-PMTs.
- **Fast photon detection**:
 fast TDC plus ADC (or ToT) electronics.
- **Expected performance**:
 Single photon Cherenkov angle resolution: 8-9 mrad.
 Number of photoelectrons per track: >20;

Still investigating several design options:
 mirror focusing, radiator plates, photon detection outside magnetic field.
How do we plan to improve on the successful BABAR-DIRC design for PANDA?

- **Focusing optics**: remove bar size contribution
 from Cherenkov angle resolution term.
 Lens doublet and/or mirror focusing on flat detector surface.

- **Compact multi-pixel photon detectors**:
 allow smaller expansion region,
 make DIRC less sensitive to background.
 MCP-PMTs, MAPMTs, SiPM/G-APD potential candidates.

- **Fast photon detection** ($\sigma_{TTS} \approx 100–200ps$):
 software correction of chromatic dispersion.
 Proof-of-principle shown in 2007
 by Focusing DIRC at SLAC.
 \[\theta_c (\text{mrad}) \]

\[\begin{align*}
\text{uncorrected} & \quad \sigma = 7.5 \text{mrad} \\
\text{corrected} & \quad \sigma = 5.5 \text{mrad}
\end{align*} \]

Jochen Schwiening, TIPP 2011, Chicago, June 2011
Expected PID performance example.

\[p\bar{p} \rightarrow J/\Psi \Phi \quad \sqrt{s} = 4.4 \text{ GeV/c}^2 \]

Geant Cherenkov photon tracking in event display.

Example:
Accumulated hit pattern in Geant.

(Based on early design version. Updated study has started.)

Jochen Schwiening, TIPP 2011, Chicago, June 2011
Current PANDA Disk DIRC baseline design: “3D Disk DIRC”

- Octagonal disk, ~2m diameter, 2cm thick, synthetic fused silica, placed in front of forward calorimeter.
- Disk made from four identical, optically isolated pieces with polished, reflecting sides.
- Dichroic mirrors on rim serve as optical band-pass filters (dispersion mitigation).
- 432 small focusing light guides image photons on digital SiPM or MCP-PMT.
• Fast and small pixel detectors: dSiPMs or MCP-PMTs
• Two 2×2 dSiPM arrays (or 2 MCP) per light guide.
• Two types of dichroic mirrors: 400-500nm, 500-700nm, alternating along rim.
• Angle measurement using small focussing light guides and multi-pixel detectors.
• Time-of-Propagation measurement using the light guides and fast photo detectors.
3D hit pattern looks complicated but...

... signal/background separation much easier and robust in 3 dimensions than in a 2-dimensional projection.
Full 3D Geant simulation of geometry, photon generation, and photon propagation.

- **Red**: photons emitted by primary particle (100 identical tracks).
- **Green**: Pattern prediction generated by the reconstruction method.

Reconstruction algorithm robust, background-tolerant.

Preliminary performance study shows pion/kaon mis-ID rate at 4GeV/c at 1-2% level.
Investigating design alternatives: “Focusing Light Guide DIRC”

- 128-sided polygonal disk, glued from six pieces
 (→ disk shape, gluing).

- LiF block glued to rim of synthetic fused silica disk
 (→ dispersion mitigation).

- Focusing light guides image photons on MCP-PMTs
 (→ light guide shape, sensor and readout technology).

Will be able to test a simplified design in an experiment very soon:
Focusing Light Guide DIRC (CEARA) for WASA at COSY (FZ Jülich).
PANDA DIRCs are asking a lot of fast compact multi-pixel photon detectors

- Single photon sensitivity, low dark count rate;
- Reasonably high photo detection efficiency;
- Fast timing: $\sigma_{TTS} \approx 50\text{-}100$ ps (Barrel: 100\text{-}200 ps);
- Few mm position resolution;
- Operation in up to 1.5 T (Barrel: \sim1 T) magnetic field;
- Tolerate high rates up to 2 MHz/cm2 (Barrel: 0.2 MHz/cm2);
- Long lifetime: 4-10 C/cm2 per year at 10^6 gain (Barrel: 0.5 C/cm2/yr).

No currently available sensor matches all criteria;
 promising candidates: MCP-PMTs, MAPMTs, SiPM.

Starting ageing test of two very new enhanced lifetime MCP-PMTs side-by-side: Hamamatsu SL-10 and Burle 85112 – both may be (almost) acceptable for barrel DIRC.

Digital SiPM (Philips) promising sensor for Disk: excellent timing and lifetime, integrated readout electronics, masking of hot pixels.
 But: needs cooling, needs redesign for single photons, new technology, prototypes only.

Jochen Schwiening, TIPP 2011, Chicago, June 2011
Electronics design demanding

- Signal rise time typically few hundred picoseconds.
- 10-100x preamplifier usually needed.
- High bandwidth 500MHz – few GHz (optimum bandwidth not obvious).
- Pulse height information required for < 100 ps timing (time walk correction), and desirable for 100-200 ps timing (ADC / time over threshold / waveform sampling / ...)

- PANDA will run trigger-less.
- Large data volume (Disk: up to 200 Gb/s).
- Example:
 HADES TRB board with NINO TOF add-on in GSI test beam in 2009, updated TOF add-on in test beams at GSI (next week) and at CERN in July.

- Significant development effort ahead.
- dSiPM with digitization on chip – no TDC, preamp, ADC, etc development required.
Production of large fused silica pieces (bars, plates, disk segments) is challenging.

DIRCs require mechanical tolerances on flatness, squareness, and parallelism
 with optical finish and long sharp edges.
 \[\rightarrow\] difficult, potentially expensive, few qualified vendors worldwide.

BABAR-DIRC used bars polished to 5 Å\(^{rms}\), non-squareness < 0.25 mrad;
 successfully done for BABAR, need to qualify/retrain vendors 10+ years later.

Can afford to relax some of those specs for PANDA DIRCs due to shorter photon paths
 (surface roughness 10-20 Å\(^{rms}\), non-squareness 0.5-1 mrad, etc).

Identified several good candidates for synthetic fused silica material (Heraeus, Corning).

Have been working with potential vendors in Europe and USA, obtained/ordered prototype
 bars, plates, disk segments from several companies, verifying surfaces and angles.
Successful beam tests of PANDA Cherenkov prototypes, GSI, Sep 2009

2 GeV protons
PANDA Barrel Prototype

Barrel DIRC Prototype in proton test beam at GSI

Cherenkov Ring segments observed in Aug/Sep 2009

Jochen Schwiening, TIPP 2011, Chicago, June 2011
New Barrel DIRC Prototype

Larger, deeper expansion volume.
Larger detector plane, space for more sensors.
640 electronics channels (HADES TRB/NINO)
Focusing lenses with different AR coatings.

Expected hit pattern for 1.7 GeV/c pions

Six XP85011
SL-10
(L4 & M16)
XP85011
H8500

G. Kalicy, GSI

Jochen Schwiening, TIPP 2011, Chicago, June 2011
Several test beam campaigns since 2008 to test focusing light guides, photon yield and light transmission in bulk material, performance of SiPM/dSiPM sensors.
PANDA DISK PROTOTYPES

Protoype at DESY

glued glass plate
(\sim40\%\ scale)

Sensors: 9 MCP-PMTs
studied timing, paths

Simulated photon paths

measured vs. expected time of propagation
PANDA target spectrometer design includes two DIRC detectors for hadronic PID:

- **Barrel DIRC**: fast focusing DIRC inspired by BABAR-DIRC;
- **Endcap Disk DIRC**: fast plate DIRC, first of its kind, several viable designs.

R&D activities: photon detectors, readout electronics, radiator quality, focusing optics, fast timing, chromatic correction, simulation, reconstruction, and more.

Key challenges:

- **Pico-second timing** with single photons in environment with 1-10 C/cm²/yr and 1-1.5 T.
 → Discussing solutions with industry, testing prototypes in lab.
- **Cherenkov radiator** (bars, plates, disk) production and assembly.
 → In contact with vendors in Germany, Russia, USA, testing prototype pieces.
- **Design** of detector optics and reconstruction software.
 → Developing simulation framework (Geant and ray-tracing).

Validating technology and design choices in test beams.

FAIR construction to start within the year, DIRC installation planned 2016/2017.
Thanks to the organizers for the opportunity to give this talk.

And thank you all for your attention.

G. Ahmed¹, A. Britting², P. Bühler¹, E. Cowie³, V. Kh. Dodokhov⁴, M. Düren², D. Dutta⁶,⁷, W. Eyrich², K. Föhl⁵, D. I. Glazier⁷, A. Hayrapetyan⁵, M. Hoek³, R. Hohler⁶, A. Lehmann², D. Lehmann⁶, R. Kaiser³, T. Keri³, P. Koch⁵, B. Kröck⁵, J. Marton¹, O. Merle⁵, R. Montgomery³, K. Peters⁶, S. Reinicke³, G. Rosner³, B. Roy⁶,⁷, G. Schepers⁶, L. Schmitt⁶, C. Schwarz⁵, J. Schwiening⁶, B. Seitz³, C. Sfienti⁶,⁷, K. Suzuki¹, F. Uhlig², A. S. Vodopianov⁴, D. P. Watts⁷, W. Yu⁵

¹ Stefan Meyer Institut für subatomare Physik, Austrian Academy of Sciences, A-1090 Vienna, Austria.
² Physikalisches Institut Abteilung IV, University of Erlangen-Nuremberg, D-91058 Erlangen, Germany.
³ Department of Physics & Astronomy, Kelvin Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
⁴ Laboratory of High Energies, Joint Institute for Nuclear Research, 141980 Dubna, Russia.
⁵ II. Physikalisches Institut, University of Giessen, D-35392 Giessen, Germany.
⁶ GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany.
⁷ School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.
⁸ present address: Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai, India 400085.
⁹ present address: Institut für Kernphysik, University of Mainz, D-55128 Mainz, Germany.