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Preface

This manual provides reference information for using the Compaq C language
on Compaq systems. Compaq C is an ISO/ANSI-compliant C compiler for
Compaq OpenVMS™ VAX® and Compaq OpenVMS Alpha systems, Compaq
Tru64™ UNIX® systems, and Linux Alpha systems. Tru64 UNIX runs on
Alpha processors.

Compaq has changed the name of its UNIX operating system from DIGITAL
UNIX to Tru64 UNIX.

Compaq C is compliant with the International Standards Organization (ISO) C
Standard (ISO 9899:1990[1992]), formerly the American National Standard for
Information Systems-Programming Language C (document number: X3.159-
1989). By the use of command-line options, Compaq C is compatible with older
dialects of C, including common usage C (Kernighan and Ritchie C) and VAX C.

This manual is based on the ISO C Standard (ISO 9899:1990[1992]), formerly
the ANSI X3J11 committee’s standard for the C programming language (called
the ANSI C standard in this manual). 1 All library functions and language
extensions to the ANSI C standard are also described.

You may send comments or suggestions regarding this manual or any
Compaq C document by sending electronic mail to the following Internet
address:

c_docs@zko.dec.com

1 Compaq would like to thank CBEMA and its Accredited Standards Committee X3 for
use of the material derived in whole or in part from the American National Standard
Programming Language C. The ANSI C standard may be purchased from the ANSI
Sales Department by calling the United States telephone number 1-212-642-4900.
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Intended Audience
This manual is intended for programmers who need reference information on
the Compaq C (formerly DEC C) language. There is little task-oriented
material or platform-specific material in this manual; for that type of
information, see your platform-specific Compaq C documentation (user’s guide
and online help for OpenVMS systems, programmer’s guide and manpages for
Tru64 UNIX systems.)

Purpose of the ANSI Standard
The ANSI C standard was developed by a committee of program developers
and knowledgeable C users to address the problems caused by inexact
specification of the C language. These problems were primarily related to
portability of programs between different types of machines. The committee
analyzed the language for areas where its syntax and semantics were vague or
indeterminate, and then chose precise definitions for those C constructs. The
result is an unambiguous, machine-independent definition.

The ANSI C standard states that it:

‘‘ specifies the form and establishes the interpretation of programs expressed
in the programming language C. [The standard’s] purpose is to promote
portability, reliability, maintainability, and efficient execution of C language
programs on a variety of computing systems. ’’

The standard specifies:

• Representation, syntax, and constraints of the C language

• Semantic rules for interpreting C programs

• Representation of input and output in C programs

The ANSI C standard does not specify:

• How C programs are compiled

• How C programs are linked

• How C programs are executed

• All minimum or maximum limits on the size of machines running ANSI C
programs
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New and Changed Features
This manual was revised for Compaq C Version 6.2 to reflect the following new
features. Note that Tru64 UNIX Version 5.0A is shipped with Version 6.1 of
the C compiler and, therefore, does not include the listed features, except for
the compiler name change.

• The name of the product has been changed from DEC C to Compaq C. This
change reflects only the acquisiton of the corporation, and meeting the new
requirements for product branding. The technical content of the compiler
has not changed, and in particular the use of the string DEC or DECC in
the software itself (for example, names of predefined macros, command-line
qualifiers, filenames, symbol prefixes, and so on) has not changed.

• Compound literal expressions are supported (Section 6.10).

• Within a compound statement, declarations and statements can now be
freely interspersed in any order (Section 7.2).

• The first clause of a for can be a declaration whose scope includes
the remaining clauses of the for header and the entire loop body
(Section 7.6.3).

• Support for the _ _typeof_ _ operator is added (Section 6.4.8).

• The _ _align keyword is added Section 2.11.4.

• The inline keyword is added as as a declaration specifier in the
declaration of a function. (Section 2.11.2).

• The _ _func_ _ predeclared identifier is added (Section 8.9).

• Documentation enhancement (OpenVMS only): The Compaq C manuals, help,
and release notes are now installed in HTML form in a subdirectory of
SYS$HELP. They can be accessed from a locally-running browser through:

file:/sys$common/syshlp/cc$vax_help_062/index.htm

To access these documents from a browser running on a different system,
you can copy the entire directory contents to a directory or server system
that is accessible to your browser.
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Manual Structure
This manual has the following chapters and appendixes:

Chapter 1 describes the elements of the C language.

Chapter 2 discusses some of the basic concepts underlying the C language.

Chapter 3 explains Compaq C data types and type qualifiers.

Chapter 4 describes the declaration of identifiers in Compaq C. The declaration
of constants, variables, structures, unions, pointers, and arrays is covered.

Chapter 5 describes function calls, function declarations, function definitions,
function parameters, and function arguments.

Chapter 6 discusses the types of expressions you can build in C. It also explains
the effects of operators available in C, including unary, binary, conditional,
primary, and postfix operators.

Chapter 7 describes the C statements that provide flow control, conditional
executions, looping, and interruption.

Chapter 8 explains the purpose of the C preprocessor directives and predefined
macros.

Chapter 9 lists and describes the functions, macros, and types in the ANSI C
standard library, arranged by header file.

Appendix A provides a syntax summary of all C language constructs.

Appendix B describes the extent of the ANSI conformance of Compaq C,
including exceptions and extensions to the standard.

Appendix C provides the ASCII octal, decimal, and hexadecimal equivalents for
each character in the ASCII character set.

Appendix D lists the common C extensions supported by Compaq C using the
common C compatibility option.

Appendix E lists the VAX C extensions supported by Compaq C using the
VAX C compatibility option.
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Associated Documents
You may find the following documents useful when programming in Compaq C:

• Compaq C User’s Guide for OpenVMS Systems—This guide contains the
information necessary for developing and debugging Compaq C programs
on the OpenVMS operating system. This guide also includes Compaq C
features specific to OpenVMS systems, as well as information about porting
C programs to and from OpenVMS and other operating systems.

• Compaq C Run-Time Library Reference Manual for OpenVMS Systems—
Provides complete reference information on the Compaq C library functions
included with the OpenVMS operating system.

• cc(1) manpage—This manpage describes the cc command line options for
Compaq C on Tru64 UNIX systems.

• Tru64 UNIX documentation set—This documentation set provides
information about the Tru64 UNIX operating system and its utilities.
The following volumes are especially useful:

Tru64 UNIX Programmer’s Guide—This guide describes the Tru64
UNIX programming environment, including information necessary for
developing and debugging C programs on the Tru64 UNIX operating
system. This guide, together with the cc(1) manpage, includes
Compaq C features specific to Tru64 UNIX systems.

Tru64 UNIX Reference Pages, Sections 2 and 3—Provides complete
reference information on the C library functions included with the
Tru64 UNIX operating system.

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the books to help specific audiences quickly find the books
that meet their needs. (You can order the printed documentation from
Compaq.) The following list describes this convention:

G Books for general users

S Books for system and network administrators

P Books for programmers

D Books for device driver writers

R Books for reference page users

Some books in the documentation help meet the needs of several audiences.
For example, the information in some system books is also used by
programmers. Keep this in mind when searching for information on
specific topics.
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The Documentation Overview provides information on all of the books in
the Tru64 UNIX documentation set.

• American National Standard for Information Systems–Programming
Language C—This document is the result of the X3J11 standards
committee analysis of the C language. This document is a very technical
description of the ANSI C language, written for knowledgeable C
programmers.

• The C Programming Language, 2nd Edition2—This volume was produced
before the final ANSI standard was accepted, but it still serves as a
valuable reference to the C language.

Because ANSI C contains more features and enhancements to the
C language than are defined in The C Programming Language, use
this Compaq C Language Reference Manual as the reference for a full
description of Compaq C.

Conventions Used in This Document

Convention Meaning

OpenVMS systems Refers to OpenVMS VAX and OpenVMS Alpha
systems unless otherwise specified.

Return The symbol Return represents a single stroke
of the Return key on a terminal.

Ctrl/X The symbol Ctrl/X , where X represents a
terminal control character, represents holding
down the Ctrl key while pressing the specified
terminal character key.

Compaq C also allows ... Compaq C extensions to the ANSI C standard
are shown in teal blue in the HTML version of
the manual.

float x;
.
.
.

x = 5;

A vertical ellipsis indicates that not all of
the text of a program or program output is
shown. Only relevant material is shown in the
example.

2 Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language
(Englewood Cliffs, New Jersey: Prentice Hall, 1988).
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Convention Meaning

option, . . . A horizontal ellipsis indicates that additional
parameters, options, or values can be entered.
A comma preceding the ellipsis indicates
that successive items must be separated by
commas.

syntaxopt Optional syntax elements are indicated with
the subscripted abbreviation opt. Isolated
syntax diagrams in individual sections of this
manual may require reference to Appendix A
to determine the complete syntax for a
construct. For instance, the ANSI C standard
syntax includes a constant as a potential
assignment-expression.

storage-class-specifier :

auto
static
register

In syntax definitions, items appearing
on separate lines are mutually exclusive
alternatives.

The auto storage class . . .
The fprintf function . . .

Monospaced type identifies language keywords,
the names of independently compiled external
functions and files, syntax summaries, and
references to variables or identifiers introduced
in an example.

Reader’s Comments
Compaq welcomes any comments and suggestions you have on this and other Tru64
UNIX manuals. You can send your comments in the following ways:

• Fax: 603-881-0120 Attn: UEG Publications, ZK03-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located online in the following location:

/usr/doc/readers_comment.txt

• Mail:
Compaq Computer Corporation
UEG Publications Manager
ZK03-3/Y32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comments form is located in the back of each printed manual.
The form is postage paid, if mailed in the United States.
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Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which you
are commenting.

• The version of Tru64 UNIX that you are using. For example, Tru64 UNIX
Version 5.0.

• If known, the type of processor that is running the Tru64 UNIX software.
For example, AlphaServer 2000.

The Tru64 UNIX Publications group cannot respond to system problems
or technical support inquiries. Please address technical questions to your
local system vendor or to the appropriate Compaq technical support office.
Information provided with the software media explains how to send problem
reports to Compaq.

xx



1
Lexicon

C, like any language, uses a standard grammar and character set. The specific
elements that comprise this grammar and character set are described in the
following sections:

• Character set (Section 1.1)

• Rules for identifiers in C (Section 1.2)

• Use of comments in a program (Section 1.3)

• Keywords (Section 1.4)

• Use of C operators (Section 1.5)

• Use of punctuation characters (Section 1.6)

• Use of character strings in a program (Section 1.7)

• Interpretation of constant values (Section 1.8)

• Inclusion of function declarations and other definitions, common to
multiple source files, in a separate header file or module (Section 1.9)

• The limits imposed on a conforming program by the ANSI C standard
(Section 1.10)

C compilers interpret source code as a stream of characters from the source
file. These characters are grouped into tokens, which can be punctuators,
operators, identifiers, keywords, string literals, or constants. Tokens are the
smallest lexical element of the language. The compiler forms the longest token
possible from a given string of characters; the token ends when white space
is encountered, or when the next character could not possibly be part of the
token.

White space can be a space character, new-line character, tab character,
form-feed character, or vertical tab character. Comments are also considered
white space. Section 1.1 lists all the white space characters. White space
is used as a token separator (except within quoted strings), but is otherwise
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ignored in the character stream, and is used mainly for human readability.
White space may also be significant in preprocessor directives (see Chapter 8).

Consider the following source code line:

static int x=0; /* Could also be written "static int x = 0;" */

The compiler breaks the previous line into the following tokens (shown one per
line):

static
int
x
=
0
;

As the compiler processes the input character stream, it identifies tokens and
locates error conditions. The compiler can identify three types of errors:

• Lexical errors, which occur when the compiler cannot form a legal token
from the character stream (such as when an illegal character is used).

• Parsing (syntax) errors, which occur when a legal token can be formed, but
the compiler cannot make a legal statement from the tokens. For example,
the following line contains incorrect punctuation surrounding an initializer
list:

char x[3] = (1,2,3);

• Semantic errors, which are grammatically correct but break another C
language rule. For example, the following line shows an attempt to assign
a floating-point value to a pointer type:

int *x = 5.7;

Logical errors are not identified by the compiler.

An important concept throughout C is the idea of a compilation unit, which is
one or more files compiled by the compiler.

Note

The ANSI C standard refers to compilation units as translation units.
This text treats these terms as equivalent.

The smallest acceptable compilation unit is one external definition. The
ANSI C standard defines several key concepts in terms of compilation units.
Section 2.2 discusses compilation units in detail.
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A compilation unit with no declarations is accepted with a compiler warning in
all modes except for the strict ANSI standard mode.

1.1 Character Set
A character set defines the valid characters that can be used in source
programs or interpreted when a program is running. The source character set
is the set of characters available for the source text. The execution character
set is the set of characters available when executing a program. The source
character set does not necessarily match the execution character set; for
example, when the execution character set is not available on the devices used
to produce the source code.

Different character sets exist; for example, one character set is based on the
American Standard Code for Information Interchange (ASCII) definition of
characters, while another set includes the Japanese kanji characters. The
character set in use makes no difference to the compiler; each character simply
has a unique value. C treats each character as a different integer value. The
ASCII character set has fewer than 255 characters, and these characters can
be represented in 8 bits or less. However, in some extended character sets, so
many characters exist that some characters’ representation requires more than
8 bits. A special type was created to accommodate these larger characters,
called the wchar_t (or wide character) type. Section 1.8.3.1 discusses wide
characters further.

Most ANSI-compatible C compilers accept the following ASCII characters
for both the source and execution character sets. Each ASCII character
corresponds to a numeric value. Appendix C lists the ASCII characters and
their numeric values.

• The 26 lowercase Roman characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

• The 26 uppercase Roman characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

• The 10 decimal digits:

0 1 2 3 4 5 6 7 8 9

• The 30 graphic characters:

! # % ^ & * ( ) - _ = + ~ ’ " : ; ? / | \ { } [ ] , . < > $

A warning is issued if the $ character is used when the compiler’s strict
ANSI mode option is specified.
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• Five white space characters:

Space ( )

Horizontal tab (\t)

Form feed (\f)

Vertical tab (\v)

New-line
character

(\n)

In character constants and string literals, characters from the execution
character set can also be represented by character or numeric escape
sequences. Section 1.8.3.3 and Section 1.8.3.4 describe these escape sequences.

The ASCII execution character set also includes the following control
characters:

• New-line character (represented by \n in the source file),

• Alert (bell) tone (\a)

• Backspace (\b)

• Carriage return (\r)

• Null character (\0)

The null character is a byte or wide character with all bits set to 0. It is used
to mark the end of a character string. Section 1.7 discusses character strings
in more detail.

The new-line character splits the source character stream into separate lines
for greater legibility and for proper operation of the preprocessor.

Sometimes a line longer than the terminal or window width must be
interpreted by the compiler as one logical line. One logical line can be
typed as two or more lines by appending the backslash character (\) to the
end of the continued lines. The backslash must be immediately followed by
a new-line character. The backslash signifies that the current logical line
continues on the next line. For example:

#define ERROR_TEXT "Your entry was outside the range of \
0 to 100."

The compiler deletes the backslash character and the adjacent new-line
character during processing, so that this line becomes one logical line, as
follows:

#define ERROR_TEXT "Your entry was outside the range of 0 to 100."
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A long string can be continued across multiple lines by using the backslash-
newline line continuation feature, but the continuation of the string must
start in the first position of the next line. In some cases, this destroys the
indentation scheme of the program. The ANSI C standard introduces another
string continuation mechanism to avoid this problem. Two string literals, with
only white space separating them, are combined to form one logical string
literal. For example:

printf ("Your entry was outside the range of "
"0 to 100.\n");

The maximum logical line length is 32,767 characters.

1.1.1 Trigraph Sequences
To write C programs using character sets that do not contain all of C’s
punctuation characters, ANSI C allows the use of nine trigraph sequences
in the source file. These three-character sequences are replaced by a single
character in the first phase of compilation. (See Section 2.16 for an explanation
of compilation phases.) Table 1–1 lists the valid trigraph sequences and their
character equivalents.

Table 1–1 Trigraph Sequences

Trigraph Sequence Character Equivalent

??= #

??( [

??/ \

??) ]

??’ ^

??< {

??! |

??> }

??- ~

No other trigraph sequences are recognized. A question mark (?) that does
not begin a trigraph sequence remains unchanged during compilation. For
example, consider the following source line:

printf ("Any questions???/n");
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After the ??/ sequence is replaced, this line is translated as follows:

printf ("Any questions?\n");

1.1.2 Digraph Sequences
Digraph processing is supported when compiling in ISO C 94 mode
(/STANDARD=ISOC94 on OpenVMS systems).

Digraphs are pairs of characters that translate into a single character, much
like trigraphs, except that trigraphs get replaced inside string literals, but
digraphs do not. Table 1–2 lists the valid digraph sequences and their
character equivalents.

Table 1–2 Digraph Sequences

Digraph Sequence Character Represented

<: [

:> ]

<% {

%> }

%: #

%:%: ##

1.2 Identifiers
An identifier is a sequence of characters that represents a name for the
following:

• Variable

• Function

• Label

• Type definition

• Structure, enumeration, or union tag

• Structure, enumeration, or union member

• Enumeration constant

• Macro

• Macro parameter
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The following rules apply to identifiers:

• Identifiers consist of a sequence of one or more uppercase or lowercase
alphabetic characters, the digits 0 to 9, the dollar sign ($), and the
underscore character (_).

Using the $ character provokes a warning from the compiler in strict ANSI
mode.

• Character case is significant in identifiers; for example, the identifier Test1
is different from the identifier test1.

• Identifiers cannot begin with a digit.

• Do not begin identifiers with an underscore; the ANSI C standard reserves
these identifiers for internal names.

• Keywords are not identifiers (Section 1.4 lists the C keywords).

• Using the names of library functions for identifiers is bad practice
(Chapter 9 lists the C library function names). A function with the same
name as a library function will supersede the library function. This may be
the desired outcome, but program maintenance can be confusing.

• In general, identifiers are separated by white space, punctuators, or
operators. For example, the following code fragment has four identifiers:

struct employee { int number; char sex; } emp;

The identifiers are: employee, number, sex, and emp. (struct, int, and
char are keywords).

An identifier without external linkage has at most 32,767 significant
characters. An identifier with external linkage has 1023 significant characters
on Tru64 UNIX systems and 31 significant characters for OpenVMS platforms.
(Section 2.8 describes linkage in more detail.) Case is not significant in
external identifiers on OpenVMS systems.

Identifiers that differ within their significant characters are different
identifiers. If two or more identifiers differ in nonsignificant characters
only, they are treated as the same identifier.
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1.3 Comments
The /* character combination introduces a comment and the */ character
combination ends a comment, except within a character constant or string
literal.

Comments cannot be nested; once a comment is started, the compiler treats
the first occurrence of */ as the end of the comment.

To comment out sections of code, avoid using the /* and */ sequences. Using
the /* and */ sequences works only for code sections containing no comments,
because comments do not nest. A better method is to use the #if and #endif
preprocessor directives, as in the following example:

#if 0
/* This code is excluded from execution because ... */
code_to_be_excluded ();
#endif

See Chapter 8 for more information on the preprocessing directives #if and
#endif.

Comments cannot span source files. Within a source file, comments can be of
any length and are interpreted as white space by both the compiler and the
preprocessor.

1.4 Keywords
C defines several keywords, each with special meaning to the compiler.
Keywords identify statement constructs and specify basic types and storage
classes. Keywords cannot be used as identifiers and cannot be declared.

Table 1–3 lists the C keywords.

Table 1–3 Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

(continued on next page)
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Table 1–3 (Cont.) Keywords

default goto sizeof volatile

do if static while

In addition to the keywords listed in Table 1–3, the compiler reserves all
identifiers that begin with two underscores (_ _) or with an underscore followed
by an uppercase letter. User variable names must never begin with one of
these sequences.

Keywords are used as follows:

• To assign a storage class to a variable or function (auto, extern, register,
static)

• To construct or qualify a data type (char, const, double, enum, float, int,
long, short, signed, struct, union, unsigned, void, volatile)

• As part of a statement (break, case, continue, default, do, else, for,
goto, if, return, switch, while)

• To define a new named type (typedef)

• To perform an operation (sizeof, _ _typeof_ _)

The following VAX C keywords are also sometimes1 recognized by the compiler:

_align
globaldef
globalref
globalvalue
noshare
readonly
variant_struct
variant_union

The following C99 Standard keywords are also sometimes2 recognized by the
compiler:

inline
restrict

1 Recognized on OpenVMS systems when /STANDARD=RELAXED_ANSI (the default),
/STANDARD=VAXC or /ACCEPT=VAXC_KEYWORDS is specified on the compiler
command line. Recognized on Tru64 UNIX systems when -vaxc or -accept
vaxc_keywords is specified on the compiler command line.

2 Recognized on OpenVMS systems when /STANDARD=RELAXED_ANSI (the default),
or /ACCEPT=C99_KEYWORDS is specified on the compiler command line. Recognized
on Tru64 UNIX systems when -std (the default) or -accept c99_keywords is
specified on the compiler command line.
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Use of a keyword as a superfluous macro name is not recommended, but is
legal; for example, to change the default size of a basic data type:

#define int short

Here, the keyword int has been redefined as short, which causes all data
objects declared with the int data type to be stored as short objects.

1.5 Operators
An operator is a token that specifies an operation on at least one operand,
and yields some result (a value, designator, side effect, or some combination).
Operands are expressions or constants (a form of expression). Operators with
one operand are unary operators, and operators with two operands are binary
operators. For example:

x = -b; /* Unary minus operator */
y = a - c; /* Binary minus operator */

Operators with three operands are called ternary operators.

All operators are ranked by precedence, a ranking system determining
which operators are evaluated before others in a statement. See Chapter 6
for information on what each operator does and for the rules of operator
precedence.

Some operators in C are composed of more than one character, while others are
single characters. The single-character operators in C are:

! % ^ & * - + = ~ | . < > / ? : , [ ] ( ) #

The multiple-character operators in C are:

++ -- -> << >> <= >= == != *= /=
%= += -= <<= >>= &= ^= |= ## && ||

The # and ## operators can only be used in preprocessor macro definitions.
See Chapter 8 for more information on predefined macros and preprocessor
directives.

The sizeof operator determines the size of a data type. See Chapter 6 for
more information on the sizeof operator.

The old form for compound assignment operators (=+, =-, =*, =/, =%, =<<,
=>>, =&, =^, and =|) is not supported by the ANSI C standard. Use of these
operators in a program is unsupported, and will produce unpredictable results.
For example:

x =-3;
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This construction means x is assigned the value -3, not x is assigned the value
x - 3.

The error-checking compiler option provides a warning message when the old
form of compound assignment operators is encountered.

1.6 Punctuators
Some characters in C are used as punctuators, which have their own syntactic
and semantic significance. Punctuators are not operators or identifiers.
Table 1–4 lists the C punctuators.

Table 1–4 Punctuators

Punctuator Use Example

< > Header name <limits.h>

[ ] Array delimiter char a[7];

{ } Initializer list, function
body, or compound
statement delimiter

char x[4] = {’H’, ’i’, ’!’, ’\0’
};

( ) Function parameter list
delimiter; also used in
expression grouping

int f (x,y)

* Pointer declaration int *x;

, Argument list separator char x[4] = { ’H’, ’i’, ’!’,
’\0’};

: Statement label labela: if (x == 0) x += 1;

= Declaration initializer char x[4] = { "Hi!" };

; Statement end x += 1;

... Variable-length argument
list

int f ( int y, ...)

# Preprocessor directive #include <limits.h>

’ ’ Character constant char x = ’x’;

" " String literal or header
name

char x[] = "Hi!";

The following punctuators must be used in pairs:

< >
[ ]
( )
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’ ’
" "
{ }

Some characters can be used either as a punctuator or as an operator, or
as part of an operator. The context of the occurrence specifies the meaning.
Punctuators usually delineate a specific type of C construct, as shown in
Table 1–4.

1.7 String Literals
Strings are sequences of zero or more characters. String literals are character
strings surrounded by quotation marks. String literals can include any valid
character, including white-space characters and character escape sequences.
Once stored as a string literal, modification of the string leads to undefined
results.

In the following example, ABC is the string literal. It is assigned to a character
array where each character in the string literal is stored as one array element.
Storing a string literal in a character array lets you modify the characters of
the array.

char x[] = "ABC";

String literals are typically stored as arrays of type char (or wchar_t) if
prefaced with an L, and have static storage duration.

The following declaration declares a character array to hold the string "Hello!":

char s[] = "Hello!";

The character array s is initialized with the characters specified in the
double quotation marks, and terminated with a null character (\0) . The null
character marks the end of each string, and is automatically concatenated
to the end of the string literal by the compiler. Adjacent string literals are
automatically concatenated (with a single null character added at the end) to
reduce the need for the line continuation character (the backslash at the end of
a line).

Following are some valid string literals:

"" /* Here’s a string with only the null character */

"You can have many characters in a string."

"\"You can mix characters and escape sequences.\"\n"

"Long lines of text can be continued on the next line \
by using the backslash character at the end of a line."
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"Or, long lines of text can be continued by using "
"ANSI’s concatenation of adjacent string literals."

"\’\n" /* Only escape sequences are in this string */

To determine the length of a given string literal (not including the null
character), use the strlen function. See Chapter 9 for more information on
other library routines available for string manipulation.

1.8 Constants
There are four categories of constants in C:

• Integer constants (such as 63, 0, and 42L)

• Floating-point constants (such as 1.2, 0.00, and 77E+2)

• Character constants (such as ’A’, ’0’, and L’\n’)

• Enumeration constants (such as enum boolean { NO, YES };), where NO and
YES are the enumeration constants

The following sections describe these constants.

The value of any constant must be within the range of representable values
for the specified type. Regardless of its type, a constant is a literal or symbolic
value that does not change. A constant is also an rvalue, as defined in
Section 2.14.

1.8.1 Integer Constants
Integer constants are used to represent whole numbers. An integer constant
can be specified in decimal, octal, or hexadecimal radix, and can optionally
include a prefix that specifies its radix and a suffix that specifies its type. An
integer constant cannot include a period or an exponent part.

Follow these rules when specifying an integer constant:

• To specify a decimal integer constant, use a sequence of decimal digits in
which the first digit is not 0. The value of a decimal constant is computed
in base 10.

• To specify an octal integer constant, start the sequence with a zero (0) and
follow the 0 (if necessary) with a sequence composed of the digits 0 to 7. A
leading 0 alone signifies the octal number 0. The value of an octal constant
is computed in base 8.
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• To specify a hexadecimal integer constant, start the hexadecimal sequence
with a 0 followed by the character X (or x). Follow the X or x with one or
more hexadecimal characters (the digits 0 to 9 and the upper or lowercase
letters A to F). The value of a hexadecimal constant is computed in base 16
(the letters A to F have the values 10 to 15, respectively).

Without explicit specification, the type of an integer constant defaults to the
smallest possible type that can hold the constant’s value, unless the value is
suffixed with an L, l, U, or u. The following list describes the type assignment
of integer constants:

• If the constant has no suffix, and is given in decimal radix, it will have
the first type from this list capable of storing the value: int, long int,
unsigned long int.

• If the constant has no suffix, and is given in octal or hexadecimal radix,
it will have the first type from this list capable of storing the value: int,
unsigned int, long int, unsigned long int.

• If the constant has the U or u suffix, it will have the first type from this list
capable of storing the value: unsigned int, unsigned long int.

• If the constant has the L or l suffix, it will have the first type from this list
capable of storing the value: long int, unsigned long int.

• If the constant has both U and L suffixes (or the lowercase combination), it
will have type unsigned long int.

For example, the constant 59 is assigned the int data type by default, but the
constant 59L is assigned the long data type. 59UL is typed as unsigned long
int.

Integer constant values are always nonnegative; a preceding minus sign is
interpreted as a unary operator, not as part of the constant. If the value
exceeds the largest representable integer value (causing an overflow), the
compiler issues a warning message and uses the greatest representable
value for the integer type. Unsuffixed integer constants can have different
types, because without explicit specification the constant is represented in the
smallest possible integer type.
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1.8.2 Floating-Point Constants
A floating-point constant has a fractional or exponential part. Floating-point
constants are always interpreted in decimal radix (base 10). An optional
suffix can be appended to show the constant’s type. Floating-point constants
can be expressed with decimal point notation, signed exponent notation, or
both. A decimal point without a preceding or following digit is not allowed (for
example, .E1 is illegal). Table 1–5 shows examples of valid notational options.

The significand part of the floating-point constant (the whole number part, the
decimal point, and the fractional part) may be followed by an exponent part,
such as 32.45E2. The exponent part (in the previous example, E2) indicates
the power of 10 by which the significand part is to be scaled. The precise value
after scaling is dependent on your platform. The determining algorithm is
described in your platform-specific Compaq C documentation.

The default type of a floating-point constant is double, unless:

• The value exceeds the largest value representable by type double, in which
case a compiler overflow warning results. (The result is truncated within
the double type.)

• An L or l is appended to the value, which specifies the long double type
for the floating-point constant.

• An F or f is appended to the value, which specifies the float type for the
floating-point constant.

Floating-point constant values must be nonnegative; a preceding minus sign is
interpreted as a unary operator, not as part of the constant.

Table 1–5 Floating-Point Notation

Notation Value Type

.0 0.000000 double

0. 0.000000 double

2. 2.000000 double

2.5 2.500000 double

2e1 20.00000 double

2E1 20.00000 double

2.E+1 20.00000 double

(continued on next page)
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Table 1–5 (Cont.) Floating-Point Notation

Notation Value Type

2e+1 20.00000 double

2e-1 0.200000 double

2.5e4 25000.00 double

2.5E+4 25000.00 double

2.5F 2.500000 float

2.5L 2.500000 long double

1.8.3 Character Constants
A character constant is any character from the source character set enclosed in
apostrophes. Character constants are represented by objects of type int. For
example:

char alpha = ’A’;

Characters such as the new-line character, single quotation marks, double
quotation marks, and backslash can be included in a character constant by
using escape sequences as described in Section 1.8.3.3. All valid characters can
also be included in a constant by using numeric escape sequences, as described
in Section 1.8.3.4.

The value of a character constant containing a single character is the numeric
value of the character in the current character set. Character constants
containing multiple characters within the single quotation marks have a value
determined by the compiler. The value of a character constant represented
by an octal or hexadecimal escape sequence is the same as the octal or
hexadecimal value of the escape sequence. The value of a wide character
constant (discussed in Section 1.8.3.1) is determined by the mbtowc library
function.

There is a limit of four characters for any one character constant. Enclosing
more than four characters in single quotation marks (such as ’ABCDE’),
generates an overflow warning.

Note that the byte ordering of character constants is platform specific.
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1.8.3.1 Wide Characters
C provides for an extended character set through the use of wide characters.
Wide characters are characters too large to fit in the char type. The wchar_t
type is typically used to represent a character constant in a character set
requiring more than 256 possible characters, because 8 bits can represent only
256 different values.

A character constant in the extended character set is written using a preceding
L, and is called a wide-character constant. Wide-character constants have an
integer type, wchar_t, defined in the <stddef.h> header file. Wide-character
constants can be represented with octal or hexadecimal character escape
sequences, just like normal character escape sequences, but with the preceding
L.

Strings composed of wide characters can also be formed. The compiler allocates
storage as if the string were an array of type wchar_t, and appends a wide null
character (\0) to the end of the string. The array is just long enough to hold
the characters in the string and the wide null character, and is initialized with
the specified characters.

The following examples show valid wide-character constants and string literals:

wchar_t wc = L’A’;
wchar_t wmc = L’ABCD’;
wchar_t *wstring = L"Hello!";
wchar_t *x = L"Wide";
wchar_t z[] = L"wide string";

Compaq C stores wchar_t objects as unsigned long objects (OpenVMS) or
unsigned int objects (Tru64 UNIX) in 32 bits of storage. The null character at
the end of a wide-character string is 32 bits long.

1.8.3.2 Multibyte Characters
Some programmers requiring an extended character set have used shift-
dependent encoding schemes to represent the non-ASCII characters in the
normal char size of 8 bits. This encoding results in multibyte characters. ANSI
C supports these encoding schemes, in addition to providing the wide-character
type wchar_t.

In accordance with the ANSI standard, Compaq C recognizes multibyte
characters in the following contexts:

• Comments

• String literals

• Header names
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• Character constants

For proper input and output of the multibyte character encodings, and to
prevent conflicts with existing string processing routines, note the following
rules governing the use of multibyte characters:

• A byte with all bits set to zero is always recognized as a null character.
Null characters can only be single bytes.

• A null character cannot occur as the second or subsequent byte of a
multibyte character.

Transforming multibyte characters to wide-character constants and wide
string literals eases the programmer’s problems when dealing with shift-state
encoding. There are several C library functions available for transforming
multibyte characters to wide characters and back. See Chapter 9 for more
information.

1.8.3.3 Character Escape Sequences
Characters that cannot be displayed on a standard terminal, or that have
special meaning when used in character constants or string literals, can be
entered as source characters by entering them as character escape sequences.
A backslash (\) begins each character escape sequence. Each of the escape
sequences is stored in a single char or wchar_t object. Table 1–6 lists the
ANSI-defined escape sequences.

Table 1–6 Character Escape Sequences

Character Escape Sequence

Alert (Bell) \a

Backspace \b

Form Feed \f

New line \n

Carriage Return \r

Horizontal Tab \t

Vertical Tab \v

Backslash \\

Single Quote \’

Double Quote \"

(continued on next page)
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Table 1–6 (Cont.) Character Escape Sequences

Character Escape Sequence

Question Mark \?

No other character escape sequences are valid. If another sequence is
encountered in the source code, the compiler issues a warning and the
backslash character is ignored.

An example of a character escape sequence use follows:

printf ("\t\aReady\?\n");

Upon execution, this results in an alert bell and the following prompt:

Ready?

1.8.3.4 Numeric Escape Sequences
The compiler treats all characters as an integer representation, so it is possible
to represent any character in the source code with its numeric equivalent.
This is called a numeric escape sequence. The character is represented by
typing a backslash (\), followed by the character’s octal or hexadecimal integer
equivalent from the current character set (see Appendix C for the ASCII
equivalence tables). For example, using the ASCII character set, the character
A can be represented as \101 (the octal equivalent) or \x41 (the hexadecimal
equivalent). A preceding 0 in the octal example is not necessary because octal
values are the default in numeric escape sequences. A lowercase x following
the backslash indicates a hexadecimal representation. For example, \x5A is
equivalent to the character Z.

An example of numeric escape sequences follows:

#define NUL ’\0’ /* Defines logical null character */

char x[] = {’\110’,’\145’,’\154’,’\154’,’\157’,’\41’,’\0’};
/* Initializes x with "Hello!" */

The escape sequence extends to three octal digits, or the first character that is
not an octal digit, whichever is first. Therefore, the string "\089" is interpreted
as four characters: \0, 8, 9, and \0.

With hexadecimal escape sequences, there is no limit to the number of
characters in the escape sequence, but the result is not defined if the
hexadecimal value exceeds the largest value representable by the unsigned
char type for an normal character constant, or the largest value representable
by the wchar_t type for a wide-character constant. For example, ’\x777’ is
illegal.
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In addition, hexadecimal escape sequences with more than three characters
provoke a warning if the error-checking compiler option is used.

String concatenation can be used to specify a hexadecimal digit following a
hexadecimal escape sequence. In the following example, a is initialized to the
same value in both cases:

char a[] = "\xff" "f";
char a[] = {’\xff’, ’f’, ’\0’};

Using numeric escape sequences can result in a nonportable program if the
executing machine uses a different character set. Another threat to portability
exists if arithmetic operations are performed on the integer character values,
because multiple character constants (such as ’ABC’ can be represented
differently on different machines.

1.8.4 Enumeration Constants
An enumerated type specifies one or more enumeration constants to define
allowable values for the enumerated type. Enumeration constants have the
type int. See Section 3.6 for details on the declaration and use of enumerated
types.

1.9 Header Files
Header files are text files included in a source file during compilation. To
include a header file in a compilation, the #include preprocessor directive
must be used in the source file. See Chapter 8 for more information on this
directive. The entire header file, regardless of content, is substituted for the
#include preprocessor directive.

A header file can contain other #include preprocessor directives to include
another file. You can nest #include directives to any depth.

Header files can include any legal C source code. They are most often used
to include external variable declarations, macro definitions, type definitions,
and function declarations. Groups of logically related functions are commonly
declared together in a header file, such as the C library input and output
functions listed in the stdio.h header file. Header files traditionally have a .h
suffix (stdio.h, for example).

The names of header files must not include the ’, \, ", or /* characters, because
the use of these punctuation characters in a header file is undefined.
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When referenced in a program, header names are surrounded by angle
brackets or double quotation marks, as shown in the following example:

#include <math.h> /* or */
#include "local.h"

Chapter 8 explains the difference between the two formats. The algorithm
the compiler uses for finding the named files is discussed in Section B.37.
Chapter 9 describes the library routines in each of the ANSI standard header
files.

1.10 Limits
The ANSI C standard suggests several environmental limits on the use of
the C language. These limits are an effort to define minimal standards for
a conforming implementation of a C compiler. For example, the number
of significant characters in an identifier is implementation-defined, with a
minimum set required by the ANSI C standard.

The standard also includes several numerical limits that restrict the
characteristics of integral and floating-point types. For the most part,
these limits will not affect your use of the C language or compiler. However,
for unusually large or unusually constructed programs, certain limits can
be reached. The ANSI standard contains a list of minimum limits, and your
platform-specific Compaq C documentation contains the actual limits used in
Compaq C.

1.10.1 Translation Limits
As intended by the ANSI C standard, the Compaq C implementation avoids
imposing many of the translation limits, allowing applications more flexibility.
The Compaq C limits are:

• A maximum of 32,767 significant characters in an internal identifier or
macro name (a warning message is issued if this limit is exceeded)

• A maximum of 1023 significant characters in an external identifier for
Tru64 UNIX systems.

• A maximum of 31 significant characters in an external identifier for
OpenVMS VAX platforms (a warning message is issued if this limit is
exceeded and the identifier is truncated)

• A maximum of 253 function arguments/formal parameters on OpenVMS
systems; a maximum of 1023 function arguments/formal parameters on
Tru64 UNIX systems.
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• A maximum of 1012 bytes in any one function argument, and a maximum
of 1012 bytes in a function argument list on OpenVMS systems

• A maximum of 32,767 characters in a logical source line

• A maximum of 32,767 characters in a physical source line

• A maximum of 32,767 bytes in the representation of a string literal (this
limit does not apply to string literals formed as a result of concatenation)

1.10.2 Numerical Limits
Numerical limits define the sizes and characteristics of integral and floating-
point types. Numerical limits are described in the limits.h and float.h
header files. The limits are:

• Each character of type char is represented in 8 bits.

• Each character of type wchar_t is represented in 32 bits.

• The machine representation and set of possible values for the char type
is the same as for the signed char type. A compiler command-line option
changes this equivalence to unsigned char.

• On OpenVMS systems, the machine representation and set of possible
values for the int and signed int types are the same as for the long int
type.

• On OpenVMS systems, the machine representation and set of possible
values for the unsigned int type are the same as for the unsigned long
int type.

• On Tru64 UNIX systems, the long int and unsigned long int types are 64
bits, while int and unsigned int are 32 bits.

• The machine representation and set of possible values for the long double
type is the same as for the double type.

1.10.3 Character Display
Characters from the executable character set are output to the active position
on the screen or in a file. The active position is defined by the ANSI C standard
as the spot where the next output character will appear. After a character is
output, the active position advances to the next position on the current line (to
the left or right).

The Compaq C compiler moves the active position from left to right across an
output line.
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2
Basic Concepts

The C language was initially designed as a small, portable programming
language used to implement an operating system. In its history, C has evolved
into a powerful tool for writing all types of programs, and includes mechanisms
to achieve most programming goals. C offers:

• A standard set of lexical elements

• A wide variety of types for data objects, including:

Integer and floating-point constants and variables

Pointers to data locations in memory and the ability to do pointer
arithmetic

Arrays of identically typed data

Structures and unions with members of different data types

• The ability to group independent code blocks into named functions

• A large set of operators used to form expressions, including bit-wise
operators

• A simple method of declaring data objects and functions

• Several preprocessor directives to expand the functionality of the language

• Numerous library functions to handle many common programming tasks

• A high degree of portability

To help you take full advantage of C’s features, the following sections provide a
guide to the basic concepts of the language:

• Blocks (Section 2.1)

• Compilation units (Section 2.2)

• Scope (Section 2.3)

• Visibility (Section 2.4)
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• Side effects and sequence points (Section 2.5)

• Incomplete type (Section 2.6)

• Compatible and composite types (Section 2.7)

• Linkage (Section 2.8)

• Storage classes (Section 2.10)

• Storage-class modifiers (Section 2.11)

• Forward references (Section 2.12)

• Tags (Section 2.13)

• lvalues and rvalues (Section 2.14)

• Name spaces (Section 2.15)

• Preprocessing (Section 2.16)

• Type names (Section 2.17)

These sections represent an expanded glossary of selected C terms and basic
concepts. Understanding these concepts will provide a good foundation for a
working knowledge of C, and will help show the relationship of these concepts
to more complex ones in the language.

2.1 Blocks
A block in C is a section of code surrounded by braces { }. Understanding the
definition of a block is very important to understanding many other C concepts,
such as scope, visibility, and external or internal declarations.

The following example shows two blocks, one defined inside the other:

main ()
{ /* This brace marks the beginning of the outer block */

int x;
if (x!=0)
{ /* This brace marks the beginning of the inner block */

x = x++;
return x;

}; /* This brace marks the end of the inner block */
} /* This brace marks the end of the outer block */

A block is also a form of a compound statement; a set of related C statements
enclosed in braces. Declarations of objects used in the program can appear
anywhere within a block and affect the object’s scope and visibility. Section 2.3
discusses scope; Section 2.4 discusses visibility.
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2.2 Compilation Units
A compilation unit is C source code that is compiled and treated as one logical
unit. The compilation unit is usually one or more entire files, but can also be
a selected portion of a file if, for example, the #ifdef preprocessor directive
is used to select specific code sections. Declarations and definitions within a
compilation unit determine the scope of functions and data objects.

Files included by using the #include preprocessor directive become part of the
compilation unit. Source lines skipped because of the conditional inclusion
preprocessor directives are not included in the compilation unit.

Compilation units are important in determining the scope of identifiers, and in
determining the linkage of identifiers to other internal and external identifiers.
Section 2.3 discusses scope. Section 2.8 discusses linkage.

A compilation unit can refer to data or functions in other compilation units in
the following ways:

• A function in one compilation unit can call a function in a different
compilation unit.

• Data objects can be assigned external linkage so that other compilation
units have access to them (see Section 2.8).

Programs composed of more than one compilation unit can be separately
compiled, and later linked to produce the executable program. A legal C
compilation unit consists of at least one external declaration, as defined in
Section 4.3.

A translation unit with no declarations is accepted with a compiler warning in
all modes except for the strict ANSI standard mode.

2.3 Scope
The scope of an identifier is the range of the program in which the declared
identifier has meaning. An identifier has meaning if it is recognized by the
compiler. Scope is determined by the location of the identifier’s declaration.
Trying to access an identifier outside of its scope results in an error. Every
declaration has one of four kinds of scope:

• File

• Block

• Function
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• Function prototype (a declaration including only the function’s parameter
types)

An enumeration constant’s scope begins at the defining enumerator in an
enumerator list. The scope of a statement label includes the entire function
body. The scope of any other type of identifier begins at the identifier itself in
the identifier’s declaration. See the following sections for information on when
an identifier’s scope ends.

2.3.1 File Scope
An identifier whose declaration is located outside any block or function
parameter list has file scope. An identifier with file scope is visible from the
declaration of the identifier to the end of the compilation unit, unless hidden
by an inner block declaration. In the following example, the identifier off has
file scope:

int off = 5; /* Declares (and defines) the integer
identifier off. */

main ()
{

int on; /* Declares the integer identifier on. */
on = off + 1; /* Uses off, declared outside the function

block of main. This point of the
program is still within the
active scope of off. */

if (on<=100)
{
int off = 0;/* This declaration of off creates a new object

that hides the former object of the same name.
The scope of the new off lasts through the
end of the if block. */

off = off + on;
return off;

}
}

2.3.2 Block Scope
An identifier appearing within a block or in a parameter list of a function
definition has block scope and is visible within the block, unless hidden by an
inner block declaration.

Block scope begins at the identifier declaration and ends at the closing brace
(}) completing the block. In the following example, the identifier red has block
scope and blue has file scope:
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int blue = 5; /* blue: file scope */
main ()
{

int x = 0 , y = 0; /* x and y: block scope */
int red = 10; /* red: block scope */
x = red + blue;

}

2.3.3 Function Scope
Only statement labels have function scope (see Chapter 7). An identifier
with function scope is unique throughout the function in which it is declared.
Labeled statements are used as targets for goto statements and are implicitly
declared by their syntax, which is the label followed by a colon (:) and a
statement. For example:

int func1(int x, int y, int z)
{
label: x += (y + z); /* label has function scope */
if (x > 1) goto label;

}
int func2(int a, int b, int c)
{
if (a > 1) goto label; /* illegal jump to undefined label */

}

See Section 7.1 for more information on statement labels.

2.3.4 Function Prototype Scope
An identifier that appears within a function prototype’s list of parameter
declarations has function prototype scope. The scope of such an identifier
begins at the identifier’s declaration and terminates at the end of the function
prototype declaration list. For example:

int students ( int david, int susan, int mary, int john );

In this example, the identifiers (david, susan, mary, and john) have scope
beginning at their declarations and ending at the closing parenthesis. The type
of the function students is ‘‘function returning int with four int parameters.’’
In effect, these identifiers are merely placeholders for the actual parameter
names to be used after the function is defined.
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2.4 Visibility
An identifier is visible only within a certain region of the program. An
identifier has visibility over its entire scope, unless a subsequent declaration
of the same identifier in an enclosed block overrides, or hides, the previous
declaration. Visibility affects the ability to access a data object or other
identifier, because an identifier can be used only where it is visible.

Once an identifier is used for a specific purpose, it cannot be used for another
purpose within the same scope, unless the second use of the identifier is in a
different name space. Section 2.15 describes the name space restrictions. For
example, declarations of two different data objects using the same name as an
identifier is illegal within the same scope.

When the scope of one of two identical identifiers is contained within the other
(nested), the identifier with inner scope remains visible, while the identifier
with wider scope becomes hidden for the duration of the inner identifier’s
scope.

In the following example, the identifier number is used twice: once as an
integer variable and once as a floating-point variable. For the duration of the
function main, the integer number is hidden by the floating-point number.

#include <math.h>
int number; /* number is declared as an integer variable */

main ()
{
float x;
float number; /* This declaration of number occurs in an inner

block, and "hides" the outer declaration.
The inner declaration creates a new object */

x = sqrt (number);/* x receives a floating-point value */
}

2.5 Side Effects and Sequence Points
The actual order in which expressions are evaluated is not specified for most of
the operators in C. Because this sequence of evaluation is determined within
the compiler depending on context, some unexpected results may occur when
using certain operators. These unexpected results are caused by side effects.

Any operation that affects an operand’s storage has a side effect. Side effects
can be deliberately induced by the programmer to produce a desired result;
in fact, the assignment operator depends on the side effect of altered storage
to do its job. C guarantees that all side effects of a given expression will be
completed by the next sequence point in the program. Sequence points are
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checkpoints in the program at which the compiler ensures that operations in
an expression are concluded.

The most important sequence point is the semicolon marking the end of a
statement. All expressions and their side effects are completely evaluated
when the semicolon is reached. Other sequence points are as follows:

• expr1, expr2 (the comma operator)

• expr1 && expr2 (the logical AND operator)

• expr1 || expr2 (the logical OR operator)

• expr1 ? expr2 : expr3 (the conditional operator)

These operations do guarantee the order, or sequence, of evaluation (expr1),
expr2, and expr3 are expressions). For each of these operators, the evaluation
of expression expr1 is guaranteed to occur before the evaluation of expression
expr2 (or expr3, in the case of the conditional expression).

Relying on the execution order of side effects, when none is guaranteed, is a
risky practice because results are inconsistent and not portable. Undesirable
side effects usually occur when the same data object is used in two or more
places in the same expression, where at least one use produces a side effect.
For example, the following code fragment produces inconsistent results because
the order of evaluation of operands to the assignment operator is undefined.

int x[4] = { 0, 0, 0, 0 };
int i = 1;
x[i] = i++;

If the increment of i occurs before the subscript is evaluated, the value of x[2]
is 1. If the subscript is evaluated first, the value of x[1] is 1.

A function call also has side effects. In the following example, the order in
which f1(y) and f2(z) are called is undefined:

int y = 0;
int z = 0;
int x = 0;

int f1(int s)
{
printf ("Now in f1\n");
y += 7; /* Storage of y affected */
return y;
}
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int f2(int t)
{
printf ("Now in f2\n");
z += 3; /* Storage of z affected */
return z;
}

main ()
{
x = f1(y) + f2(z); /* Undefined calling order */
}

The printf functions can be executed in any order even though the value of x
will always be 10.

2.6 Incomplete Type
An identifier can be initially declared as having an incomplete type. An
incomplete type declaration describes the object, but lacks the information
needed to determine the object’s size. For example, a declaration of an array of
unknown size is an incomplete type declaration:

extern int x[];

The incomplete type may be completed in a subsequent declaration. Incomplete
types are most commonly used when forward referencing arrays, structures,
and unions. (Section 2.12 discusses forward references.) An object of an
aggregate type cannot contain a member of an incomplete type; therefore,
an aggregate object (a structure or array member) cannot contain itself,
because the aggregate type is not complete until the end of its declaration. The
following example shows how an incomplete structure type is declared and
later completed:

struct s
{ struct t *pt }; /* Incomplete structure declaration */

.

.

.
struct t

{ int a;
float *ps }; /* Completion of structure t */

The void type is a special case of an incomplete type. It is an incomplete type
that cannot be completed, and is used to signify that a function returns no
value. Section 3.5 has more information on the void type.
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2.7 Compatible and Composite Types
Compatibility between types refers to the similarity of two types to each other.
Type compatibility is important during type conversions and operations. All
valid declarations in the same scope that refer to the same object or function
must have compatible types. Two types are compatible if they fit any of the
following categories:

• Two types are compatible if they are the same.

• Two qualified types (see Section 3.7) are compatible if they are identically
qualified and the two types, unqualified, are compatible. The order of the
qualifiers in the type declaration does not matter.

• The types short, signed short, short int, and signed short int are the
same and are compatible.

• The types unsigned short and unsigned short int are the same and are
compatible.

• The types int, signed, and signed int are the same and are compatible.

• The types unsigned and unsigned int are the same and are compatible.

• The types long, signed long, long int, signed long int are the same and
are compatible.

• The types unsigned long and unsigned long int are the same and are
compatible.

• Two array types are compatible if they are of the same size and contain
elements of compatible types. If one array has an unknown size, it is
compatible with all other array types having compatible element types.

• Two unions or structures are compatible if they are declared in different
compilation units, share the same members in the same order, and whose
members have the same widths (including bit fields).

• Two enumerations are compatible if all members have the same values.
All enumerated types are compatible with other enumerated types. An
enumerated type is also compatible with the signed int type.

• Two pointer types are compatible if they are identically qualified and point
to objects of compatible types.

• A function type declared using the old-style declaration (such as int
tree( )) is compatible with another function type if the return types are
compatible.
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• A function type declared using the new prototype-style declaration (such as
int tree (int x)) is compatible with another function type declared with a
function prototype if:

The return types are compatible.

The parameters agree in number (including an ellipsis if one is used).

The parameter types are compatible. For each parameter declared with
a qualified type, its type for compatibility comparison is the unqualified
version of the declared type.

• The function type of a prototype-style function declaration is compatible
with the function type of an old-style function declaration if the return
types are compatible, and if the old-style declaration is not a definition.
(Different styles of function declarations are discussed in Chapter 5.)
Otherwise, the function type of a prototype-style function declaration is
compatible with the function type of an old-style function definition if all of
the following conditions are met:

The return types of the two functions are compatible.

The number of parameters agree.

The prototype-style function declaration does not contain an ellipsis as
a parameter.

The promoted types of the old-style parameters are compatible with
the prototype-style parameter types. In the following example, the
functions tree and tree2 are compatible. tree and tree1 are not
compatible, and tree1 and tree2 are not compatible.

int tree (int);
int tree1 (char);
int tree2 (x)

char x; /* char promotes to int in old-style
function parameters, and so is
compatible with tree */

{
...
};

The following types, which may appear to be compatible, are not:

• unsigned int and int types are not compatible.

• char, signed char, and unsigned char types are not compatible.
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Composite Type
A composite type is constructed from two compatible types and is compatible
with both of the two types. Composite types satisfy the following conditions:

• If one type is an array of known size, the composite type is an array of that
size. Otherwise, if one type is a variable-length array, the composite type is
that type.

• If only one type is a function type with a prototype, the composite type is a
function type with the parameter type list.

• If both types are functions types with prototypes, the type of each
parameter in the composite parameter type list is the composite type of
the corresponding parameters.

Consider the following file-scope declarations:

int f(int (*) (), double (*) [3]);
int f(int (*) (char *), double (*)[]);

They result in the following composite type for the function:

int f(int (*) (char *), double (*)[3]);

The previous composite type rules apply recursively to types derived from
composite types.

2.8 Linkage
Data objects and functions can be implicitly or explicitly assigned linkage.
There are three kinds of linkage:

• Internal linkage—a declaration referring to a data object or function
declared in the same compilation unit, and not known outside the
compilation unit.

• External linkage—a declaration referring to a definition of a data object or
function known outside the compilation unit. The definition of the object
also has external linkage.

• No linkage—a declaration declaring a unique data object.

When more than one declaration of the same object or function is made,
linkage is made. The linked declarations can be in the same scope or in
different scopes. Externally linked objects are available to any function in any
compilation unit used to create the executable file. Internally linked objects
are available only to the compilation unit in which the declarations appear.
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The concept of linkage and the static and extern keywords are related, but
not directly. Using the extern keyword in an object’s declaration does not
guarantee external linkage. The following rules determine the actual linkage
of an object or function:

• An identifier explicitly specified with the auto or register storage class
has no linkage.

• An identifier with block scope and the extern storage-class specification
has linkage the same as any visible declaration of the same identifier with
file scope. If no such declaration of the object or function is visible, then
the object or function has external linkage.

• The declaration of functions defaults to external linkage. The only other
storage class possible for a function is static, which must be specified
explicitly, cannot be applied to a block scope function declaration, and
results in internal linkage.

• The file scope declaration of a data object without an explicit storage
class specification, or with the extern storage class specified, has external
linkage.

• An identifier with file scope and the static storage class has internal
linkage.

• An identifier with block scope and without the extern storage-class
specification has no linkage.

Identifiers other than data objects and functions have no linkage. An identifier
declared as a function parameter also has no linkage.

The following examples show declarations with different linkages:

extern int x; /* External linkage */
static int y; /* Internal linkage */
register int z; /* Illegal storage-class declaration */

main () /* Functions default to external linkage */
{

int w; /* No linkage */
extern int x; /* External linkage */
extern int y; /* Internal linkage */
static int a; /* No linkage */

}

void func1 (int arg1) /* arg1 has no linkage */
{ }

In Compaq C, a message is issued if the same object is declared with both
internal and external linkage.
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2.9 Tentative Definitions
A declaration of an identifier with file scope, no initializer, and either no
storage-class specifier or the static storage-class specifier is a tentative
definition. The tentative definition only applies if no other definition of the
object appears in the compilation unit, in which case all tentative definitions
for an object are treated as if there were only one file scope definition of the
object, with an initializer of zero.

If a definition for a tentatively defined object is used later in the compilation
unit, the tentative definition is treated as a redundant declaration of the object.
If the declaration of an identifier for an object is a tentative definition and has
internal linkage, the declared type cannot be an incomplete type. Section 2.8
discusses linkage.

The following are examples of tentative definitions:

int i1 = 1; /* Standard definition with external linkage */
int i4; /* Tentative definition with external linkage */
static int i5; /* Tentative definition with internal linkage */
int i1; /* Valid tentative definition, refers to previous */

/* i1 declaration */

2.10 Storage Classes
Storage classes apply only to data objects and function parameters. However,
storage class keywords in C are also used to affect the visibility of functions.
Every data object and parameter used in a program has exactly one storage
class, either assigned explicitly or by default. There are four storage classes:

• auto

• register

• static

• extern

An object’s storage class determines its availability to the linker and its storage
duration. An object with external or internal linkage, or with the storage-class
specifier static, has static storage duration, which means that storage for the
object is reserved and initialized to 0 only once, before main begins execution.
An object with no linkage and without the storage-class specifier static
has automatic storage duration; for such an object, storage is automatically
allocated on entry to the block in which it is declared, and automatically
deallocated on exiting from the block. An automatic object is not initialized.
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When applied to functions, the storage-class specifier extern makes the
function visible from other compilation units, and the storage-class specifier
static makes the function visible only to other functions in the same
compilation unit. For example:

static int tree(void);

The following sections describe these storage classes.

2.10.1 The auto Class
The auto class specifies that storage for an object is created upon entry to the
block defining the object, and destroyed when the block is exited. This class
can be declared only at the beginning of a block, such as at the beginning of a
function’s body. For example:

auto int a; /* Illegal -- auto must be within a block */

main ()
{

auto int b; /* Valid auto declaration */
for (b = 0; b < 10; b++)
{
auto int a = b + a; /* Valid inner block declaration */

}
}

When you use an initializer with an auto object (see Section 4.2), the object is
initialized each time it is created. Storage is reserved for the object whether
the block containing the object is entered through normal processing of
the block or through a jump statement into the block. However, if the
block is entered through a jump statement, initialization of the object is
not guaranteed, and if the object is a variable-length array, storage is not
reserved.

The auto class is the default for objects with block scope. Objects with the
auto class are not available to the linker.

Note

Entering an enclosed block suspends, but does not end, execution of
the enclosing block. Calling a function from within a block suspends,
but does not end, execution of the block containing the call. Automatic
objects with reserved storage maintain their storage in these cases.
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2.10.2 The register Class
The register class identifies the assigned object as frequently used, suggesting
to the compiler that the object should be assigned a register to minimize access
time. register is never the default class; it must be explicitly specified.

The register class has the same storage duration as the auto class; that is,
storage is created for a register object upon entry to the block defining the
object, and destroyed when the block is exited.

The register class is the only storage class that can be explicitly specified for
function parameters.

The Compaq C compiler uses sophisticated register allocation techniques that
make the use of the register keyword unnecessary.

2.10.3 The static Class
The static class specifies that space for the identifier is maintained for
the duration of the program. Static objects are not available to the linker.
Therefore, another compilation unit can contain an identical declaration that
refers to a different object.

A static object can be declared anywhere a declaration may appear in the
program; it does not have to be at the beginning of a block, as with the auto
class. If a data object is declared outside a function, it has static duration by
default—it is initialized only once at the beginning of the program.

Expressions used to initialize static objects must be constant expressions.
If the object with static storage duration is not explicitly initialized, every
arithmetic member of that object is initialized to 0, and every pointer member
is initialized as a null pointer constant. See Section 4.2 for more information
on initializing objects of various data types.

2.10.4 The extern Class
The extern class is the default class for objects with file scope. Objects outside
of any function (an external definition) receive the extern class storage unless
explicitly assigned the static keyword in the declaration. The extern class
specifies the same storage duration as static objects, but the object or function
name is not hidden from the linker. Using the extern keyword in a declaration
results in external linkage in most cases (see Section 2.8), and results in static
duration of the object.
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2.11 Storage-Class Modifiers
Compaq C provides the following storage-class modifiers:

_ _inline
_ _forceinline
_ _align
inline

The first three modifiers listed are recognized as valid keywords in all
compiler modes on all platforms. They are in the namespace reserved to
the C implementation, so it is not necessary to allow them to be treated as
user-declared identifiers. They have the same effects on all platforms, except
that on OpenVMS VAX systems, the _ _forceinline modifier does not cause
any more inlining than the _ _inline modifier does.

The inline storage-class modifier is supported in relaxed ANSI C mode or if
the /ACCEPT=C99_KEYWORDS (OpenVMS) or /ACCEPT=GCCINLINE (OpenVMS)

qualifier is specified.

Note

Compaq C for OpenVMS Systems also provides support for the storage-
class modifiers noshare, readonly, and _align as VAX C keywords.
For more information about these storage-class modifiers, see the
Compaq C User’s Guide for OpenVMS Systems (OpenVMS).

You can use a storage-class specifier and a storage-class modifier in any order.
Usually, the modifier is placed after the specifier in the source code. For
example:

extern noshare int x;

/* Or, equivalently . . . */

int noshare extern x;

However, placing the storage-class specifier anywhere other than first is
obsolescent.

The following sections describe each of the Compaq C storage-class modifiers.
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2.11.1 The __inline Modifier
The _ _inline storage-class modifier marks a function for inline expansion.
Using _ _inline on a function definition and prototype tells the compiler that
it can substitute the code within the function definition for every call to that
function. Substitution occurs at the discretion of the compiler. The _ _inline
storage-class modifier has the same effect as the #pragma inline preprocessor
directive, except that #pragma inline attempts to provide inline expansion for
all functions in a translation unit, rather than for selected functions (See your
platform-specific Compaq C documentation for more information on #pragma
inline).

Use the following form to designate a function for inline expansion:

_ _inline [type] function_definition

The compiler issues a warning if _ _inline is used in /STANDARD=PORTABLE
mode, because this is an implementation-specific extension.

Here is an example of using _ _inline:

/* prototype */

__inline int x (float y);

/* definition */

__inline int x (float y)

{
return (1.0);

}

2.11.2 The inline Modifier
Similar to the _ _inline storage-class modifier, the inline storage-class
modifier can be used as a declaration specifier in the declaration of a function.

The inline storage-class modifier is supported in relaxed ANSI C mode or if
the /ACCEPT=C99_KEYWORDS (OpenVMS) or /ACCEPT=GCCINLINE (OpenVMS)

qualifier is specified.

With static functions, inline has the same effect as applying _ _inline or
#pragma inline to the function.

However, when inline is applied to a function with external linkage, besides
allowing calls within that translation unit to be inlined, the inline semantics
provide additional rules that also allow calls to the function to be inlined in
other translation units or for the function to be called as an external function,
at the compiler’s discretion:
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• If the inline keyword is used on a function declaration with external
linkage, then the function must also be defined in the same translation
unit.

• If all of the file-scope declarations of the function use the inline keyword
but do not use the extern keyword, then the definition in that translation
unit is called an inline auxiliary definition, and no externally-callable
(global) definition is produced by that compilation unit.

Otherwise, the compilation unit does produce an externally-callable
definition.

• An inline auxiliary definition must not contain a definition of a modifiable
object with static storage duration, and it must not refer to an identifier
with internal linkage. These restrictions do not apply to the externally-
callable definition.

• As usual, at most one compilation unit in an entire program can supply an
externally-callable definition of a given function.

• Any call to a function with external linkage might be translated as a call
to an external function, regardless of the presence of the inline qualifier.
It follows from this and the previous point that any function with external
linkage that is called must have exactly one externally-callable definition
among all the compilation units of an entire program.

• The address of an inline function with external linkage is always
computed as the address of the unique externally-callable definition,
never the address of an inline definition.

• A call to an inline function made through a pointer to the externally-
callable definition may still be inlined or translated as a call to an inline
definition, if the compiler can determine the name of the function whose
address was stored in the pointer.

• Without the inline keyword, a function definition in a header file
produces MULDEF errors at link time, if the header file is included by
more than one translation unit. Specifying inline on such a function
definition is one way to eliminate these MULDEF errors. See the example
(Section 2.11.2.1).

Note

This section describes the semantics of the C9x Standard inline
keyword.

The gcc compiler implements an inline function declaration specifier
for functions with external linkage that gives similar capabilites to this
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C9x inline feature, but the details of usage are somewhat different—
essentially, the combination of extern and inline keywords makes an
inline definition, instead of the exclusive use of the inline keyword
without the extern keyword.

The /ACCEPT=[NO]GCCINLINE qualifier controls which variation of
the feature is implemented.

2.11.2.1 Example—Using the inline Function Specifier
Consider the following C code, which results in a multiply defined function
identifier (my_max):

$ type t.h
int my_max (int x, int y)
{

if (x >= y)
return (x);

else
return (y);

}
$
$ type a.c
#include "t.h"

main()
{

int a =1;
int b=2;

func1();
my_max(func1(a,b),20);

}
$
$ type b.c
#include "t.h"

void func1(int p1, int p2)
{

my_max(p1,p2);
}
$
$ link a,b
%LINK-W-MULDEF, symbol MY_MAX multiply defined

in module B file DISK$:[TEST.TMP]B.OBJ;4
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One way around this problem is to define the function my_max with the keyword
static:

static int my_max (int x, int y)
{

if (x >= y)
return (x);

else
return (y);

}

However, this means there is no globally visible my_max function but, rather, a
copy of my_max for each module, each copy with a different address. Therefore,
any function pointer comparisons would break.

The ISO C9x solution to this problem is the inline keyword. Adding inline to
the header file t.h eliminates the MULDEF errors:

inline int my_max (int x, int y)
{

if (x >= y)
return (x);

else
return (y);

}

This type of function definition, like one specified with the _ _inline keyword,
marks the function for potential inlining by the compiler. One difference,
however, is that for an inline function, the compiler creates an inline auxiliary
definition of the function, which is associated with the function being declared
(my_max in this example). The compiler is then free to do one of the following:

1. Call the auxiliary function.

2. Call the global function (my_max). This implies that there must be a global
definition of any non-static inline function in one of the modules of the
application.

3. Generate inlined code for the call to my_max.

There can be one and only one global definition for the inline function within
an application. There can be one inline auxiliary definition per module, or
many prototype declarations of the auxiliary function per module.

You can create a global inline definition by including in one of your modules
(such as a.c in our example) a file-scope function declaration that:

1. Omits the inline keyword:

#include "t.h"
int my_max (int x, int y);
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OR

#include "t.h"
extern int my_max (int x, int y);

2. Or that specifies the extern storage class with the inline keyword:

#include "t.h"
extern inline int my_max (int x, int y);

Note

Taking the address of an inline function always resolves to the global
function, never the auxiliary function.

2.11.3 The __forceinline Modifier
Similar to the _ _inline storage-class modifier, the _ _forceinline storage-
class modifier marks a function for inline expansion. However, using
_ _forceinline on a function definition and prototype tells the compiler
that it must substitute the code within the function definition for every call to
that function. (With _ _inline, such substitution occurs at the discretion of the
compiler.)

On OpenVMS VAX systems, the _ _forceinline storage-class modifier does not
cause any more inlining to occur than the _ _inline modifier does.

Use the following form to designate a function for forced inline expansion:

_ _forceinline [type] function_definition

The compiler issues a warning if _ _forceinline is used in
/STANDARD=PORTABLE mode, because this is an implementation-specific
extension.

2.11.4 The __align Modifier
The _ _align storage-class modifier has the same semantic meaning as
the _align keyword. The difference is that _ _align is a keyword in all
compiler modes while _align is a keyword only in modes that recognize VAX C
keywords. For new programs, using _ _align is recommended.
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2.12 Forward References
Once declared, identifiers can be used freely. Using an identifier before its
declaration is called a forward reference, and results in an error, except in the
following cases:

• When a goto statement refers to a statement label before the label’s
declaration

• When a structure, union, or enumeration tag is used before it is declared

Here are some examples of valid and invalid forward references:

int a;
main ()
{
int b = c; /* Forward reference to c -- illegal */
int c = 10;
glop x = 1; /* Forward reference to glop type -- illegal */
typedef int glop;
goto test; /* Forward reference to statement label --

legal */
test:
if (a > 0 ) b = TRUE;

}

The following example shows the use of a structure tag in a forward reference:

struct s
{ struct t *pt }; /* Forward reference to structure t */

. /* (Note that the reference is preceded */

. /* by the struct keyword to resolve */

. /* potential ambiguity) */
struct t

{ struct s *ps };

2.13 Tags
Tags can be used with structures, unions, or enumerated types as a means
of referring to the structure, union, or enumerated type elsewhere in the
program. Once a tag is included in the declaration of a structure, union, or
enumerated type, it can specify the declared structure, union, or enumerated
type anywhere the declaration is visible.

The following code fragment shows the use of a structure tag, a union tag, and
an enumerated type tag:
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struct tnode { /* Initial declaration -- */
/* tnode is the structure tag */

int count;
struct tnode *left, *right; /* tnode’s members referring to tnode */
union datanode *p; /* forward reference to union type is

declared below */
};

union datanode { /* Initial declaration -- */
/* datanode is the union tag */

int ival;
float fval;
char *cval;
} q = {5};

enum color { red, blue, green };/* Initial declaration -- */
. /* color is the enumeration tag */
.
.
struct tnode x; /* tnode tag is used to declare x */
enum color z = blue; /* color tag declares z to be of

type color; z is also
initialized to blue */

As shown in the previous example, once a tag is declared it can be used to
reference other structure, union, or enumerated type declarations in the same
scope without fully redefining the object.

Tags can be used to form an incomplete type if they occur before the complete
declaration of a structure or union. Incomplete types do not specify the size
of the object; therefore, a tag introducing an incomplete type can only be
used when the size of the object is not needed. To complete the type, another
declaration of the tag in the same scope must define the object completely. The
following example shows how a subsequent definition completes the incomplete
declaration of the structure type s:

struct s; /* Tag s used in incomplete type declaration */
struct t {
struct s *p;

};
struct s { int i; };/* struct s definition completed */

Section 2.6 describes the concept of an incomplete type.

Consider the following declarations:

struct tag;

union tag;

These declarations specify a structure or union type and declare a tag visible
only within the scope of the declaration. The declaration specifies a new type
distinct from any other type with the same tag in an enclosing scope (if any).
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The following example shows the use of prior tag declarations to specify a pair
of mutually-referential structures:

struct s1 { struct s2 *s2p; /*...*/ }; /* D1 */
struct s2 { struct s1 *s1p; /*...*/ }; /* D2 */

If s2 was declared as a tag in an enclosing scope, the declaration D1 would refer
to s2, not to the tag s2 declared in D2. To eliminate this context sensitivity, the
following declaration can be inserted ahead of D1:

struct s2;

This declares a new tag s2 in the inner scope; the declaration D2 then
completes the specification of the type.

2.14 lvalues and rvalues
An rvalue is the value of an expression, such as 2, or x + 3, or (x + y) � (a � b).
rvalues are not allocated storage space. Examples of rvalues are the numbers
0 and 1 in the following code fragment:

if (x > 0)
{
y += 1;

}
x = *y; /* The value pointed to by y is assigned to x */

The identifiers x and y are objects with allocated storage. The pointer to y
holds an lvalue.

An lvalue is an expression that describes the location of an object used in
the program. The location of the object is the object’s lvalue, and the object’s
rvalue is the value stored at the location described by the lvalue. The following
operators always produce lvalues:

[]
*
->

The dot operator ( . ) can, and usually does, produce an lvalue but it does not
have to do so. For example, f( ).m is not an lvalue.

A modifiable lvalue is an lvalue that does not have array type, an incomplete
type, a const-qualified type, or, if it is a structure or union, has no member
with const-qualified type.
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2.15 Name Spaces
Name spaces are identifier classifications based on the context of the identifier’s
use in the program. Name spaces allow the same identifier to simultaneously
stand for an object, statement label, structure tag, union member, and
enumeration constant. Simultaneous use of an identifier in the same scope
for two different entities without ambiguity is possible only if the identifiers
are in different name spaces. The context of the identifier’s use resolves the
ambiguity over which of the identically named entities is desired.

There are four different name spaces:

• Statement labels

• Structure, union, and enumeration tags

• Each structure and union member set

• Other identifiers (variables, functions, type definitions, and enumeration
constants)

For example, the identifier flower can be used in one block to stand for both a
variable and an enumeration tag, because variables and tags are in different
name spaces. Subsequently, an inner block can redefine the variable flower
without disturbing the enumeration tag flower. Therefore, when using the
same identifier for various purposes, analyze the name space and scope rules
governing the identifier. Section 2.3 presents the scope rules.

A structure, union, and enumeration member name can be common to
each of these objects at the same time. The use of the structure, union, or
enumeration name in the reference to the member resolves any ambiguity
about which identifier is meant. However, the structure, union, or enumeration
tag must be unique, since the tags of these three object types share the same
name space.

2.16 Preprocessing
The translation of a C program occurs in several phases. Normally, when the
compiler is started, several events occur before the actual compiler starts:

1. Trigraph sequences (if any) are replaced by single-character internal
representations.

2. Each occurrence of a new-line character immediately preceded by a
backslash character is deleted and the following line is spliced to form one
logical line.

3. The source file is decomposed into preprocessing tokens and sequences of
white-space characters. Each comment is replaced by one space character.
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4. Preprocessing directives are executed and preprocessor macros are
expanded. Files named in #include preprocessing directives are processed
through these four steps recursively.

5. Each source character set member, and each escape sequence in character
constants and string literals is converted to a member of the execution
character set.

6. Adjacent character string literal tokens are concatenated and adjacent wide
string literal tokens are concatenated.

7. The resulting stream of tokens is analyzed and translated.

8. The linking phase. All external object and function references are resolved.
Library components are linked to satisfy external references to functions
and objects not defined in the current compilation unit. All such linker
output is collected into a program image.

The fourth step is called preprocessing, and is handled by a separate unit of
the compiler. Each preprocessor directive appears on a line beginning with
a pound sign (#); white space may precede the pound sign. These lines are
syntactically independent from the rest of the C source file, and can appear
anywhere in the source file. Preprocessor directive lines terminate at the end
of the logical line.

It is possible to preprocess a source file without actually compiling the program
(see your platform-specific Compaq C documentation for the available compiler
options.) Chapter 8 discusses the preprocessing directives.

2.17 Type Names
In several contexts a type name can or must be specified without an identifier.
For example, in a function prototype declaration, the parameters of the
function can be declared only with a type name. Also, when casting an object
from one type to another, a type name is required without an associated
identifier. (Section 6.4.6 has information on casting, and Section 5.5 has
information on function prototypes.) This is accomplished using a type name,
which is a declaration for a function or object which omits the identifier.

Table 2–1 shows examples of type names with the associated types they refer
to.
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Table 2–1 Type Name Examples

Construction Type Name

int int

int * Pointer to int

int *[3] Array of three pointers to int

int (*)[3] Pointer to an array of three ints

int *() Function with no parameter specification returning
a pointer to int

int (*) (void) Pointer to function with no parameters returning
an int

int (*const []) (unsigned
int, ...)

Array of an unspecified number of const pointers
to functions, each with one parameter that has type
unsigned int and an unspecified number of other
parameters, returning an int

Table 2–1 also provides good examples of abstract declarators. An abstract
declarator is a declarator without an identifier. The characters following the
int type name form an abstract declarator in each case. The *, [ ], and ( )
characters all indicate a declarator without naming a specific identifier.
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3
Data Types

The type of a data object in C determines the range and kind of values an
object can represent, the size of machine storage reserved for an object, and the
operations allowed on an object. Functions also have types, and the function’s
return type and parameter types can be specified in the function’s declaration.

The following sections discuss these topics:

• Data sizes (Section 3.1)

• Integral types (Section 3.2)

• Floating-point types (Section 3.3)

• Derived types (Section 3.4), including:

Function type (Section 3.4.1)

Pointer type (Section 3.4.2)

Array type (Section 3.4.3)

Structure type (Section 3.4.4)

Union type (Section 3.4.5)

• void type (Section 3.5)

• Enumerated types (Section 3.6)

• Type qualifiers (Section 3.7)

• Type definition (Section 3.8)

The selection of a data type for a given object or function is one of the
fundamental programming steps in any language. Each data object or function
in the program must have a data type, assigned either explicitly or by default.
(Chapter 4 discusses the assignment of a data type to an object.) C offers
a wide variety of types. This diversity is a strong feature of C, but can be
initially confusing.
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To help avoid this confusion, remember that C has only a few basic types.
All other types are derived combinations of these basic types. Some types
can be specified in more than one way; for example, short and short int are
the same type. (In this manual, the longest, most specific name is always
used.) Type is assigned to each object or function as part of the declaration.
Chapter 4 describes declarations in more detail.

Table 3–1 lists the basic data types: integral types (objects representing
integers within a specific range), floating-point types (objects representing
numbers with a significand part—a whole number plus a fractional number—
and an optional exponential part), and character types (objects representing a
printable character). Character types are stored as integers.

Note

Enumerated types are also normally classified as integral types, but
for the purposes of clarity they are not listed here. See Section 3.6 for
more information.

Table 3–1 Basic Data Types

Integral Types Floating Point Types

short int float

signed short int double

unsigned short int long double

int

signed int

unsigned int

long int

signed long int

unsigned long int

(continued on next page)
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Table 3–1 (Cont.) Basic Data Types

Integral Types Floating Point Types

Integral Character Types

char

signed char

unsigned char

The integral and floating-point types combined are called the arithmetic
types. See Section 3.1 for information about the size and range of integral and
floating-point values.

A large variety of derived types can be created from the basic types. Section 3.4
discusses the derived types.

Besides the basic and derived types, there are three keywords that specify
unique types: void, enum, and typedef:

• The void keyword specifies a special type indicating no value, or it can be
used with the pointer operator (*) to indicate a generic pointer type. See
Section 3.5 for more information on the void type.

• The enum keyword specifies an integer type of your own design, specifying
the acceptable values of the type to a predefined set of named integer
constant values. Enumerated types are stored as integers. See Section 3.6
for a detailed description of enumerated types.

• The typedef keyword specifies a synonym for a type made from one or
more basic or derived types. See Section 3.8 for more information on
creating type definitions.

There are also the type-qualifier keywords:

• const, used to prevent write access to an object (see Section 3.7.1)

• volatile, used to restrict the optimizations that might otherwise be
performed on references to an object (see Section 3.7.2)

• _ _unaligned (Alpha), used in pointer definitions, to indicate to the compiler
that the data pointed to is not properly aligned on a correct address

• _ _restrict (for pointer type only), used to designate a pointer as pointing
to a distinct object, thus allowing compiler optimizations to be made (see
Section 3.7.4)

Using a qualifying keyword in the type declaration of an object results in a
qualified type. See Section 3.7 for general information on type qualifiers.
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With such a wide variety of types, operations in a program often need to be
performed on objects of different types, and parameters of one type often need
to be passed to functions expecting different parameter types. Because C stores
different kinds of values in different ways, a conversion must be performed on
at least one of the operands or arguments to convert the type of one operand or
argument to match that of the other. You can perform conversions explicitly
through casting, or implicitly through the compiler. See Section 6.11 for more
information on data-type conversions. See Section 2.7 for a description of type
compatibility.

See your platform-specific Compaq C documentation for a description of any
implementation-defined data types.

3.1 Data Sizes
An object of a given data type is stored in a section of memory having a
discreet size. Objects of different data types require different amounts of
memory. Table 3–2 shows the size and range of the basic data types.

Table 3–2 Sizes and Ranges of Data Types

Type Size Range

Integral Types

short int, or signed short
int

16 bits –32768 to 32767

unsigned short int 16 bits 0 to 65535

int or signed int 32 bits –2147483648 to 2147483647

unsigned int 32 bits 0 to 4294967295

long int, or signed long
int (OpenVMS)

32 bits –2147483648 to 2147483647

long int, or signed long
int (Tru64 UNIX)

64 bits –9223372036854775808 to
9223372036854775807

unsigned long int
(OpenVMS)

32 bits 0 to 4294967295

unsigned long int (Tru64
UNIX)

64 bits 0 to 18446744073709551615

signed __int64 (Alpha) 64 bits –9223372036854775808 to
9223372036854775807

(continued on next page)

3–4 Data Types



Table 3–2 (Cont.) Sizes and Ranges of Data Types

Type Size Range

Integral Types

unsigned __int64 (Alpha) 64 bits 0 to 18446744073709551615

Integral Character Types

char and signed char 8 bits –128 to 127

unsigned char 8 bits 0 to 255

wchar_t 32 bits 0 to 4294967295

Floating-Point Types (range is for absolute value)

float 32 bits 1.1 x 10�38 to 3.4 x 1038

double 64 bits 2.2 x 10�308 to 1.7 x 10308

long double (OpenVMS Alpha) 128 bits 3.4 x 10�49321 to 1.2 x 101049321

long double (OpenVMS VAX,
Tru64 UNIX)

Same as double Same as double

Derived types can require more memory space.

See your platform-specific Compaq C documentation for the sizes of
implementation-defined data types.

3.2 Integral Types
In C, an integral type can declare:

• Integer values, signed or unsigned

• Boolean values, where 0 is equivalent to false and any nonzero number is
equivalent to true

• Characters, which are automatically converted to an integer value by the
compiler

• Members of an enumerated type, which are interpreted as an integer by
the compiler

• Bit fields

The integral types are:

• char, signed char, unsigned char—8 bits
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• short int, signed short int, and unsigned short int—16 bits

• int, signed int, and unsigned int—32 bits

• long int, signed long int, and unsigned long int—32 bits (OpenVMS)

• long int, signed long int, and unsigned long int—64 bits (Tru64 UNIX)

• signed _ _int64 (Alpha) and unsigned _ _int64 (Alpha)—64 bits

• enum—32 bits

3.2.1 Non-Character Types
For Compaq C on OpenVMS systems, storage for int and long is identical.
Similarly, storage of signed int and signed long is identical, and storage for
unsigned int and unsigned long is identical.

For Compaq C on Tru64 UNIX systems, storage for the int data types is 32
bits, while storage for the long int data types is 64 bits.

The 64-bit integral types signed _ _int64 and unsigned _ _int64 are provided
on Alpha processors.

For each of the signed integral types, there is a corresponding unsigned
integral type that uses the same amount of storage. The unsigned keyword
with the integral type modifies the way the integer value is interpreted,
which allows the storage of a larger range of positive values. When using
the unsigned keyword, the bits are interpreted differently to allow for the
increased positive range with the unsigned type (at the expense of the negative
range of values). For example:

signed short int x = 45000; /* ERROR -- value too large for short int */
unsigned short int y = 45000;/* This value is OK */

The range of values for the signed short int type is –32,768 to 32,767. The
range of values for the unsigned short int type is 0 to 65,535.

A computation involving unsigned operands can never overflow, because
any result outside the range of the unsigned type is reduced to fit the type
by the rules of modulus arithmetic. If the result cannot be represented by
the resulting integer type, the result is reduced modulo the number that is
one greater than the largest value that can be represented by the resulting
unsigned integer type. This means that the low-order bits are kept, and the
high-order bits of the mathematical result that do not fit in the type of the
result are discarded. For example:

unsigned short int z = (99 * 99999); /* Value of y after evaluation is 3965 */
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Compaq C treats the plain char type as signed by default for compatibility
with VAX C and many other C compilers. However, a command-line option can
control this, and a predefined macro can be tested to determine the setting of
the option in a given compilation. On Alpha systems, unsigned char might
offer some performance advantage for character-intensive processing.

An unsigned integer of n bits is always interpreted in straight unsigned binary
notation, with possible values ranging from 0 to 2n � 1.

Note

The interpretation of signed integers depends on the size of machine
representation and the encoding technique used on the machine. With
two’s-complement representation, signed integers of n bits have a range
of –2n�1 to 2n�1

� 1.

3.2.2 Character Types
Character types are declared with the keyword char and are integral types.
Using char objects for nonintegral operations is not recommended, as the
results are likely to be nonportable. An object declared as a char type can
always store the largest member of the source character set.

Valid character types are:

• char

• signed char

• unsigned char

• wchar_t

The wide character type wchar_t is provided to represent characters not
included in the ASCII character set. The wchar_t type is defined using the
typedef keyword in the <stddef.h> header file. Wide characters used in
constants or strings must be preceded with an L. For example:

#include <stddef.h>

wchar_t a[6] = L"Hello";

All char objects are stored in 8 bits. All wchar_t objects are stored as unsigned
int objects in 32 bits. The value of a given character is determined by the
character set being used. In this text, the ASCII character set is used in all
examples. See Appendix C for a complete list of ASCII equivalents, in decimal,
octal, and hexadecimal radixes.
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To aid portability, declare char objects that will be used in arithmetic as signed
char or unsigned char. For example:

signed char letter;
unsigned char symbol_1, symbol_2;
signed char alpha = ’A’; /* alpha is declared and initialized as ’A’ */

Strings are arrays of characters terminated by the null character (\0).
Section 1.8.3 has more information on the syntactic rules of using strings;
Chapter 4 has information on declaring string literals.

3.3 Floating-Point Types
The three floating-point types are:

• float—32 bits

• double—64 bits

• long double (OpenVMS Alpha)—128 bits by default, with the option for 64 bits

• long double (Tru64 UNIX)—64 bits in current versions of Tru64 UNIX

• long double (VAX)—64 bits

Use the floating-point types for variables, constants, and function return values
with fractional parts, or where the value exceeds the storage range available
with the integral types. The following examples show sample floating-point
type declarations (and initializations):

float x = 35.69;
double y = .0001;
double z = 77.0e+10;
float Q = 99.9e+99; /* Exceeds allowable range */

3.4 Derived Types
There are five derived types in C:

• Function types

• Pointer types

• Array types

• Structure types

• Union types

The following sections describe these derived types.
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A derived type is formed by using one or more basic types in combination.
Using derived types, an infinite variety of new types can be formed. The array
and structure types are collectively called the aggregate types. Note that
the aggregate types do not include union types, but a union may contain an
aggregate member.

3.4.1 Function Type
A function type describes a function that returns a value of a specified type.
If the function returns no value, it should be declared as "function returning
void" as follows:

void function1 ();

In the following example, the data type for the function is "function returning
int":

int uppercase(int lc)
{
int uc = lc + 0X20;
return uc;

}

Chapter 4 discusses declarations in general. Chapter 5 covers functions
specifically, including their declarations, parameters, and argument passing.

3.4.2 Pointer Type
A pointer type describes a value that represents the address of an object of
a stated type. A pointer is stored as an integral value that references the
address of the target object. Pointer types are derived from other types, called
the referenced type of the pointer. For example:

int *p; /* p is a pointer to an int type */
double *q(); /* q is a function returning a pointer to an

object of type double */
int (*r)[5]; /* r is a pointer to an array of five elements */

/* (r holds the address to the first element of
the array) */

const char s[6]; /* s is a const-qualified array of 6 elements */

The pointer itself can have any storage class, but the object addressed by the
pointer cannot have the register storage class or be a bit field. Pointers
to qualified or unqualified versions of compatible types have the same
representation and alignment requirements as the target type. Pointers to
other types need not have the same representation or alignment requirements.
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The construction void * designates a generic ‘‘pointer to void’’ type. The
void * construction can be used to point to an object of any type, and it is
most useful when a pointer is needed to point to the address of objects with
different or unknown types (such as in a function prototype). A pointer to void
can also be converted to or from a pointer of any other type, and has the same
representation and alignment requirements as a pointer to a character type.

A pointer to the address 0 (zero) is called a null pointer. Null pointers are often
used to indicate that no more members of a list exist (for example, when using
pointers to show the next member of the list). Dereferencing a null pointer
with the * or subscripting operators leads to unpredictable and usually very
unfavorable results.

See Chapter 4 for details on the syntax of pointer declarations.

3.4.3 Array Type
An array type can be formed from any valid completed type. Completion of an
array type requires that the number and type of array members be explicitly
or implicitly specified. The member types can be completed in the same or a
different compilation unit. Arrays cannot be of void or function type, since
the void type cannot be completed and function types are not object types
requiring storage.

Typically, arrays are used to perform operations on some homogeneous set
of values. The size of the array type is determined by the data type of the
array and the number of elements in the array. Each element in an array has
the same type. For example, the following definition creates an array of four
characters:

char x[] = "Hi!" /* Declaring an array x */;

Each of the elements has the size of a char object, 8 bits. The size of the array
is determined by its initialization; in the previous example, the array has three
explicit elements plus one null character. Four elements of 8 bits each results
in an array with a size of 32 bits.

An array is allocated contiguously in memory, and cannot be empty (that is,
have no members). An array can have only one dimension. To create an array
of ‘‘two dimensions,’’ declare an array of arrays, and so on.

It is possible to declare an array of unknown size; this sort of declaration is
called an incomplete array declaration, because the size is not specified. The
following example shows an incomplete declaration:

int x[];
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The size of an array declared in this manner must be specified elsewhere in the
program. (See Section 4.7 for more information on declaring incomplete arrays
and initializing arrays.)

Character strings (string literals) are stored in the form of an array of char or
wchar_t type, and are terminated by the null character (\0).

An array in C has only one dimension. An array of arrays can be declared,
however, to create a multidimensional array. The elements of these arrays
are stored in increasing addresses so that the rightmost subscript varies most
rapidly. This is called row-major order, and is analogous to a car’s odometer.
For example, in an array of two arrays declared as int a[2][3]; the elements
are stored in this order:

a[0][0], a[0][1], a[0][2], a[1][0], a[1][1], a[1][2]

3.4.4 Structure Type
A structure type is a sequentially allocated nonempty set of objects, called
members. Structures let you group heterogeneous data. They are much like
records in Pascal. Unlike arrays, the elements of a structure need not be of
the same data type. Also, elements of a structure are accessed by name, not
by subscript. The following example declares a structure employee, with two
structure variables (ed and mary) of the structure type employee:

struct employee { char name[30]; int age; int empnumber; };
struct employee ed, mary;

Structure members can have any type except an incomplete type, such as the
void type or a function type. Structures can contain pointers to objects of their
own type, but they cannot contain an object of their own type as a member;
such an object would have an incomplete type. For example:

struct employee {
char name[30];
struct employee div1; /* This is invalid. */
int *f();

};

The following example, however, is valid:

struct employee {
char name[30];
struct employee *div1;/* Member can contain pointer to employee

structure. */
int (*f)(); /* Pointer to a function returning int */

};
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The name of a declared structure member must be unique within the structure,
but it can be used in another nested or unnested structure or name spaces to
refer to a different object. For example:

struct {
int a;
struct {
int a; /* This ’a’ refers to a different object

than the previous ’a’ */
};

};

Chapter 4 contains more examples on structures and their declarations.

The compiler assigns storage for structure members in the order of member
declaration, with increasing memory addresses for subsequent members. The
first member always begins at the starting address of the structure itself.
Subsequent members are aligned per the alignment unit, which may differ
depending on the member sizes in the structure. A structure may contain
padding (unused bits) so that members of an array of such structures are
properly aligned, and the size of the structure is the amount of storage
necessary for all members plus any padded space needed to meet alignment
requirements. See your system’s Compaq C documentation for platform-specific
information about structure alignment and representation.

A pragma is available to change the alignment of a structure on one platform
to match that of structures on other platforms. See Section B.29 for more
information on this pragma.

3.4.5 Union Type
A union type can store objects of different types at the same location in
memory. The different union members can occupy the same location at
different times in the program. The declaration of a union includes all
members of the union, and lists the possible object types the union can hold.
The union can hold any one member at a time—subsequent assignments of
other members to the union overwrite the existing object in the same storage
area.

Unions can be named with any valid identifier. An empty union cannot be
declared, nor can a union contain an instance of itself. A member of a union
cannot have a void, function, or incomplete type. Unions can contain pointers
to unions of their type.

Another way to look at a union is as a single object that can represent objects
of different types at different times. Unions let you use objects whose type and
size can change as the program progresses, without using machine-dependent
constructions. Some other languages call this concept a variant record.
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The syntax for defining unions is very similar to that for structures. Each
union type definition creates a unique type. Names of union members must
be unique within the union, but they can be duplicated in other nested or
unnested unions or name spaces. For example:

union {
int a;
union {
int a; /* This ’a’ refers to a different object

than the previous ’a’ */
};

};

The size of a union is the amount of storage necessary for its largest member,
plus any padding needed to meet alignment requirements.

Once a union is defined, a value can be assigned to any of the objects declared
in the union declaration. For example:

union name {
double dvalue;
struct x { int value1; int value2; };
float fvalue;

} alberta;
alberta.dvalue = 3.141596; /* Assigns the value of pi to the union object */

Here, alberta can hold a double, struct, or float value. The programmer has
responsibility for tracking the current type of object contained in the union.
An assignment expression can be used to change the type of value held in the
union.

Undefined behavior results when a union is used to store a value of one type,
and then the value is accessed through another type. For example:

/*
Assume that ‘node’ is a typedef_name for objects for which
information has been entered into a hash table;

‘hash_entry’ is a structure describing an entry in the hash table.
The member ‘hash_value’ is a pointer to the relevant ‘node’.

*/
typedef struct hash_entry
{

struct hash_entry *next_hash_entry;
node *hash_value;
/* ... other information may be present ... */

} hash_entry;

extern hash_entry *hash_table [512];
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/*
‘hash_pointer’ is a union whose members are a pointer to a
‘node’ and a structure containing three bit fields that
overlay the pointer value. Only the second bit field is
being used, to extract a value from the middle
of the pointer to be used as an index into the hash table.
Note that nine bits gives a range of values from 0 to 511;
hence, the size of ‘hash_table’ above.

*/
typedef union
{

node *node_pointer;
struct
{
unsigned : 4;
unsigned index : 9;
unsigned :19;
} bits;

} hash_pointer;

3.5 void Type
The void type is an incomplete type that cannot be completed.

The void type has three important uses:

• To signify that a function returns no value

• To indicate a generic pointer (one that can point to any type object)

• To specify a function prototype with no arguments

The following example shows how void is used to define a function, with no
parameters, that does not return a value:

void message(void)
{
printf ("Stop making sense!");

}

The next example shows a function prototype for a function that accepts a
pointer to any object as its first and second argument:

void memcopy (void *dest, void *source, int length);

A pointer to the void type has the same representation and alignment
requirements as a pointer to a character type. The void * type is a derived
type based on void.
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The void type can also be used in a cast expression to explicitly discard or
ignore a value. For example:

int tree(void);

void main()
{
int i;

for (; ; (void)tree()){...} /* void cast is valid */

for (; (void)tree(); ;){...} /* void cast is NOT valid, because the */
/* value of the second expression in a */
/* for statement is used */

for ((void)tree(); ;) {...} /* void cast is valid */

}

A void expression has no value, and cannot be used in any context where a
value is required.

3.6 Enumerated Types
An enumerated type is used to specify the possible values of an object from
a predefined list. Elements of the list are called enumeration constants. The
main use of enumerated types is to explicitly show the symbolic names, and
therefore the intended purpose, of objects whose values can be represented
with integer values.

Objects of enumerated type are interpreted as objects of type signed int, and
are compatible with objects of other integral types.

The compiler automatically assigns integer values to each of the enumeration
constants, beginning with 0. The following example declares an enumerated
object background_color with a list of enumeration constants:

enum colors { black, red, blue, green, white } background_color;

Later in the program, a value can be assigned to the object background_color:

background_color = white;

In this example, the compiler automatically assigns the integer values as
follows: black = 0, red = 1, blue = 2, green = 3, and white = 4. Alternatively,
explicit values can be assigned during the enumerated type definition:

enum colors { black = 5, red = 10, blue, green = 7, white = green+2 };

Here, black equals the integer value 5, red = 10, blue = 11, green = 7, and
white = 9. Note that blue equals the value of the previous constant (red) plus
one, and green is allowed to be out of sequential order.
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Because the ANSI C standard is not strict about assignment to enumerated
types, any assigned value not in the predefined list is accepted without
complaint.

3.7 Type Qualifiers
There are four type qualifiers:

• const

• volatile

• _ _unaligned (axp)

• _ _restrict (pointer type only)

Type qualifiers were introduced by the ANSI C standard to, in part, give you
greater control over the compiler’s optimizations. The const and volatile
type qualifiers can be applied to any type. The _ _restrict type qualifier can
be applied only to pointer types.

Note that because the _ _restrict type qualifier is not part of the 1989 ANSI
C standard, this keyword has double leading underscores. The next version
(9X) of the C standard is expected to adopt the keyword restrict with the
same semantics described in this section.

The use of const gives you a method of controlling write access to an object,
and eliminates potential side effects across function calls involving that object.
This is because a side effect is an alteration of an object’s storage and const
prohibits such alteration.

Use volatile to qualify an object that can be changed by other processes
or hardware. The use of volatile disables optimizations with respect to
referencing the object. If an object is volatile qualified, it may be changed
between the time it is initialized and any subsequent assignments. Therefore,
it cannot be optimized.

Function parameters, however, do not all share the type qualification of one
parameter. For example:

int f( const int a, int b) /* a is const qualified; b is not */

When using a type qualifier with an array identifier, the elements of the array
are qualified, not the array type itself.

The following declarations and expressions show the behavior when type
qualifiers modify an array or structure type:
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const struct s { int mem; } cs = { 1 };
struct s ncs; /* ncs is modifiable */
typedef int A[2][3];
const A a = {{4, 5, 6}, {7, 8, 9}}; /* array of array of const */

/* int’s */
int *pi;
const int *pci;

ncs = cs; /* Valid */
cs = ncs; /* Invalid, cs is const-qualified */
pi = &ncs.mem; /* Valid */
pi = &cs.mem; /* Violates type constraints for = operator */
pci = &cs.mem; /* Valid */
pi = a[0]; /* Invalid; a[0] has type "const int *" */

3.7.1 const Type Qualifier
Use the const type qualifier to qualify an object whose value cannot be
changed. Objects qualified by the const keyword cannot be modified. This
means that an object declared as const cannot serve as the operand in an
operation that changes its value; for example, the ++ and �� operators are not
allowed on objects qualified with const. Using the const qualifier on an object
protects it from the side effects caused by operations that alter storage.

The declaration of const-qualified objects can be slightly more complicated
than that for nonqualified types. Here are some examples, with explanatory
comments:

const int x = 44; /* const qualification of int type --
the value of x cannot be modified */

const int *z; /* Pointer to a constant integer --
The value in the location pointed
to by z cannot be modified */

int * const ptr; /* A constant pointer -- a pointer
which will always point to the
same location */

const int *const p; /* A constant pointer to a constant
integer -- neither the pointer or
the integer can be modified */

const const int y; /* Illegal - redundant use of const */

The following rules apply to the const type qualifier:

• The const qualifier can be used to qualify any data type, including a single
member of a structure or union.

• If const is specified when declaring an aggregate type, all members of the
aggregate type are treated as objects qualified with const. When const
is used to qualify a member of an aggregate type, only that member is
qualified. For example:
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const struct employee {
char *name;
int birthdate; /* name, birthdate, job_code, and salary are */
int job_code; /* treated as though declared with const. */
float salary;
} a, b; /* All members of a and b are const-qualified*/

struct employee2 {
char *name;
const int birthdate; /* Only this member is qualified */
int job_code;
float salary;
} c, d;

All members in the previous structure are qualified with const. If the
tag employee is used to specify another structure later in the program,
the const qualifier does not apply to the new structure’s members unless
explicitly specified.

• The const qualifier can be specified with the volatile qualifier. This is
useful, for example, in a declaration of a data object that is immutable by
the source process but can be changed by other processes, or as a model of
a memory-mapped input port such as a real-time clock.

• The address of a non-const object can be assigned to a pointer to a const
object (with an explicit const specifier), but that pointer cannot be used to
alter the value of the object. For example:

const int i = 0;
int j = 1;
const int *p = &i; /* Explicit const specifier required */
int *q = &j;
*p = 1; /* Error -- attempt to modify a const-

qualified object through a pointer */
*q = 1; /* OK */

• Attempting to modify a const object using a pointer to a non-const
qualified type causes unpredictable behavior.

3.7.2 volatile Type Qualifier
Any object whose type includes the volatile type qualifier indicates that the
object should not be subject to compiler optimizations altering references to, or
modifications of, the object.

Note

volatile objects are especially prone to side effects. (See Section 2.5.)
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Optimizations that are defeated by using the volatile specifier can be
categorized as follows:

• Optimizations that alter an object’s duration; for example, cases where
references to the object are shifted or moved to another part of the
program.

• Optimizations that alter an object’s locality; for example, cases where a
variable serving as a loop counter is stored in a register to save the cost of
doing a memory reference.

• Optimizations that alter an object’s existence; for example, loop induction
to actually eliminate a variable reference.

An object without the volatile specifier does not compel the compiler to
perform these optimizations; it indicates that the compiler has the freedom
to apply the optimizations depending on program context and compiler
optimization level.

The volatile qualifier forces the compiler to allocate memory for the volatile
object, and to always access the object from memory. This qualifier is often
used to declare that an object can be accessed in some way not under the
compiler’s control. Therefore, an object qualified by the volatile keyword
can be modified or accessed in ways by other processes or hardware, and is
especially vulnerable to side effects.

The following rules apply to the use of the volatile qualifier:

• The volatile qualifier can be used to qualify any data type, including a
single member of a structure or union.

• Redundant use of the volatile keyword elicits a warning message. For
example:

volatile volatile int x;

• When volatile is used with an aggregate type declaration, all members of
the aggregate type are qualified with volatile. When volatile is used to
qualify a member of an aggregate type, only that member is qualified. For
example:
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volatile struct employee {
char *name;
int birthdate; /* name, birthdate, job_code, and salary are */
int job_code; /* treated as though declared with volatile. */
float salary;
} a,b; /* All members of a and b are volatile-qualified */

struct employee2 {
char *name;
volatile int birthdate; /* Only this member is qualified */
int job_code;
float salary;
} c, d;

If the tag employee is used to specify another structure later in the
program, the volatile qualifier does not apply to the new structure’s
members unless explicitly specified.

• The const qualifier can be used with the volatile qualifier. This is useful,
for example, in a declaration of a data object that is immutable by the
source process but can be changed by other processes, or as a model of a
memory-mapped input port such as a real-time clock.

• The address of a non-volatile object can be assigned to a pointer that
points to a volatile object. For example:

const int *intptr;
volatile int x;
intptr = &x;

Likewise, the address of a volatile object can be assigned to a pointer
that points to a non-volatile object.

3.7.3 __unaligned Type Qualifier
Use this data-type qualifier in pointer definitions to indicate to the compiler
that the data pointed to is not properly aligned on a correct address. (To be
properly aligned, the address of an object must be a multiple of the size of the
type. For example, two-byte objects must be aligned on even addresses.)

When data is accessed through a pointer declared _ _unaligned, the compiler
generates the additional code necessary to copy or store the data without
causing alignment errors. It is best to avoid use of misaligned data altogether,
but in some cases the usage may be justified by the need to access packed
structures, or by other considerations.
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Here is an example of a typical use of _ _unaligned:

typedef enum {int_kind, float_kind, double_kind} kind;
void foo(void *ptr, kind k) {

switch (k) {
case int_kind:

printf("%d", *(__unaligned int *)ptr);
break;

case float_kind:
printf("%f", *(__unaligned float *)ptr);
break;

case double_kind:
printf("%f", *(__unaligned double *)ptr);
break;

}
}

3.7.4 _ _restrict Type Qualifier
Use the _ _restrict type qualifier on the declaration of a pointer type to
indicate that the pointer is subject to compiler optimizations. Restricted
pointers are expected to be an addition to the 9X revision of the ISO C
Standard. Using restricted pointers judiciously can often improve the quality
of code output by the compiler.

3.7.4.1 Rationale
The following sections describe the rationale for restricted-pointer support.

3.7.4.1.1 Aliasing For many compiler optimizations, ranging from simply
holding a value in a register to the parallel execution of a loop, it is necessary
to determine whether two distinct lvalues designate distinct objects. If the
objects are not distinct, the lvalues are said to be aliases. If the compiler
cannot determine whether or not two lvalues are aliases, it must assume that
they are aliases and suppresses various optimizations.

Aliasing through pointers presents the greatest difficulty, because there is
often not enough information available within a single function, or even within
a single compilation unit, to determine whether two pointers can point to the
same object. Even when enough information is available, this analysis can
require substantial time and space. For example, it could require an analysis
of a whole program to determine the possible values of a pointer that is a
function parameter.
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3.7.4.1.2 Library Examples Consider how potential aliasing enters into
implementations in C of two Standard C library functions memmove and memcpy:

• There are no restrictions on the use of memmove, and the sample
implementation that follows adheres to the model described in the revised
ISO C Standard by copying through a temporary array.

• Because memcpy cannot be used for copying between overlapping arrays, its
implementation can be a direct copy.

The following example contrasts sample implementations of the memcpy and
memmove functions:

/* Sample implementation of memmove */

void *memmove(void *s1, const void *s2, size_t n) {
char * t1 = s1;
const char * t2 = s2;
char * t3 = malloc(n);
size_t i;
for(i=0; i<n; i++) t3[i] = t2[i];
for(i=0; i<n; i++) t1[i] = t3[i];
free(t3);
return s1;

}

/* Sample implementation of memcpy */

void *memcpy(void *s1, const void *s2, size_t n);
char * t1 = s1;
const char * t2 = s2;
while(n-- > 0) *t1++ = *t2++;
return s1;

}

The restriction on memcpy is expressed only in its description in the Standard,
and cannot be expressed directly in its implementation in C. While this allows
the source-level optimization of eliminating the temporary used in memmove, it
does not provide for compiler optimization of the resulting single loop.

In many architectures, it is faster to copy bytes in blocks, rather than one at a
time:

• The implementation of memmove uses malloc to obtain the temporary array,
and this guarantees that the temporary is disjoint from the source and
target arrays. From this, a compiler can deduce that block copies can
safely be used for both loops (if the compiler recognizes malloc as a special
function that allocates new memory).
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• The implementation of memcpy, on the other hand, provides no basis for
the compiler to rule out the possibility that, for example, s1 and s2 point
to successive bytes. Therefore, unconditional use of block copies does not
appear to be safe, and the code generated for the single loop in memcpy
might not be as fast as the code for each loop in memmove.

3.7.4.1.3 Overlapping Objects The restriction in the description of memcpy
in the Standard prohibits copying between overlapping objects. An object is
a region of data storage, and except for bit-fields, objects are composed of
contiguous sequences of one or more bytes, the number, order, and encoding of
which are either explicitly specified or implementation-defined.

Consider the following example:

/* memcpy between rows of a matrix */

void f1(void) {
extern char a[2][N];
memcpy(a[1], a[0], N);

}

In this example:

• The objects are exactly the regions of data storage pointed to by the
pointers and dynamically determined to be of N bytes in length (that is,
treated as an array of N elements of character type).

• The objects are not the largest objects into which the arguments can be
construed as pointing.

• The call to memcpy has defined behavior.

• The behavior is defined because the pointers point into different (non-
overlapping) objects.

Now consider the following example:

/* memcpy between halves of an array */

void f2(void) {
extern char b[2*N];
memcpy(b+N, b, N);

}

In this example:

• Objects are defined as regions of data storage unrelated to declarations or
types.

• For memcpy, a contiguous sequence of elements within an array can be
regarded as an object in its own right.
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• The objects are not the smallest contiguous sequence of bytes that can
be construed; they are exactly the regions of data storage starting at the
pointers and of N bytes in length.

• The non-overlapping halves of array b can be regarded as objects in their
own rights.

• Behavior is defined.

The length of an object is determined by various methods:

• For strings in which all elements are accessed, length is inferred by null-
byte termination.

• For mbstowcs, wcstombs, strftime, vsprintf, sscanf, sprintf, and all
other similar functions, objects and lengths are dynamically determined.

3.7.4.1.4 Restricted Pointer Prototype for memcpy If an aliasing restriction
like the one for memcpy could be expressed in a function definition, then
it would be available to a compiler to facilitate effective pointer alias
analysis. The _ _restrict type qualifier accomplishes this by specifying in
the declaration of a pointer that the pointer provides exclusive initial access to
the object to which it points, as though the pointer were initialized with a call
to malloc.

The following prototype for memcpy both expresses the desired restriction and is
compatible with the current prototype:

void *memcpy(void * ____restrict s1, const void * ____restrict s2, size_t n);

3.7.4.2 Formal Definition of the _ _restrict Type Qualifier
The following definition of restricted pointers supports expression of aliasing
restrictions in as many paradigms as possible. This is helpful in converting
existing programs to use restricted pointers, and allows more freedom of style
in new programs.

This definition, therefore, allows restricted pointers to be:

• Modifiable

• Members of structures and elements of arrays

• Strongly scoped, in the sense that a restricted pointer declared in a nested
block makes a non-aliasing assertion only within that block
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Definition
A pointer is designated as a restricted pointer by specifying the _ _restrict
type qualifier on its declaration.

The formal definition of a restricted pointer as proposed for inclusion in the
revised ISO C Standard follows:

Let D be a declaration of an ordinary identifier that provides a
means of designating an object P as a restrict-qualified pointer.

If D appears inside a block and does not have storage-class
extern, let B denote the block. If D appears in the list of
parameter declarations of a function definition, let B denote the
associated block. Otherwise, let B denote the block of main (or
the block of whatever function is called at program startup, in
a freestanding environment).

In what follows, a pointer expression E is said to be based on
object P if (at some sequence point in the execution of B prior to
the evaluation of E) modifying P to point to a copy of the array
object into which it formerly pointed would change the value
of E. (In other words, E depends on the value of P itself rather
than on the value of an object referenced indirectly through P.
For example, if identifier p has type (int ** restrict), then
the pointer expressions p and p+1 are based on the restricted
pointer object designated by p, but the pointer expressions *p
and p[1] are not.)

During each execution of B, let O be the array object that
is determined dynamically by all references through pointer
expressions based on P. All references to values of O shall be
through pointer expressions based on P. Furthermore, if P is
assigned the value of a pointer expression E that is based on
another restricted pointer object P2, associated with block B2,
then either the execution of B2 shall begin before the execution
of B, or the execution of B2 shall end prior to the assignment.
If this requirement is not met, then the behavior is undefined.

Here an execution of B means that portion of the execution of
the program during which storage is guaranteed to be reserved
for an instance of an object that is associated with B and has
automatic storage duration. A reference to a value means
either an access to or a modification of the value. During an
execution of B, attention is confined to those references that
are actually evaluated (this excludes references that appear in
unevaluated expressions, and also excludes references that are
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"available," in the sense of employing visible identifiers, but do
not actually appear in the text of B).

A translator is free to ignore any or all aliasing implications of
uses of restrict.

3.7.4.3 Examples
The formal definition of the _ _restrict type qualifier can be difficult to grasp,
but simplified explanations tend to be less accurate and complete. The essence
of the definition is that the _ _restrict type qualifier is an assertion by the
programmer that whenever a memory access is made through a restricted
pointer, the only aliases the compiler need consider are other accesses made
through the same pointer.

Much of the complexity is in defining exactly what is meant for an access to be
made through a pointer (the based-on rules), and specifying how a restricted
pointer can be assigned the value of another restricted pointer, while limiting
the aliasing potential to occur only at block boundaries. Examples can be the
best way to understand restricted pointers.

The following examples show the use of restricted pointers in various contexts.

3.7.4.3.1 File Scope Restricted Pointers A file scope restricted pointer is
subject to very strong restrictions. It should point into a single array object for
the duration of the program. That array object must not be referenced both
through the restricted pointer and through either its declared name (if it has
one) or another restricted pointer.

Because of these restrictions, references through the pointer can be optimized
as effectively as references to a static array through its declared name. File
scope restricted pointers are therefore useful in providing access to dynamically
allocated global arrays.

In the following example, a compiler can deduce from the _ _restrict type
qualifiers that there is no potential aliasing among the names a, b, and c:

/* File Scope Restricted Pointer */

float * ____restrict a, * ____restrict b;
float c[100];

int init(int n) {
float * t = malloc(2*n*sizeof(float));
a = t; /* a refers to 1st half. */
b = t + n; /* b refers to 2nd half. */

}

Notice how the single block of allocated storage is subdivided into two unique
arrays in the function init.
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3.7.4.3.2 Function Parameters Restricted pointers are also very useful as
pointer parameters of a function. Consider the following example:

/* Restricted pointer function parameters */

float x[100];
float *c;

void f3(int n, float * ____restrict a, float * const b) {
int i;
for ( i=0; i<n; i++ )

a[i] = b[i] + c[i];
}
void g3(void) {

float d[100], e[100];
c = x; f3(100, d, e); /* Behavior defined. */

f3( 50, d, d+50); /* Behavior defined. */
f3( 99, d+1, d); /* Behavior undefined. */

c = d; f3( 99, d+1, e); /* Behavior undefined. */
f3( 99, e, d+1); /* Behavior defined. */

}

In the function f3, it is possible for a compiler to infer that there is no aliasing
of modified objects, and so to optimize the loop aggressively. Upon entry to f3,
the restricted pointer a must provide exclusive access to its associated array.
In particular, within f3 neither b nor c may point into the array associated
with a, because neither is assigned a pointer value based on a. For b, this is
evident from the const qualifier in its declaration, but for c, an inspection of
the body of f3 is required.

Two of the calls shown in g3 result in aliasing that is inconsistent with the
_ _restrict qualifier, and their behavior is undefined. Note that it is permitted
for c to point into the array associated with b. Note also that, for these
purposes, the "array" associated with a particular pointer means only that
portion of an array object that is actually referenced through that pointer.

3.7.4.3.3 Block Scope A block-scope restricted pointer makes an aliasing
assertion that is limited to its block. This is more natural than allowing the
assertion to have function scope. It allows local assertions that apply only to
key loops, for example. It also allows equivalent assertions to be made when
inlining a function by converting it into a macro.

In the following example, the original restricted-pointer parameter is
represented by a block-scope restricted pointer:
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/* Macro version of f3 */

float x[100];
float *c;

#define f3(N, A, B) \
{ int n = (N); \

float * ____restrict a = (A); \
float * const b = (B); \
int i; \
for ( i=0; i<n; i++ ) \

a[i] = b[i] + c[i]; \
}

3.7.4.3.4 Members of Structures A restricted-pointer member of a structure
makes an aliasing assertion. The scope of that assertion is the scope of the
ordinary identifier used to access the structure.

Therefore, although the structure type is declared at file scope in the following
example, the assertions made by the declarations of the parameters of f4 have
block (of the function) scope.

/* Restricted pointers as members of a structure */

struct t { /* Restricted pointers assert that */
int n; /* members point to disjoint storage. */
float * ____restrict p;
float * ____restrict q;

};

void f4(struct t r, struct t s) {
/* r.p, r.q, s.p, s.q should all point to */
/* disjoint storage during each execution of f4. */
/* ... */

}

3.7.4.3.5 Type Definitions A _ _restrict qualifier in a typedef makes an
aliasing assertion when the typedef name is used in the declaration of an
ordinary identifier that provides access to an object. As with members of
structures, the scope of the latter identifier, not the scope of the typedef name,
determines the scope of the aliasing assertion.
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3.7.4.3.6 Expressions Based on Restricted Pointers Consider the following
example:

/* Pointer expressions based on p */

#include <stdlib.h>
#include <string.h>

struct t { int * q; int i; } a[2] = { /* ... */ };

void f5(struct t * ____restrict p, int c)
{

struct t * q;
int n;
if(c) {

struct t * r;
r = malloc(2*sizeof(*p));
memcpy(r, p, 2*sizeof(*p));
p = r;

}
q = p;
n = (int)p;

/* - - - - - - - - - - - - - - - - - - - - - - -

Pointer expressions Pointer expressions
based on p: not based on p:
------------------- -------------------
p p-&gt;q
p+1 p[1].q
&amp;p[1] &amp;p
&amp;p[1].i
q q-&gt;p
++q
(char *)p (char *)(p-&gt;i)
(struct t *)n ((struct t *)n)->q

- - - - - - - - - - - - - - - - - - - - - - - - */
}

main() {
f5(a, 0);
f5(a, 1);

}

In this example, the restricted pointer parameter p is potentially adjusted
to point into a copy of its original array of two structures. By definition, a
subsequent pointer expression is said to be based on p if and only if its value is
changed by this adjustment.

In the comment:

• The values of the pointer expressions in the first column are changed by
this adjustment, and so those expressions are based on p.
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• The values of the pointer expressions in the second column are not changed
by the adjustment, and so those expressions are not based on p.

This can be verified by adding appropriate print statements for the expressions
and comparing the values produced by the two calls of f5 in main.

Notice that the definition of "based on" applies to expressions that rely on
implementation-defined behavior. This is illustrated in the example, which
assumes that the casts (int) followed by (struct t *) give the original value.

3.7.4.3.7 Assignments between Restricted Pointers Consider one restricted
pointer "newer" than another if the block with which the first is associated
begins execution after the block associated with the second. Then the formal
definition allows a newer restricted pointer to be assigned a value based
on an older restricted pointer. This allows, for example, a function with a
restricted-pointer parameter to be called with an argument that is a restricted
pointer.

Conversely, an older restricted pointer can be assigned a value based on a
newer restricted pointer only after execution of the block associated with the
newer restricted pointer has ended. This allows, for example, a function to
return the value of a restricted pointer that is local to the function, and the
return value then to be assigned to another restricted pointer.

The behavior of a program is undefined if it contains an assignment between
two restricted pointers that does not fall into one of these two categories. Some
examples follow:

/* Assignments between restricted pointers */

int * ____restrict p1, * ____restrict p2;

void f6(int * ____restrict q1, * ____restrict q2)
{

q1 = p1; /* Valid behavior */
p1 = p2; /* Behavior undefined */
p1 = q1; /* Behavior undefined */
q1 = q2; /* Behavior undefined */
{

int * ____restrict r1, * ____restrict r2;
...
r1 = p1; /* Valid behavior */
r1 = q1; /* Valid behavior */
r1 = r2; /* Behavior undefined */
q1 = r1; /* Behavior undefined */
p1 = r1; /* Behavior undefined */
...

}
}
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3.7.4.3.8 Assignments to Unrestricted Pointers The value of a restricted
pointer can be assigned to an unrestricted pointer, as in the following example:

/* Assignments to unrestricted pointers */

void f7(int n, float * ____restrict r, float * ____restrict s) {
float * p = r, * q = s;
while(n-- > 0)

*p++ = *q++;
}

The Compaq C compiler tracks pointer values and optimizes the loop as
effectively as if the restricted pointers r and s were used directly, because in
this case it is easy to determine that p is based on r, and q is based on s.

More complicated ways of combining restricted and unrestricted pointers are
unlikely to be effective because they are too difficult for a compiler to analyze.
As a programmer concerned about performance, you must adapt your style to
the capabilities of the compiler. A conservative approach would be to avoid
using both restricted and unrestricted pointers in the same function.

3.7.4.3.9 Ineffective Uses of Type Qualifiers Except where specifically noted
in the formal definition, the _ _restrict qualifier behaves in the same way as
const and volatile.

In particular, it is not a constraint violation for a function return type or the
type-name in a cast to be qualified, but the qualifier has no effect because
function call expressions and cast expressions are not lvalues.

Thus, the presence of the _ _restrict qualifier in the declaration of f8 in the
following example makes no assertion about aliasing in functions that call f8:

/* Qualified function return type and casts */

float * ____restrict f8(void) /* No assertion about aliasing. */
{

extern int i, *p, *q, *r;

r = (int * ____restrict)q; /* No assertion about aliasing. */

for(i=0; i<100; i++)
*(int * ____restrict)p++ = r[i]; /* No assertion */

/* about aliasing. */
return p;

}

Similarly, the two casts make no assertion about aliasing of the references
through the pointers p and r.
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3.7.4.3.10 Constraint Violations It is a constraint violation to restrict-qualify
an object type that is not a pointer type, or to restrict-qualify a pointer to a
function:

/*____restrict cannot qualify non-pointer object types: */

int ____restrict x; /* Constraint violation */
int ____restrict *p; /* Constraint violation */

/* ____restrict cannot qualify pointers to functions: */

float (* ____restrict f9)(void); /* Constraint violation */

3.8 Type Definition
The keyword typedef is used to define a type synonym. In such a definition,
the identifiers name types instead of objects. One such use is to define an
abbreviated name for a lengthy or confusing type definition.

A type definition does not create a new basic data type; it creates an alias for a
basic or derived type. For example, the following code helps explain the data
types of objects used later in the program:

typedef float *floatp, (*float_func_p)();

The type floatp is now ‘‘pointer to a float value’’ type, and the type
float_func_p is ‘‘pointer to a function returning float’’.

A type definition can be used anywhere the full type name is normally used
(you can, of course, use the normal type name). Type definitions share the
same name space as variables, and defined types are fully compatible with
their equivalent types. Types defined as qualified types inherit their type
qualifications.

Type definitions can also be built from other type definitions. For example:

typedef char byte;
typedef byte ten_bytes[10];

Type definition can apply to variables or functions. It is illegal to mix type
definitions with other type specifiers. For example:

typedef int *int_p;
typedef unsigned int *uint_p;
unsigned int_p x; /* Invalid */
uint_p y; /* Valid */
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Type definitions can also be used to declare function types. However, the type
definition cannot be used in the function’s definition. The function’s return
type can be specified using a type definition. For example:

typedef unsigned *uint_p; /* uint_p has type "pointer to unsigned int" */
uint_p xp;
typedef uint_p func(void); /* func has type "function returning pointer to */

/* unsigned int */
func f;
func b;
func f(void) /* Invalid -- this declaration specifies a */

/* function returning a function type, which */
{ /* is not allowed */
return xp;

}

uint_p b(void) /* Legal - this function returns a value of
{ /* type uint_p. */
return xp;
}

The following example shows that a function definition cannot be inherited
from a typedef name:

typedef int func(int x);
func f;
func f /* Valid definition of f with type func */
{
return 3;

} /* Invalid, because the function’s type is not inherited */

Changing the previous example to a valid form results in the following:

typedef int func(int x);
func f;
int f(int x) /* Valid definition of f with type func */
{
return 3;

} /* Legal, because the function’s type is specified */

You can include prototype information, including parameter names, in the
typedef name. You can also redefine typedef names in inner scopes, following
the scope rules explained in Section 2.3.
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4
Declarations

Declarations are used to introduce the identifiers used in a program and to
specify their important attributes, such as type, storage class, and identifier
name. A declaration that also causes storage to be reserved for an object or
that includes the body of a function, is called a definition.

Section 4.1 covers general declaration syntax rules, Section 4.2 discusses
initialization, and Section 4.3 describes external declarations.

The following kinds of identifiers can be declared. See the associated section
for information on specific declaration and initialization syntax. Functions are
discussed in Chapter 5.

• Simple objects (Section 4.4)

• Enumeration constants (Section 4.5)

• Pointers (Section 4.6)

• Arrays (Section 4.7)

• Structure and union members (Section 4.8)

• Tags (Section 4.10)

Note

Preprocessor macros created with the #define directive are not
declarations. Chapter 8 has information on creating macros with
preprocessor directives.

4.1 Declaration Syntax Rules
The general syntax of a declaration is as follows:
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declaration:

declaration-specifiers init-declarator-listopt;

declaration-specifiers:

storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt

init-declarator-list:

init-declarator
init_declarator-list , init-declarator

init-declarator:

declarator
declarator = initializer

Note the following items about the general syntax of a declaration:

• The storage-class-specifier, type-qualifier, and type-specifier can be listed in
any order. All are optional, but, except for function declarations, at least
one such specifier or qualifier must be present. Placing the storage-class-
specifier anywhere but at the beginning of the declaration is an obsolete
style.

• Storage-class keywords are auto, static, extern, and register.

• Type qualifiers are const and volatile.

• The declarator is the name of the object or function being declared. A
declarator can be as simple as a single identifier, or can be a complex
construction declaring an array, structure, pointer, union, or function (such
as *x, tree( ), and treebar[10]).

A full declarator is a declarator that is not part of another declarator.
The end of a full declarator is a sequence point. If the nested sequence of
declarators in a full declarator contains a variable-length array type, the
type specified by the full declarator is said to be variably modified.

• Initializers are optional and provide the initial value of an object.
Initializers can be a single value or a brace-enclosed list of values,
depending on the type of object being declared.

• A declaration determines the beginning of an identifier’s scope.

• An identifier’s linkage is determined by the declaration’s placement and its
specified storage class.
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Consider the following example:

volatile static int data = 10;

This declaration shows a qualified type (a data type with a type qualifier –
in this case, int qualified by volatile), a storage class (static), a declarator
(data), and an initializer (10). This declaration is also a definition, because
storage is reserved for the data object data.

The previous example is simple to interpret, but complex declarations are
more difficult. See your platform-specific Compaq C documentation for more
information about interpreting C declarations.

The following semantic rules apply to declarations:

• Empty declarations are illegal; declarations must contain at least one
declarator, or specify a structure tag, union tag, or the members of an
enumeration.

• Each declarator declares one identifier. There is no limit to the number of
declarators in a declaration.

• At most, one storage-class specifier can be used in each object declaration.
If none is provided, the auto storage class is assigned to objects declared
inside a function definition, and the extern class is assigned to objects
declared outside of a function definition.

• The only allowable (and optional) storage class for declaration of a function
with block scope is extern.

• If no type-specifier is present, the default is signed int.

• A declarator is usable only over a certain range of the program, determined
by the declarator’s scope. The duration of its storage allocation is
dependent on its storage class. See Section 2.3 for more information on
scope and Section 2.10 for more information on storage classes.

• The usefulness of an identifier can be limited by its visibility, which can be
hidden in some parts of the program. See Section 2.4 for more information
on visibility.

• All declarations in the same scope that refer to the same object or function
must have compatible types.

• If an object has no linkage, there can be no more than one declaration
of the object with the same scope and in the same name space. Objects
without linkage must have their type completed by the end of the
declaration, or by the final initializer (if it has one). Section 2.8 describes
linkage.
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Storage Allocation
Storage is allocated to a data object in the following circumstances:

• If the object has no linkage, storage is allocated upon declaration of the
object. If a block scope object with auto or register storage class is
declared, storage is deallocated at the end of the block.

• If the object has internal linkage, storage is allocated upon the first
definition of the object.

• If the object has external linkage, storage is allocated upon initialization
of the object, which must occur only once for each object. If an object has
only a tentative definition (see Section 2.9), the compiler acts as though
there were a file scope definition of the object with an initializer of zero.
Section 2.8 describes linkage in detail.

Note

The compiler does not necessarily allocate distinct variables to memory
locations according to the order of declaration in the source code.
Furthermore, the order of allocation can change as a result of seemingly
unrelated changes to the source code, command-line options, or from
one version of the compiler to the next - it is essentially unpredictable.
The only way to control the placement of variables relative to each
other is to make them members of the same struct type.

4.2 Initialization
Initializers provide an initial value for objects, and follow this syntax:

initializer:

assignment-expr
{ initializer-list }
{ initializer-list, }

initializer-list:

designation-opt initializer
initializer-list, designation-opt initializer

designation:

designator-list =
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designator-list:

designator
designator-list designator

designator:

[ constant-expr ]
. identifier

Initialization of objects of each type is discussed in the following sections, but a
few universal constraints apply to all initializations in C:

• The number of initializers cannot exceed the number of objects to be
initialized. Initializers can number less than the number of objects to be
initialized, in which case the remaining objects are initialized to zero.

• Constant expressions must be used in an initializer for an object that has
static storage duration, or in an initializer list for an object that has an
aggregate or union type.

• If an identifier’s declaration has block scope, and the identifier has external
or internal linkage, the declaration of the identifier cannot include an
initializer.

• If an object that has static storage duration is not explicitly initialized, it
is initialized implicitly as if every member with an arithmetic type were
assigned 0, and every member with a pointer type were assigned a null
pointer constant. If an object that has automatic storage duration is not
initialized explicitly, its value is indeterminate.

• The initializer for a scalar object must be a single expression, optionally
enclosed in braces. The initial value of the object is that of the expression.
The same type constraints and conversions apply as for simple assignment.

• If an aggregate object contains members that are aggregates or unions, or
if the first member of a union is an aggregate or union, the initialization
rules apply recursively to the aggregate members or contained unions. If
an initializer list is used for an aggregate member or contained union, the
initializers in that list initialize the members of the aggregate member or
contained union. Otherwise, only enough initializers from the list are used
to account for the object; any remaining members in the list are left to
initialize the next member of the aggregate object. For example:
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struct t1 {
int i;
double d;
};

union t2 {
int i;
double d;
};

struct t3 {
struct t1 s;
union t2 u;
};

struct t3 st[] = { /* complete initializer */
1, 2, 0, 4, 0, 0, 7, 0, 0
};

Given the previous declarations, the variable st is an array of 3 structures.
Its initial contents are:

s u
------ -

st[0]: 1, 2.0, 0
st[1]: 4, 0.0, 0
st[2]: 7, 0.0, 0

This variable can also be defined in the following ways—all four initializers
are equivalent:

struct t3 st[] = { /* partial initializer */
1, 2, 0, 4, 0, 0, 7
};

struct t3 st[] = { /* nested and complete initializers */
{1, 2, 0},
{4, 0, 0},
{7, 0, 0}
};

struct t3 st[] = { /* nested and partial initializers */
{1, 2},
{4},
{7}
};

For initialization of arrays, structures, and unions, see Sections 4.7.1, 4.8.4,
and 4.8.5.

• For a description of initializers with designations for arrays and structures,
see Section 4.9.
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• Variant structures and unions are initialized just like normal structures
and unions. See Section 4.8.4 and Section 4.8.5 for more information.

C has historically allowed initializers to be optionally surrounded by extra
braces (to improve formatting clarity, for instance). These initializers are
parsed differently depending on the type of parser used. Compaq C uses
the parsing technique specified by the ANSI standard, known as the top-
down parse. Programs depending on a bottom-up parse of partially braced
initializers can yield unexpected results. The compiler generates a warning
message when it encounters unnecessary braces in common C compatibility
mode or when the error-checking compiler option is specified on the command
line.

4.3 External Declarations
An object declaration outside of a function is called an external declaration.
Contrast this with an internal declaration, which is a declaration made inside
a function or block; the declaration is internal to that function or block, and
is visible only to that function or block. The compiler recognizes an internally
declared identifier from the point of the declaration to the end of the block.

If an object’s declaration has file scope and an initializer, the declaration is
also an external definition for the object. A C program consists of a sequence of
external definitions of objects and functions.

Any definition reserves storage for the entity being declared. For example:

float fvalue = 15.0; /* external definition */
main ()
{
int ivalue = 15; /* internal definition */

}

External data declarations and external function definitions take the same
form as any data or function declaration (see Chapter 5 for standard function
declaration syntax), and must follow these rules:

• The storage class of an object externally declared can be left unspecified,
or it can be declared as extern or static (see Section 2.10). If it is
unspecified, the default is the extern storage class, and linkage for the
declared object is external. The type specifier may also be omitted, in
which case the default type is int. Note that the storage-class-specifier,
type-qualifier, and type-specifier cannot all be omitted from a declaration.
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• If an object with external linkage is declared or used in an expression,
there must be only one external definition for the identifier somewhere in
the program. If the same object is declared more than once externally, the
declarations must agree in type and linkage. (See Section 2.8.)

• If one or more of the declarations incompletely specify the object’s type,
and there exists one declaration of the object with completed type, all the
declarations are taken to be in agreement with the completed type.

• The scope of external declarations persist to the end of the file in which
they are declared, while internal declarations persist only to the end of the
block in which they were declared. Data objects to be used within only one
block should be declared in that block. The syntax for external definitions
is the same as for all definitions. Function definitions can only occur at the
external level.

• Externally declared auto and register objects are not permitted.
Internally declared auto and register objects are not automatically
initialized and, if not explicitly initialized, have the irrelevant value
previously stored at their address. All static objects are automatically
initialized to 0, if not explicitly initialized.

Note

An external function can be called without previously declaring it in
C, but this construction is not recommended because of the loss of
type checking and subsequent susceptibility to bugs. If such a function
call is made, the compiler will treat the function as if an external
declaration of type int appeared in the block containing the call. For
example:

void function1()
{
int a,b;
x (a,b);
}

Here, the compiler will behave as if the declaration extern int x( );
appeared within the function1 definition block.

The first declaration of an identifier in a compilation unit must specify,
explicitly or by the omission of the static keyword, whether the identifier is
internal or external. For each object, there can be only one definition. Multiple
declarations of the same object may be made, as long as there are no conflicting
or duplicate definitions for the same object.
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An external object may be defined with either an explicit initialization or
a tentative definition. A declaration of an object with file scope, without an
initializer, and with a storage-class specifier other than static is a tentative
definition. The compiler will treat a tentative definition as the object’s only
definition unless a complete definition for the object is found. As with all
declarations, storage is not actually allocated until the object is defined.

If a compilation unit contains more than one tentative definition for an object,
and no external definition for the object, the compiler treats the definition as
if there were a file scope declaration of the object with an initializer of zero,
with composite type as of the end of the compilation unit. See Section 2.7 for a
definition of composite type.

If the declaration of an object is a tentative definition and has internal linkage,
the declared type must not be an incomplete type. See Section 2.9 for examples
of tentative definitions.

4.4 Declaring Simple Objects
Simple objects are objects with one of the basic data types. Therefore, a simple
object can have an integral or floating-point type. Like all objects, simple
objects are named storage locations whose values can change throughout
the execution of the program. All simple objects used in a program must be
declared.

A simple object declaration can be composed of the following items:

• Optional data-type specifier keywords

• Optional type-qualifier keywords (const or volatile). For example:

const int *p; /* const qualifies the integer p points to */
int *const p; /* const qualifies the pointer p */

• An optional storage-class keyword. If the storage-class keyword is omitted,
there is a default storage class that depends on the location of the
declaration in the program. The positions of the storage-class keywords
and the data-type keywords are interchangeable, but placing the storage-
class keyword anywhere but at the beginning of the declaration is an
obsolete construction.

• Declarators, which list the names of the declared objects.

• Initializers giving the initial value of a simple object. An initializer for a
simple object consists of an equal sign ( = ) followed by a single expression.
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4.4.1 Initializing Simple Objects
An initializer for a simple object consists of an equal sign (=) followed by a
single constant expression. For example:

int x = 10;
float y = ((12 - 2) + 25);

Here, the declaration both declares and defines the object x as an integer value
initially equal to 10, and declares and defines the floating-point value y with
an initial value of 35.

Without an initializer, the initial value of an auto object is undefined. A
static object without explicit initialization is automatically initialized to 0. (If
the object is a static array or structure, all members are initialized to 0.)

A block scope identifier with external or internal linkage (that is, declared
using the extern or static keywords) cannot include an initializer in the
declaration, because it is initialized elsewhere.

4.4.2 Declaring Integer Objects
Integer objects can be declared with the int, long, short, signed, and
unsigned keywords. char can also be used, but only for small values. The
following statements are examples of integer declarations:

int x; /* Declares an integer variable x */
int y = 10; /* Declares an integer variable y */

/* and sets y’s initial value to 10 */

Some of the keywords can be used together to explicitly state the allowed value
range. For example:

unsigned long int a;
signed long; /* Synonymous with "signed long int" */
unsigned int;

Consider the range of values an integer object must be capable of representing
when selecting the integral data type for the object. See Chapter 3 for more
information on the size and range of integral data types.

4.4.3 Declaring Character Variables
Character objects are declared with the char keyword. The following example
shows a character declaration with the initialization of a character object:

char ch = ’a’; /* Declares an object ch with an initial value ’a’ */

In C, character string literals are stored in arrays of type char. See Section 4.7
for more information on arrays.
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4.4.4 Declaring Floating-Point Variables
When declaring floating-point objects, determine the amount of precision
needed for the stored object. Single-precision or double-precision objects can be
used. For single precision, use the float keyword. For double precision, use
the double or long double keywords. For example:

float x = 7.5;
double y = 3.141596;

See your platform-specific Compaq C documentation for specific information on
the range and precision of floating-point types.

4.5 Declaring Enumerations
An enumerated type is a user-defined integer type. An enumerated type
defines enumeration constants, which are integral constant expressions with
values that can be represented as integers. An enumerated type declaration
follows this syntax:

enum-specifier:

enum identifieropt { enumerator-list}
enum identifier

enumerator-list:

enumerator
enumerator-list, enumerator

enumerator:

enumeration-constant
enumeration-constant = constant_expression

In Compaq C, objects of type enum are compatible with objects of type signed
int.

The following example shows the declaration of an enumeration type and an
enumeration tag:

enum shades
{

off, verydim, dim, prettybright, bright
} light;

This declaration defines the variable light to be of an enumerated type shades.
light can assume any of the enumerated values.
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The tag shades is the enumeration tag of the new type. off through bright
are the enumeration constants with values 0 through 4. These enumeration
constants are constant values and can be used wherever integer constants are
valid.

Once a tag is declared, it can be used as a reference to that enumerated type,
as in the following declaration, where the variable light1 is an object of the
enumerated data type shades:

enum shades light1;

An incomplete type declaration of an enumerated type is illegal; for example:

enum e;

An enum tag can have the same spelling as other identifiers in the same
program in other name spaces. However, enum constant names share the same
name space as variables and functions, so they must have unique names to
avoid ambiguity.

Internally, each enumeration constant is associated with an integer constant;
the compiler gives the first enumeration constant the value 0 by default, and
the remaining enumeration constants are incremented by 1 for each succeeding
value. Any enumeration constant can be set to a specific integer constant
value. The enumeration constants following such a construct (unless they are
also set to specific values) then receive values that are one greater than the
previous value. Consider the following example:

enum spectrum
{

red, yellow = 4, green, blue, indigo, violet
} color2 = yellow;

This declaration gives red, yellow, green, blue, . . . , the values 0, 4, 5,
6, . . . Assigning duplicate values to enumeration constants is permitted.

The value of color2 is an integer (4), not a string such as "red" or "yellow".

4.6 Declaring Pointers
Pointers are variables that contain the memory addresses of objects or
functions. Pointer variables are declared as a pointer type by using the
asterisk punctuator and the data type of the object pointed to, as shown in the
following syntax:

pointer:

* type-qualifier-listopt
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* type-qualifier-listopt pointer

type-qualifier-list:

type-qualifier
type-qualifier-list type-qualifier

By default, Compaq C pointers are 32 bits long on OpenVMS systems and
64 bits long on Tru64 UNIX systems. Although their defaults are different,
both OpenVMS Alpha and Tru64 UNIX systems support 32-bit (short) and
64-bit (long) pointers. Compaq C provides qualifiers/switches and #pragma
preprocessor directives to control pointer size.

The type-qualifier is either const, volatile, _ _unaligned (Alpha), _ _restrict,
or any combination thereof.

An object of pointer type is declared as in the following example:

char *px;

In this example, identifier px is declared as a pointer to an object of type char.
No type-qualifier is used in this example. The expression *px yields the char
that px points to.

The following declarations show the difference between a variable pointer to a
constant, a constant pointer to a variable, and a constant pointer to a constant
object.

const int *ptr_to_constant; /* pointer variable pointing
to a const object */

int *const constant_ptr; /* constant pointer to a
non-const object */

const int *const constant_ptr; /* Const pointer to a
const object */

The contents of an object pointed to by ptr_to_constant cannot be modified
through that pointer, but ptr_to_constant itself can be changed to point to
another const-qualified object. Similarly, the contents of the integer pointed to
by constant_ptr can be modified, but constant_ptr itself will always point to
the same location.

The declaration of the constant pointer constant_ptr can be clarified by
including a definition for the type pointer to int. The following example
declares constant_ptr as an object with type const-qualified pointer to int.
The pointer’s value (an address) is constant:

typedef int *int_ptr;
const int_ptr constant_ptr;
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The _ _unaligned data-type qualifier can be used in pointer definitions on
Alpha systems. to indicate to the compiler that the data pointed to is not
properly aligned on a correct address. (To be properly aligned, the address of
an object must be a multiple of the size of the type. For example, 2-byte objects
must be aligned on even addresses.) (Alpha)

When data is accessed through a pointer declared _ _unaligned, the compiler
generates the additional code necessary to copy or store the data without
causing alignment errors. It is best to avoid use of misaligned data altogether,
but in some cases the usage may be justified by the need to access packed
structures, or by other considerations. (Alpha)

The _ _restrict data-type qualifier is used to designate a pointer as pointing
to a distinct object, thus allowing compiler optimizations to be made (see
Section 3.7.4).

Unless an extern or static pointer variable is explicitly initialized, it is
initialized to a null pointer. A null pointer is a pointer value of 0. The contents
of an uninitialized auto pointer are undefined.

4.6.1 Declaring void Pointers
A void pointer is a pointer without a specified data type to describe the
object to which it points. In effect, it is a generic pointer. (Before the ANSI
C standard, char * was used to define generic pointers; this practice is now
discouraged by the ANSI standard because it is less portable.)

A pointer to any type can be assigned to a void pointer without a cast, and
vice versa. See Section 6.4.6 for more information on the cast operation. The
following statements show how a void pointer can be assigned to other typed
pointers, without explicit casts:

float *float_pointer;
void *void_pointer;

.

.

.
float_pointer = void_pointer;

/* or, */
void_pointer = float_pointer;

A void pointer is often used in function calls, function arguments, or function
prototypes when a parameter or return value is a pointer of an unknown type.
Consider the following example, where a void pointer is used as a generic
return value:
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void *memcpy (void *s1, const void *s2, size_t n);
{

void *generic_pointer;
.
.
.

/* The function return value can be a pointer to many types. */

generic_pointer = func_returning_pointer( arg1, arg2, arg3 );
.
.
.

/* size_t is a defined type */
}

See Section 5.3 for further information about using void in function
declarations.

4.6.2 Initializing Pointers
The pointer object can be initialized with a single expression. For example:

int i = 10;
int *p = &i; /* p is a pointer to int, initialized */

/* as holding the address of i */

Without an initializer, the values of static and extern pointers are
automatically initialized to null pointers (pointers to memory location 0).

The following declaration defines p with type pointer to char, and initializes
p to point to an object of type array of char with length 4, whose elements
are initialized by a character string literal. (The null character is the fourth
member of the array.) If an attempt is made to use p to modify the contents of
the array, the behavior is undefined.

char *p = "abc";

4.7 Declaring Arrays
Arrays are declared with the bracket punctuators [ ], as shown in the following
syntax:

storage-class-specifieropt type-specifier declarator [* or constant-expression-listopt]

The following example shows a declaration of a 10-element array of integers, a
variable called table_one:

int table_one[10];
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The type-specifier shows the data type of the elements. The elements of an
array can be of any scalar or aggregate data type. The identifier table_one
specifies the name of the array. The constant expression 10 gives the number
of elements in a single dimension. Arrays in C are zero-based; that is, the first
element of the array is identified with a 0 subscript, such as the one shown in
the following example:

int x[5];
x[0] = 25; /* The first array element is assigned the value 25 */

The expression between the brackets in the declaration must be either the ( * )
punctuator or an integral constant expression with a value greater than zero.

If * is specified between the brackets, then the array type is a variable-length
array type of unspecified size, which can be used only in declarations with
function prototype scope.

If the size expression is an integer constant expression and the element type
has a known constant size, the array type is not a variable-length array type.
Otherwise, it is a variable-length array type. The size of each instance of
a variable-length array type does not change during its lifetime. For more
information on variable-length arrays, see Section 4.7.3.

Omitting the * or the constant expression creates an incomplete array
declaration, which is useful in the following cases:

• If the array is declared external and its storage is allocated by a definition
in another place, you can omit the constant expression for convenience
when the array name is declared, as in the following example:

extern int array1[];
int first_function(void)
{

.

.

.
}

In a separate compilation unit:

int array1[10];
int second_function(void)
{

.

.

.
}
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The array size specifier may only be omitted from the first pair of brackets
in a multidimensional array declaration. This is because an array’s
elements must have complete types, even if the array itself has an
incomplete type.

• If the declaration of the array includes initializers (see sections 4.7.1 and
4.9), you can omit the size of the array, as in the following example:

char array_one[] = "Shemps";
char array_two[] = { ’S’, ’h’, ’e’, ’m’, ’p’, ’s’, ’\0’ };

The two definitions initialize variables with identical elements. These
arrays have seven elements: six characters and the null character ( \0 ),
which terminates all character strings. The size of the array is determined
from the number of characters in the initializing character-string constant
or initialization list. Initializing an incomplete array completes the array
type. An array is completed at the end of its initializer list.

• If you use the array as a function parameter, the array must be defined
in the calling function. However, the declaration of the parameter in the
called function can omit the constant expression within the brackets. The
address of the first element of the array is passed. Subscripted references
in the called function can modify elements of the array. The following
example shows how to use an array in this manner:

main()
{

/* Initialize array */
static char arg_str[] = "Thomas";
int sum;
sum = adder(arg_str); /* Pass address of first array element */

.

.

.
}

/* adder adds ASCII values of letters in array */

int adder( char param_string[])
{

int i, sum = 0; /* Incrementer and sum */
/* Loop until NULL char */

for (i = 0; param_string[i] != ’\0’; i++)
sum += param_string[i];

return sum;
}
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After the function adder is called, parameter param_string receives the
address of the first character of argument arg_str, which can then be
accessed in adder. The declaration of param_string serves only to give the
type of the parameter, not to reserve storage for it.

Array members can also be pointers. The following example declares an array
of floating-point numbers and an array of pointers to floating-point numbers:

float fa[11], *afp[17];

When a function parameter is declared as an array, the compiler treats the
declaration as a pointer to the first element of the array. For example, if x is a
parameter and is intended to represent an array of integers, it can be declared
as any one of the following declarations:

int x[];
int *x;
int x[10];

Note that the specified size of the array does not matter in the case of a
function parameter, since the pointer always points to only the first element of
the array.

C supports arrays declared as an array of arrays. These are sometimes called
multidimensional arrays. Consider the following example, where variable
table_one is a two-dimensional array containing 20 integers:

int table_one[10][2];

Arrays are stored in row-major order, which means the element table_one[0][0]
(in the previous example) immediately precedes table_one[0][1], which in
turn immediately precedes table_one[1][0].

4.7.1 Initializing Arrays
Arrays are initialized with a brace-enclosed list of constant expressions. A list
of initializers for an incomplete array declaration completes the array’s type
and completely defines the array size. Therefore, when initializing an array of
unknown size, the number of initializers in the initializer list determines the
size of the array. For example, the following declaration initializes an array of
three elements:

int x[] = { 1, 2, 3 };

If the array being initialized has a storage class of static, the initializers must
be constant expressions.
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Initializers for an array of a given size are assigned to array members on a one-
to-one basis. If there are too few initializers for all members, the remaining
members are initialized to 0. Listing too many initializers for a given size
array is an error. For example:

int x[5] = { 0, 1, 2, 3, 4, 5 }; /* error */

String literals are often assigned to a char or wchar_t array. In this case, each
character of the string represents one member of a one-dimensional array, and
the array is terminated with the null character. When an array is initialized
by a pointer to a string literal, the string literal cannot be modified through
the pointer.

When initializing an array with a string literal, use quotation marks around
the initializing string. For example:

char string[26] = { "This is a string literal." };
/* The braces above are optional here */

The terminating null character is appended to the end of the string if the size
permits, as it does in this case. Another form for initializing an array with
characters is the following:

char string[12] = {’T’, ’h’, ’i’, ’s’, ’ ’, ’w’, ’a’, ’y’ };

The preceding example creates a one-dimensional array containing the string
value "This way". The characters in this array can be freely modified.
Remaining uninitialized array members will be automatically initialized to
zero.

If the size of the array used for a string literal is not explicitly stated, its
size is determined by the number of characters in the string (including the
terminating null character). If the size of the array is explicitly stated,
initializing the array with a string literal longer than the array is an error.

Note

There is one special case where the null character is not automatically
appended to the array. This case is when the array size is explicitly
specified and the number of initializers completely fills the array size.
For example:

char c[4] = "abcd";

Here, the array c holds only the four specified characters, a, b, c, and
d. No null character terminates the array.
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Using the following rules, you can omit braces when initializing the members
of a multidimensional arrays:

• When initializing arrays, you can omit the outermost pair of braces.

• If the initializer list includes all of the initializers for the object being
initialized, you can omit the inner braces.

Consider the following example:

float x[4][2] = {
{ 1, 2 }
{ 3, 4 }
{ 5, 6 }
};

In this example, 1 and 2 initialize the first row of the array x, and the following
two lines initialize the second and third rows, respectively. The initialization
ends before the fourth row is initialized, so the members of the fourth row
default to 0. Here is the result:

x[0][0] = 1;
x[0][1] = 2;
x[1][0] = 3;
x[1][1] = 4;
x[2][0] = 5;
x[2][1] = 6;
x[3][0] = 0;
x[3][1] = 0;

The following declaration achieves the same result:

float x[4][2] = { 1, 2, 3, 4, 5, 6 };

Here, the compiler fills the array row by row with the available initial values.
The compiler places 1 and 2 in the first row (x[0]), 3 and 4 in the second row
(x[1]), and 5 and 6 in the third row (x[2]). The remaining members of the
array are initialized to zero.

Notes

• See Section 4.9 for a description of initializers with designations for
arrays and structures.

• A variable-length array cannot be initialized.
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4.7.2 Pointers and Arrays
Data objects in an array can be referenced through pointers instead of using
array subscripts. The data type of such a pointer is referred to as ‘‘pointer
to array of type’’. The array name itself behaves like a pointer, so there are
several alternative methods to accessing array elements. For example:

int x[5] = { 0, 1, 2, 3, 4 }; /* Array x declared with five elements */
int *p = x; /* Pointer declared and initialized to point */

/* to the first element of the array x */
int a, b;
a = *(x + 3); /* Pointer x incremented by twelve bytes */

/* to reference element 3 of x */
b = x[3]; /* b now holds the same value as a */

In the previous example, a receives the value 3 by using the dereferencing
operator (*). b receives the same value by using the subscripting operator. See
Chapter 6 for more information on the different unary operators.

Note that the assignment of a was a result of incrementing the pointer to x.
This principle, known as scaling, applies to all types of pointer arithmetic. In
scaling, the compiler considers the size of an array element when calculating
memory addresses of array members. For example, each member of the array
x is 4 bytes long, and adding three to the initial pointer value automatically
converts that addition to 3 * (the size of the array member, which in this case
is 4). Therefore, the intuitive meaning of z = *(y + 3); is preserved.

When passing arrays as function arguments, only a pointer to the first element
of the array is passed to the called function. The conversion from array type
to pointer type is implicit. Once the array name is converted to a pointer to
the first element of the array, you can increment, decrement, or dereference
the pointer, just like any other pointer, to manipulate data in the array. For
example:

int func(int *x, int *y) /* The arrays are converted to pointers */
{

*y = *(x + 4); /* Various elements of the arrays are accessed */
}

Remember that a pointer is large enough to hold only an address; a pointer
into an array holds the address of an element of that array. The array itself is
large enough to hold all members of the array.

When applied to arrays, the sizeof operator returns the size of the entire
array, not just the size of the first element in the array.
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4.7.3 Variable-Length Arrays
Variable-length arrays allow array objects with auto storage class, and array
typedefs declared at block scope, to have bounds that are runtime-computed
expressions.

Variable-length arrays also allow the declaration and definition of functions
whose parameters are arrays dimensioned by other parameters (similar to
Fortran assumed-shape arrays).

The following example illustrates both uses. Note that the definition of
function sub uses prototype syntax and that the dimension parameters precede
the array parameter that uses them. In order to define a function with
the dimension parameters following the array parameter that uses them,
the function definition must be written using using Kernighan and Ritchie
C syntax (because that syntax allows the declarations of the types of the
parameters to be written in a different order from the parameters themselves).
Kernighan and Ritchie function definitions should generally be avoided.

#include <stdio.h>
#include <stdlib.h>

void sub(int, int, int[*][*]);

int main(int argc, char **argv)
{

if (argc != 3) {
printf("Specify two array bound arguments.\n");
exit(EXIT_FAILURE);

}
{

int dim1 = atoi(argv[1]);
int dim2 = atoi(argv[2]);
int a[dim1][dim2];
int i, j, k = 0;
for (i = 0; i &lt; dim1; i++) {

for (j = 0; j &lt; dim2; j++) {
a[i][j] = k++;

}
}
printf("dim1 = %d, dim2 = %d.",

sizeof(a)/sizeof(a[0]),
sizeof(a[0])/sizeof(int));

sub(dim1, dim2, a);
sub(dim2, dim1, a);

}
exit(EXIT_SUCCESS);

}
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void sub(int sub1, int sub2, int suba[sub1][sub2])
{

int i, j, k = 0;
printf("\nIn sub, sub1 = %d, sub2 = %d.",

sub1, sub2);
for (i = 0; i &lt; sub1; i++) {

printf("\n");
for (j = 0; j &lt; sub2; j++) {

printf("%4d", suba[i][j]);
}

}
}

On OpenVMS systems, variable-length arrays can often be used in place of the
non-standard alloca intrinsic, _ _ALLOCA.

However, an important difference between _ _ALLOCA and variable-length
arrays is that the storage allocated by _ _ALLOCA is not freed until return from
the function, while the storage allocated for a variable-length array is freed on
exit from the block in which it is allocated. If _ _ALLOCA is called within the
scope of a variable-length array declaration (including within a block nested
within the block containing a variable-length array declaration), then the
storage allocated by that call to _ _ALLOCA is freed at the same time that the
storage for the variable-length array is freed (that is, at block exit rather than
at function return). The compiler issues a warning in such cases.

4.8 Declaring Structures and Unions
A structure consists of a list of members whose storage is allocated in an
ordered sequence. A union consists of a sequence of members whose storage
overlaps. Structure and union declarations have the same form, as follows:

struct-or-union-specifier:

struct-or-union identifieropt { struct-declaration-list}
struct-or-union identifier

struct-or-union:

struct
union

struct-declaration-list:

struct-declaration
struct-declaration-list struct-declaration
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struct-declaration:

specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:

type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-list opt

struct-declarator-list:

struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:

declarator
declaratoropt : constant-expression

Neither a structure nor union member can have a function type or an
incomplete type. Structures and unions cannot contain instances of themselves
as members, but they can have pointers to instances of themselves as members.
The declaration of a structure with no members is accepted; its size is zero.

Each structure or union definition creates a unique structure or union type
within the compilation unit. The struct or union keywords can be followed
by a tag, which gives a name to the structure or union type in much the same
way that an enum tag gives a name to an enumerated type. The tag can then
be used with the struct or union keywords to declare variables of that type
without repeating a long definition.

The tag is followed by braces { } that enclose a list of member declarations.
Each declaration in the list gives the data type and name of one or more
members. The names of structure or union members can be the same as
other variables, function names, or members in other structures or unions; the
compiler distinguishes them by context. In addition, the scope of the member
name is the same as the scope of the structure or union in which it appears.
The structure or union type is completed when the closing brace completes the
list.

An identifier used for a structure or union tag must be unique among the
visible tags in its scope, but the tag identifier can be the same as an identifier
used for a variable or function name. Tags can also have the same spellings as
member names; the compiler distinguishes them by name space and context.
The scope of a tag is the same as the scope of the declaration in which it
appears.
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Structures and unions can contain other structures and unions. For example:

struct person
{

char first[20];
char middle[3];
char last[30];
struct /* Nested structure here */
{

int day;
int month;
int year;

} birth_date;
} employees, managers;

Structure or union declarations can take one of the following forms:

• If a declaration includes only a tag and a list of member declarations, then
the list of member declarations defines the tag to be a data type by which
other objects can be declared. The tag is considered a shorthand notation
for the structure type. For example:

struct person
{

char first[20];
char middle[3];
char last[30];

};
struct person employee; /* The tag (person) identifies employee as */

a structure with members shown in */
the declaration of person */

• When a declaration includes a tag, a list of member declarations, and a
list of identifiers, the identifiers become objects of the structure type and
the tag is considered a shorthand notation, or mnemonic, for the structure
type. The following example shows this:

struct person
{

char first[20];
char middle[3];
char last[30];

} employees, managers;

• If the tag is omitted, the structure or union definition applies only to the
identifiers that follow in the declaration. For example:
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struct
{

char first[20];
char middle[3];
char last[30];

} employees, managers;

• The tag can refer to a structure or union type defined elsewhere. The
definition is then applied to the variable identifiers that follow the tag
name in the declaration, as in the following example:

struct person employees, managers;

• Another form uses only the struct or union keyword and the tag to
override other identical tags in the scope, and to reserve the tag for a
later definition within a new scope. A definition within a new scope
overrides any previous tag definition appearing in an outer scope. This
use of declaring tags is called tentative structure tag declaration. Using
such declarations, you can eliminate ambiguity when making a forward
reference to tag identifiers. The following example shows such a case:

struct A {...}; /* Definition of external struct A */

{
struct A; /* Tentative structure tag declaration. */

/* First declaration of A (in external scope) is
hidden. This structure will be defined later */

struct inner
{

struct A *pointer; /* Declare a structure pointer by */
. /* forward referencing. */
.
.

};

struct A {...}; /* Tentative declaration of internal struct A is
defined here. */

/* External struct A is unaffected by this definition*/
}

In the example, the pointer to the structure defined using the tag A points
to the internal definition of A, not the external definition.

4.8.1 Similarities Between Structures and Unions
Structures and unions share the following characteristics:

• Their members can be objects of any type, including other structures and
unions or arrays. A member can also consist of a bit field.
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• The only operators valid for use with entire structures and unions are the
simple assignment ( = ) and sizeof operators. In particular, structures and
unions cannot appear as operands of the equality ( = = ), inequality ( != ), or
cast operators. The two structures or unions in the assignment must have
the same members and member types.

• A structure or a union can be passed by value to functions and returned
by value by functions. The argument must have the same type as the
function parameter. A structure or union is passed by value just like a
scalar variable; that is, the entire structure or union is copied into the
corresponding parameter.

Note

When passing structures as arguments, they might or might not
terminate on a longword boundary. If they do not, Compaq C aligns the
following argument on the next longword boundary.

4.8.2 Differences Between Structures and Unions
The difference between structures and unions lies in the way their members
are stored and initialized, as follows:

• Within a structure, the members have addresses that increase as the
declarators are read left-to-right. That is, the members of a structure all
begin at different offsets from the base of the structure. The offset of a
particular member corresponds to the order of its declaration; the first
member is at offset 0.

A pointer to a structure points to its first member, so no unnamed holes
can reside at the beginning of a structure.

On OpenVMS VAX systems, nonbit-field structure members are byte-
aligned by default. However, the #pragma [no]member_alignment and
#pragma pack preprocessor directives are provided to switch from byte
preprocessor directive is provided to switch from byte alignment to natural
alignment.

On Alpha systems, nonbit-field structure members are naturally aligned;
each successive nonbit-field structure member begins at the next byte
boundary that matches the alignment appropriate to its type. For example,
a short integer is aligned on a 2-byte boundary and a long integer is aligned
on a 4-byte boundary, so there may be unnamed holes in a structure.
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The length of a naturally-aligned structure on a Alpha processors must be a
multiple of the greatest alignment requirement of any of its members. For
example, a structure containing characters, short integers, and longwords
will be a multiple of four in length to match the multiple of four bytes for
the longword.

The (#pragma [no]member_alignment) and #pragma pack preprocessor
directives are also supported on this platform.

See your platform-specific Compaq C documentation for specific structure
alignment requirements and examples.

• In a union, every member begins at offset 0 from the address of the union.
The size of the union in memory is the size of its largest member. The
value of only one member can be stored in a union object at a time. When
the storage space allocated to the union contains a smaller member, the
extra space between the end of the smaller member and the end of the
allocated memory remains unaltered. The rules for alignment of union
members are the same as for structure members (see your platform-specific
Compaq C documentation).

A pointer to a union member, converted to the proper type, points to the
beginning of the union object.

• Several members of a structure can be initialized at once; only the first
member of a union can be given an initializer.

4.8.3 Bit Fields
One of the advantages of structures is the ability to pack data into them
bit-by-bit.

A structure member often is an object with a basic type size. However, you can
also declare a structure member that is composed only of a specified number
of bits. Such a member is called a bit field; its length, an integral nonnegative
constant expression, is set off from the field name by a colon, as shown by the
following syntax:

struct-declarator:

declarator: constant-expression
:constant-expression

Bit fields provide greater control over the structure’s storage allocation and
allow tighter packing of information in memory. By using bit fields, data can
be densely packed into storage.
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A bit field’s type must be specified (except with unnamed bit fields), and a bit
field can have the int, unsigned int, or signed int type. The bit field’s value
must be small enough to store in an object of the declared size.

In the compiler’s default mode, the enum, long, short, and char types are also
allowed for bit fields.

A bit field can be named or unnamed. A bit-field declaration without a
declarator (for example, :10) indicates an unnamed bit field, which is useful for
padding a structure to conform to a specified layout. If the bit field is assigned
a width of 0, it indicates that no further bit fields should be placed in the
alignment unit, and it cannot name a declarator. Use a colon (:) to separate
the member’s declarator (if any) from a constant expression that gives the field
width in bits. No field can be longer than 32 bits (1 longword).

Since nonbit-field structure members are aligned on at least byte boundaries,
the unnamed form can create unnamed gaps in the structure’s storage. As a
special case, an unnamed field of width 0 causes the next member (normally
another field) to be aligned on at least a byte boundary; that is, a bit-field
structure member with zero width indicates that no further bit field should be
packed into an alignment unit.

The following restrictions apply to the use of bit fields:

• You cannot declare arrays of bit fields.

• The ampersand operator ( & ) cannot be applied to fields, so there cannot be
pointers to bit fields.

Sequences of bit fields are packed as tightly as possible. In C, bit fields are
assigned from right to left; that is, from low-order to high-order bit.

To create bit fields, specify an identifier, a colon, and the identifier’s width
(in bits) as a structure member. In the following example, three bit fields are
created in the structure declaration:

struct {
unsigned int a : 1; /* Named bit field (a) */
unsigned int : 0; /* Unnamed bit field = 0 */
unsigned int : 1; /* Unnamed bit field */
} class;

The first and third bit fields are one bit wide, the second is zero bits wide,
which forces the next member to be aligned on a natural or byte boundary.

Bit fields (including zero-length bit fields) not immediately declared after other
bit fields have the alignment requirement imposed by their type, but never a
lesser alignment requirement than that of int. In a declaration of a bit field
that immediately follows another bit field, the bits are packed into adjacent
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space in the same alignment unit, if sufficient space remains; otherwise,
padding is inserted and the second bit field is put into the next alignment unit.

See your Compaq C documentation for platform-specific information on bit-field
alignment within a structure.

4.8.4 Initializing Structures
All structures can be initialized with a brace-enclosed list of component
initializers. Structures with automatic storage class can also be initialized by
an expression of compatible type.

Initializers are assigned to components on a one-to-one basis. If there are
fewer initializers than members for a structure, the remaining members are
initialized to 0. Listing too many initializers for the number of components in
a structure is an error. All unnamed structure or union members are ignored
during initialization.

Separate initializing values with commas and delimit them with braces { }.
The following example initializes two structures, each with two members:

struct
{

int i;
float c;

} a = { 1, 3.0e10 }, b = { 2, 1.5e5 };

The compiler assigns structure initializers in increasing member order. Note
that there is no way to initialize a member in the middle of a structure without
also initializing the previous members. Example 4–1 shows the initialization
rules applied to an array of structures.

Example 4–1 The Rules for Initializing Structures

#include <stdio.h>

(continued on next page)
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Example 4–1 (Cont.) The Rules for Initializing Structures

main()
{

int m, n;
static struct

{
char ch;
int i;
float c;

} ar[2][3] =
1 {
2 {
3 { ’a’, 1, 3e10 },

{ ’b’, 2, 4e10 },
{ ’c’, 3, 5e10 },

}
};

printf("row/col\t ch\t i\t c\n");
printf("-------------------------------------\n");
for (n = 0; n < 2; n++)

for (m = 0; m < 3; m++)
{

printf("[%d][%d]:", n, m);
printf("\t %c \t %d \t %e \n",

ar[n][m].ch, ar[n][m].i, ar[n][m].c);
}

}

Key to Example 4–1:

1 Delimit an array row initialization with braces.

2 Delimit a structure initialization with braces.

3 Delimit an array initialization with braces.

Example 4–1 writes the following output to the standard output:
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row/col ch i c
-------------------------------------
[0][0]: a 1 3.000000e+10
[0][1]: b 2 4.000000e+10
[0][2]: c 3 5.000000e+10
[1][0]: 0 0.000000e+00
[1][1]: 0 0.000000e+00
[1][2]: 0 0.000000e+00

Note

See Section 4.9 for a description of initializers with designations for
arrays and structures.

4.8.5 Initializing Unions
Unions are initialized with a brace-enclosed initializer that initializes only the
first member of the union. For example:

static union
{

char ch;
int i;
float c;

} letter = {’A’};

Unions with the auto storage class may also be initialized with an expression
of the same type as the union. For example:

main ()
{
union1 {

int i;
char ch;
float c;

} number1 = { 2 };

auto union2
{
int i;
char ch;
float c;

} number2 = number1;
}
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4.9 Initializers with Designations
In conformance with ISO/IEC CD 9899 (SC22 N2620), otherwise known as
CD1 of C9x, the in-progress revision to the ANSI/ISO C standard, Compaq C
supports the use of designations in the initialization of arrays and structures.
(Note that designations are not supported in the common C, VAX C, and Strict
ANSI89 modes of the compiler.)

4.9.1 Current Object
C9x initializers introduce the concept of a current object and a designation.

The current object is the next thing to be initialized during the initialization of
an array or structure.

A designation provides a way to set the current object. When no designations
are present, subobjects of the current object are initialized in order according
to the type of the object: array elements in increasing subscript order, and
structure members in declaration order.

So for an array, the first current object is a[0] when initialization begins; as
each initializer is used, the current object is bumped to the next initializer, in
increasing subscript order.

Similarly, for a structure, the current object is the first declaration within the
structure when initialization begins; as each initializer is used, the current
object is bumped to the next initializer, in declaration order.

4.9.2 Designations
The C9x Standard allows brace-enclosed initializer lists to contain
designations, which specify a new current object. The syntax for a designation
is:

designation:
designator-list =

designator-list:
designator
designator-list designator

designator:
[ constant-expression ]
. identifier

A designator within a designation causes the following initializer to begin
initialization of the object described by the designator. Initialization then
continues forward, in order, beginning with the next object after that described
by the designator.
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For an array, a designator looks like this:

[ integral-constant-expression ]

If the array is of unknown size, any nonnegative value is valid.

For a structure, a designator looks like this:

.identifier

Where identifier is a member of the structure.

4.9.3 Examples
The old way of initializing arrays and structures is still supported. However,
the use of designators can simplify coding of initializer lists and better
accommodate future changes you might want to make to arrays and structures
in your application.

1. Using designators, array elements can be initialized to nonzero values
without depending on their order:

int a[5] = { 0, 0, 0, 5 }; // Old way

int a[5] = { [3]=5 }; // New way

The designator [3] initializes a[3] to 5.

2. Structure members can be initialized to nonzero values without depending
on their order. For example:

typedef struct {
char flag1;
char flag2;
char flag3;
int data1;
int data2;
int data3;
} Sx;

Sx = { 0, 0, 0, 0, 6 }; // Old way

Sx = { .data2 = 6 }; // New way

Designator .data2 initializes structure member .data2 to 6.

3. Another example of using designators in an array:

int a[10] = { 1, [5] = 20, 10 };
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In this example, the array elements are initialized as follows:

a[0]=1
a[1] through a[4] = 0
a[5] = 20
a[6] = 10
a[7] through a[9] = 0

4. Future changes to structures can be accommodated without changing their
initializer lists:

typedef struct {
char flag1;
char flag2;
char flag3;
int data1;
int data2;
int data3;
} Sx;

Sx = { 1, 0, 1, 65, 32, 18 }; // Old way

Sx = { .flag1=1, 0, 1, .data1=65, 32, 18 }; // New way

Use of designators .flag1 and .data1 allows for future insertion of
additional flags in front of .flag1 or between flag3 and data1.

Designators do not have to be in order. For example, the following two
initializer lists are equivalent:

Sx = { .data1=65, 32, 18, .flag1=1, 0, 1 };

Sx = { .flag1=1, 0, 1, .data1=65, 32, 18 };

5. Space can be "allocated" from both ends of an array by using a single
designator:

int a[MAX] =
{

1, 3, 5, 7, 9, [MAX - 5] = 8, 6, 4, 2, 0
};

In this example, if MAX is greater than 10, there will be some zero-valued
elements in the middle; if it is less than 10, some of the values provided by
the first five initializers will be overridden by the second five.

6. Designators can be nested:

struct { int a[3], b } w[] =
{ [0].a = {1}, [1].a[0] = 2 };
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This initialization is equivalent to the following:

w[0].a[0]=1;
w[1].a[0]=2;

7. Another example of nesting designators:

struct {
int a;
struct {

int b
int c[10]

}x;
}y = {.x = {1, .c = {[5] = 6, 7 }}}

This initialization is equivalent to the following:

y.x.b = 1;
y.x.c[5] = 6;
y.x.c[6] = 7;

4.10 Declaring Tags
The following syntax declares the identifier tag as a structure, union, or
enumeration tag. If this tag declaration is visible, a subsequent reference
to the tag substitutes for the declared structure, union, or enumerated type.
Subsequent references of the tag in the same scope (visible declarations) must
omit the bracketed list. The syntax of a tag is:

struct tag { declarator-list }

union tag { declarator-list }

enum tag { enumerator-list }

If the tag is declared without the complete structure or union declaration,
it refers to an incomplete type. Incomplete enumerated types are illegal.
An incomplete type is valid only to specify an object where the type is not
required; for example, during type definitions and pointer declarations. To
complete the type, another declaration of the tag in the same scope (but not
within an enclosed block), defines the content.

The following construction uses the tag test to define a self-referencing
structure.

struct test {
float height;
struct test *x, *y, *z;
};
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Once this declaration is given, the following declaration declares s to be an
object of type struct test and sp to be a pointer to an object of type struct
test:

struct test s, *sp;

Note

The keyword typedef can also be used in an alternative construction to
do the same thing:

typedef struct test tnode;
struct test {

float height;
tnode *x, *y, *z;

};
tnode s, *sp;

4.11 Declaring Type Definitions
In a declaration whose storage-class specifier is typedef, each declarator
defines a typedef name that specifies an alias for the stated type. A typedef
declaration does not introduce a new type, but only introduces a synonym for
the stated type. For example:

typedef int integral_type;
integral_type x;

In the previous example, integral_type is defined as a synonym for int, and
so the following declaration of x declares x to be of type int. Type definitions
are useful in cases where a long type name (such as some forms of structures
or unions) benefits from abbreviation, and in cases where the interpretation of
the type can be made easier through a type definition.

A typedef name shares the same name space as other identifiers in ordinary
declarators. If an object is redeclared in an inner scope, or is declared as a
member of a structure or union in the same or inner scope, the type specifiers
cannot be omitted from the inner declaration. For example:

typedef signed int t;
typedef int plain;
struct tag {

unsigned t:4;
const t:5;
plain r:5;

};
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It is evident that such constructions are obscure. The previous example
declares a typedef name t with type signed int, a typedef name plain with
type int, and a structure with three bit-field members, one named t, another
unnamed member, and a third member named r. The first two bit-field
declarations differ in that unsigned is a type specifier, which forces t to be the
name of a structure member by the rule previously given. The second bit-field
declaration includes const, a type qualifier, which only qualifies the still-visible
typedef name t.

The following example shows additional uses of the typedef keyword:

typedef int miles, klicksp(void);
typedef struct { double re, im; } complex;

.

.

.
miles distance;
extern klicksp *metricp;
complex x;
complex z, *zp;

All of the code shown in the previous example is valid. The type of distance
is int, the type of metricp is a pointer to a function with no parameters
returning int, and the type of x and z is the specified structure. zp is a pointer
to the structure.

It is important to note that any type qualifiers used with a typedef name
become part of the type definition. If the typedef name is later qualified with
the same type qualifier, an illegal construction results. For example:

typedef const int x;
const x y; /* Illegal -- duplicate qualifier used */
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5
Functions

A C program is a collection of user-defined and system-defined functions.
Functions provide a convenient way to break large computing tasks into
smaller ones, which helps in designing modular programs that are easier to
understand and maintain. A function contains zero or more statements to be
executed when it is called, can be passed zero or more arguments, and can
return a value.

This chapter discusses the following information about C functions:

• Function calls (Section 5.1)

• Function types (Section 5.2)

• Function definitions (Section 5.3)

• Function declarations (Section 5.4)

• Function prototypes (Section 5.5)

• Parameters and arguments (Section 5.6)

5.1 Function Calls
A function call is a primary expression, usually a function identifier followed
by parentheses, that is used to invoke a function. The parentheses contain a
(possibly empty) comma-separated list of expressions that are the arguments
to the function. The following is an example of a call to the function power,
assuming this function is appropriately defined:

main()
{

.

.

.
y = power(x,n); /* function call */
}

See Section 6.3.2 for more information on function calls.
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5.2 Function Types
A function has the derived type ‘‘function returning type’’. The type can be any
data type except array types or function types, although pointers to arrays
and functions can be returned. If the function returns no value, its type is
‘‘function returning void’’, sometimes called a void function. A void function
in C is equivalent to a procedure in Pascal or a subroutine in FORTRAN. A
non-void function in C is equivalent to a function in these other languages.

Functions can be introduced into a program in one of two ways:

• A function definition can create a function designator, define its parameters
and their type, define the type of its return value, and supply the body of
the function. In the following example, power is a function returning int:

int power(int base, int exp)
{
int n=1;

if (exp < 0)
{
printf ("Error: Cannot handle negative exponent\n");
return -1;
}

for ( ; exp; exp--)
n = base * n;

return n;
}

See Section 5.3 for more information on function definitions.

• A function declaration announces the properties of a function defined
elsewhere. In the following example, the function main declares and calls
the function power; the definition of the function, where the code is defined,
exists elsewhere:

main()
{
int power(int base, int exp); /* function declaration */
int x, n, y;

.

.

.
y = power(x,n); /* function call */
}
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This style of function declaration, in which the parameters are declared in
a parameter type list, is called a function prototype. Function prototypes
require the compiler to check function arguments for consistency with
their parameters, and to convert arguments to the declared types of the
parameters.

See Sections 5.4 and 5.5 for more information on function declarations and
prototypes.

5.3 Function Definitions
A function definition includes the code for the function. Function definitions
can appear in any order, and in one source file or several, although a function
cannot be split between files. Function definitions cannot be nested.

A function definition has the following syntax:

function-definition:
declaration-specifiersopt declarator declaration-listopt compound-statement

declaration-specifiers
The declaration-specifiers (storage-class-specifier, type-qualifier, and type-
specifier) can be listed in any order. All are optional.

By default, the storage-class-specifier is extern. The static specifier is also
allowed. See Section 2.10 for more information on storage-class specifiers.

ANSI allows the type-qualifier to be const or volatile, but either qualifier
applied to a function return type is meaningless, because functions can only
return rvalues and the type qualifiers apply only to lvalues.

The type-specifier is the data type of the value returned by the function. If no
return type is specified, the function is declared to return a value of type int.
A function can return a value of any type except ‘‘array of type’’ or ‘‘function
returning type’’. Pointers to arrays and functions can be returned. The value
returned, if any, is specified by an expression in a return statement. Executing
a return statement terminates function execution and returns control to the
calling function. For functions that return a value, any expression with a
type compatible with the function’s return type can follow return using the
following format:

return expression;

If necessary, the expression is converted to the return type of the function.
Note that the value returned by a function is not an lvalue. A function call,
therefore, cannot constitute the left side of an assignment operator.
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The following example defines a function returning a character:

char letter(char param1)
{

.

.

.
return param1;

}

The calling function can ignore the returned value. If no expression is specified
after return, or if a function terminates by encountering the right brace, then
the return value of the function is undefined. No value is returned in the case
of a void function.

If a function does not return a value, or if the function is always called from
within a context that does not require a value, a return type of void should be
specified:

void message()
{

printf("This function has no return value.");
return;

}

Specifying a return type of void in a function definition or declaration
generates an error under the following conditions:

• If the function attempts to return a value, an error occurs at the offending
return statement.

• If the void function is called in a context that requires a value, an error
occurs at the function call site.

declarator
The declarator specifies the name of the function being declared. A declarator
can be as simple as a single identifier, such as f1 in the following example:

int f1(char p2)

In the following example, f1 is a ‘‘function returning int’’. A declarator can
also be a more complex construct, as in the following example:

int (*(*fpapfi(int x))[5])(float)

In this example, fpapfi is a ‘‘function (taking an int argument) returning a
pointer to an array of five pointers to functions (taking a float argument)
returning int’’. See Chapter 4 for information on specific declarator syntax.
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The declarator (function) need not have been previously declared. If the
function was previously declared, the parameter types and return type in
the function definition must be identical to the previous function declaration.

The declarator can include a list of the function’s parameters. In Compaq C,
up to 253 parameters can be specified in a comma-separated list enclosed in
parentheses. Each parameter has the auto storage class by default, although
register is also allowed. There is no semicolon after the right parenthesis of
the parameter list.

There are two methods of specifying function parameters:

• The new or prototype style, which includes a parameter type list. For
example:

int f1(char a, int b)
{
function body
}

• The old style, which includes an identifier list; the parameter types are
defined in a separate declaration-list within the function definition, before
the left brace that begins the function body. For example:

int f1(a, b)
char a;
int b;
{
function body
}

Any undeclared parameters are assumed to be of type int.

A function definition with no parameters is defined with an empty parameter
list. An empty parameter list is specified in either of two ways:

• Using the keyword void if the prototype style is used. For example:

char msg(void)
{
return ’a’;
}

• Using empty parentheses if the old style is used. For example:

char msg()
{
return ’a’;
}
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A function defined using the prototype style establishes a prototype for
that function. The prototype must agree with any preceding or following
declarations of the same function.

A function defined using the old style does not establish a prototype, but if
a prototype exists because of a previous declaration for that function, the
parameter declarations in the definition must exactly match those in the
prototype after the default argument promotions are applied to the parameters
in the definition.

Avoid mixing old style and prototype style declarations and definition for a
given function. It is allowed but not recommended.

See Section 5.6 for more information on function parameters and arguments.
See Section 5.5 for more information on function prototypes.

compound-statement
The compound-statement is the group of declarations and statements sur-
rounded by braces in a function or loop body. This compound statement is also
called the function body. It begins with a left brace ( { ) and ends with a right
brace ( } ), with any valid C declarations and statements in between. One or
more return statements can be included, but they are not required.

5.4 Function Declarations
A function can be called without declaring it if the function’s return value is
int (although this practice is not recommended due to the loss of type-checking
capability; all functions should be declared). If the return value is anything
else, and if the function definition is located after the calling function in the
source code, the function must be declared before calling it. For example:

char lower(int c); /* Function declaration */

caller() /* Calling function */
{
int c;
char c_out;

.

.

.
c_out = lower(c); /* Function call */

}
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char lower(int c_up) /* Function definition */
{

.

.

.
}

If the function definition for lower was located before the function caller in
the source code, lower would not have to be declared again before calling it.
In that case, the function definition would serve as its own declaration and
would be in scope for any function calls from within all subsequently defined
functions in the same source file.

Note that both the function definition and function declaration for lower are in
the prototype style. Although C supports the old style of function declaration
in which the parameter types are not specified in the function declarator, it is
good programming practice to use prototype declarations for all user-defined
functions in your program, and to place the prototypes before the first use
of the function. Also note that it is valid for the parameter identifier in
the function declaration to be different from the parameter identifier in the
function definition.

In a function declaration, the void keyword should be used to specify an empty
argument list. For example:

char function_name(void);

As with function definitions, the void keyword can also be used in function
declarations to specify the return value type for functions that do not return a
value. For example:

main()
{

void function_name( );
.
.
.

}
void function_name( )
{ }
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5.5 Function Prototypes
A function prototype is a function declaration that specifies the data types
of its arguments in the parameter list. The compiler uses the information
in a function prototype to ensure that the corresponding function definition
and all corresponding function declarations and calls within the scope of the
prototype contain the correct number of arguments or parameters, and that
each argument or parameter is of the correct data type.

Prototypes are syntactically distinguished from the old style of function
declaration. The two styles can be mixed for any single function, but this is
not recommended. The following is a comparison of the old and the prototype
styles of declaration:

Old style:

• Functions can be declared implicitly by their appearance in a call.

• Arguments to functions undergo the default conversions before the call.

• The number and type of arguments are not checked.

Note

The Compaq C compiler will warn about old-style function declarations
only in strict ANSI standard mode, or when the check compiler option
is specified.

Prototype style:

• Functions are declared explicitly with a prototype before they are called.
Multiple declarations must be compatible; parameter types must agree
exactly.

• Arguments to functions are converted to the declared types of the
parameters.

• The number and type of arguments are checked against the prototype and
must agree with or be convertible to the declared types. Empty parameter
lists are designated using the void keyword.

• Ellipses are used in the parameter list of a prototype to indicate that a
variable number of parameters are expected.
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5.5.1 Prototype Syntax
A function prototype has the following syntax:

function-prototype-declaration:

declaration-specifiersopt declarator;

The declarator includes a parameter type list, which specifies the types of, and
can declare identifiers for, the parameters of the function.

A parameter type list can consist of a single parameter of type void to specify
that the function has no parameters.

A parameter type list can contain a member that is a variable-length array,
specified by the [*] notation.

In its simplest form, a function prototype declaration might have the following
format:

storage_classopt return_typeopt function_name ( type1 parameter1, ..., typen parametern );

Consider the following function definition:

char function_name( int lower, int *upper, char (*func)(), double y )
{ }

The corresponding prototype declaration for this function is:

char function_name( int lower, int *upper, char (*func)(), double y );

A prototype is identical to the header of its corresponding function definition
specified in the prototype style, with the addition of a terminating semicolon ( ; )
or comma ( , ), as appropriate (depending on whether the prototype is declared
alone or in a multiple declaration).

Function prototypes need not use the same parameter identifiers as in the
corresponding function definition because identifiers in a prototype have scope
only within the identifier list. Moreover, the identifiers themselves need not be
specified in the prototype declaration; only the types are required.

For example, the following prototype declarations are equivalent:

char function_name( int lower, int *upper, char (*func)(), double y );
char function_name( int a, int *b, char (*c)(), double d );
char function_name( int, int *, char (*)(), double );

Though not required, identifiers should be included in prototypes to improve
program clarity and increase the type-checking capability of the compiler.
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Variable-length argument lists are specified in function prototypes with
ellipses. At least one parameter must precede the ellipses. For example:

char function_name( int lower, ... );

Data-type specifications cannot be omitted from a function prototype.

5.5.2 Scope and Conversions
Prototypes must be placed appropriately in each compilation unit of a program.
The position of the prototype determines its scope. A function prototype, like
any function declaration, is considered within the scope of a corresponding
function call only if the prototype is specified within the same block as the
function call, any enclosing block, or at the outermost level of the source file.
The compiler checks all function definitions, declarations, and calls from the
position of the prototype to the end of its scope. If you misplace the prototype
so that a function definition, declaration, or call occurs outside the scope of the
prototype, any calls to that function behave as if there were no prototype.

The syntax of the function prototype is designed so that you can extract the
function header of each of your function definitions, add a semicolon ( ; ),
place the prototypes in a header, and include that header at the top of each
compilation unit in your program. In this way, function prototypes are declared
to be external, extending the scope of the prototype throughout the entire
compilation unit. To use prototype checking for C library function calls, place
the #include preprocessor directives for the .h files appropriate for the library
functions used in the program.

It is an error if the number of arguments in a function definition, declaration,
or call does not match the prototype.

If the data type of an argument in a function call does not match the
corresponding type in the function prototype, the compiler tries to perform
conversions. If the mismatched argument is assignment-compatible with the
prototype parameter, the compiler converts the argument to the data type
specified in the prototype, according to the argument conversion rules (see
Section 5.6.1).

If the mismatched argument is not assignment-compatible with the prototype
parameter, an error message is issued.
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5.6 Parameters and Arguments
C functions exchange information by means of parameters and arguments. The
term parameter refers to any declaration within the parentheses following the
function name in a function declaration or definition; the term argument refers
to any expression within the parentheses of a function call.

The following rules apply to parameters and arguments of C functions:

• Except for functions with variable-length argument lists, the number
of arguments in a function call must be the same as the number of
parameters in the function definition. This number can be zero.

• The maximum number of arguments (and corresponding parameters) is
253 for a single function.

• Arguments are separated by commas. However, the comma is not an
operator in this context, and the arguments can be evaluated by the
compiler in any order. There is, however, a sequence point before the
actual call.

• Arguments are passed by value; that is, when a function is called, the
parameter receives a copy of the argument’s value, not its address.
This rule applies to all scalar values, structures, and unions passed as
arguments.

• Modifying a parameter does not modify the corresponding argument passed
by the function call. However, because arguments can be addresses or
pointers, a function can use addresses to modify the values of variables
defined in the calling function.

• In the old style, parameters that are not explicitly declared are assigned a
default type of int.

• The scope of function parameters is the function itself. Therefore,
parameters of the same name in different functions are unrelated.

5.6.1 Argument Conversions
In a function call, the types of the evaluated arguments must match the
types of their corresponding parameters. If they do not match, the following
conversions are performed in a manner that depends on whether a prototype is
in scope for the function:

• Arguments to functions specified with prototypes are converted to the
parameter types specified in the prototype, except that arguments
corresponding to an ellipsis (...) are converted as if no prototype were in
scope. (In this case, the rules in the following bullet apply.) For example:
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void f(char, short, float, ...);

char c1, c2;
short s1,s2;
float f1,f2;

f(c1, s1, f1, c2, s2, f2);

The arguments c1, s1, and f1 are passed with their respective types,
while the arguments c2, s2, and f2 are converted to int, int, and double,
respectively.

• Arguments to functions that have no prototype in scope are not converted
to the types of the parameters. Instead, the expressions in the argument
list are converted according to the following rules:

Any arguments of type float are converted to double.

Any arguments of types char, unsigned char, short, or unsigned short
are converted to int.

When compiling in common C compatibility mode, Compaq C converts
any arguments of types unsigned char or unsigned short to unsigned
int.

No other default conversions are performed on arguments. If a particular
argument must be converted to match the type of the corresponding parameter,
use the cast operator. For more information about the cast operator, see
Section 6.4.6.

5.6.2 Function and Array Identifiers as Arguments
Function and array identifiers can be specified as arguments to a function.
Function identifiers are specified without parentheses, and array identifiers
are specified without brackets. When so specified, the function or array
identifier is evaluated as the address of that function or array. Also, the
function must be declared or defined, even if its return value is an integer.
Example 5–1 shows how and when to declare functions passed as arguments,
and how to pass them.
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Example 5–1 Declaring Functions Passed as Arguments

1 int x() { return 25; } /* Function definition and */
int z[10]; /* array defined before use */

2 fn(int f1(), int (*f2)(), int a1[])) /* Function definition */
{

f1(); /* Call to function f1 */
.
.
.

}

void caller(void)
{

3 int y(); /* Function declaration */
.
.
.

4 fn(x, y, z); /* Function call: functions */
/* x and y, and array z */
/* passed as addresses */

.

.

.
}
int y(void) { return 30; } /* Function definition */

Key to Example 5–1:

1 Without being declared in a separate declaration, function x can be passed
in an argument list because its definition, located before the function
caller, serves as its declaration.

2 Parameters that represent functions can be declared either as functions
or as pointers to functions. Parameters that represent arrays can be
declared either as arrays or as pointers to the element type of the array.
For example:

fn(int f1(), int f2(), int a1[]) /* f1, f2 declared as */
{...} /* functions; a1 declared */

/* as array of int. */

fn(int (*f1)(), int (*f2)(), int *a1) /* f1, f2 declared as */
{...} /* pointers to functions; */

/* a1 declared as pointer */
/* to int. */

When such parameters are declared as functions or arrays, the compiler
automatically converts the corresponding arguments to pointers.
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3 Because its function definition is located after the function caller, function
y must be declared before passing it in an argument list.

4 When passing functions as arguments, do not include parentheses.
Similarly, when specifying arrays, do not include subscripts.

5.6.3 Passing Arguments to the main Function
The function called at program startup is named main. The main function can
be defined with no parameters or with two parameters (for passing command-
line arguments to a program when it begins executing). The two parameters
are referred to here as argc and argv, though any names can be used because
they are local to the function in which they are declared. A main function has
the following syntax:

int main(void) { . . . }

int main(int argc, char *argv[ ]) { . . . })

argc
The number of arguments in the command line that invoked the program. The
value of argc is nonnegative.

argv
Pointer to an array of character strings that contain the arguments, one per
string. The value argv[argc] is a null pointer.

If the value of argc is greater than zero, the array members argv[0] through
argv[argc – 1] inclusive contain pointers to strings, which are given
implementation-defined values by the host environment before program
startup. The intent is to supply the program with information determined
before program startup from elsewhere in the host environment. If the
host environment cannot supply strings with letters in both uppercase and
lowercase, the host environment ensures that the strings are received in
lowercase.

If the value of argc is greater than zero, the string pointed to by argv[0]
represents the program name; argv[0][0] is the null character if the program
name is not available from the host environment. If the value of argc is greater
than one, the strings pointed to by argv[1] through argv[argc – 1] represent the
program parameters.

The parameters argc and argv, and the strings pointed to by the argv array,
can be modified by the program and keep their last-stored values between
program startup and program termination.
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In the main function definition, parameters are optional. However, only the
parameters that are defined can be accessed.

See your platform-specific Compaq C documentation for more information on
the passing and return of arguments to the main function.
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6
Expressions and Operators

An expression is any sequence of C operators and operands that produces
a value or generates a side effect. The simplest expressions are constants
and variable names, which yield values directly. Other expressions combine
operators and subexpressions to produce values. An expression has a type as
well as a value.

Except where noted in this chapter, the order of evaluation of subexpressions,
and the order in which side effects take place, is unspecified. Code that
depends on such order might produce unexpected results.

The operands of expressions must have compatible type. In some instances,
the compiler makes conversions to force the data types of the operands to be
compatible.

The following sections discuss these topics:

• Primary expressions and operators (Section 6.1)

• An overview of the C operators (Section 6.2)

• Postfix expressions (Section 6.3)

• Unary expressions and operators (Section 6.4)

• Binary expressions and operators (Section 6.5)

• The conditional expression and operator (Section 6.6)

• Assignment expressions and operators (Section 6.7)

• The comma expression and operator (Section 6.8)

• Constant expressions (Section 6.9)

• Compound literal expressions (Section 6.10)

• Data-type conversions (Section 6.11)
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6.1 Primary Expressions
Simple expressions are called primary expressions; they denote values.
Primary expressions include previously declared identifiers, constants, string
literals, and parenthesized expressions.

Primary expressions have the following syntax:

primary-expression:

identifier
constant
string-literal
expression

The following sections describe the primary expressions.

6.1.1 Identifiers
An identifier is a primary expression provided it is declared as designating an
object or a function.

An identifier that designates an object is an lvalue if its type is arithmetic,
structure, union, or pointer. The name of an array evaluates to the address of
the first element of the array; an array name is an lvalue but not a modifiable
lvalue.

An identifier that designates a function is called a function designator. A
function designator evaluates to the address of the function.

6.1.2 Constants
A constant is a primary expression. Its type depends on its form (integer,
character, floating, or enumeration); see Section 1.8. A constant is never an
lvalue.

6.1.3 String Literals
A string literal is a primary expression. Its type depends on its form (character
or wchar_t); see Section 1.8. A string literal is an lvalue.

6.1.4 Parenthesized Expressions
An expression within parentheses has the same type and value as the
expression without parentheses would have. Any expression can be delimited
by parentheses to change the precedence of its operators.
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6.2 Overview of the C Operators
Variables and constants can be used in conjunction with C operators to create
more complex expressions. Table 6–1 presents the set of C operators.

Table 6–1 C Operators

Operator Example Description/Meaning

( ) f() Function call

[] a[10] Array reference

-> s->a Structure and union member selection

. s.a Structure and union member selection

+ [unary] +a Value of a

- [unary] -a Negative of a

* [unary] *a Reference to object at address a

& [unary] &a Address of a

~ ~a One’s complement of a

++ [prefix] ++a The value of a after increment

++ [postfix] a++ The value of a before increment

-- [prefix] --a The value of a after decrement

-- [postfix] a-- The value of a before decrement

sizeof sizeof (t1) Size in bytes of object with type t1

sizeof sizeof e Size in bytes of object having the type of
expression e

__typeof__ __typeof__ (t1) Type of type t1

__typeof__ __typeof__ (e) Type of expression e

+ [binary]
- [binary]
* [binary]
/
%

a + b
a - b
a * b
a / b
a % b

a plus b
a minus b
a times b
a divided by b
Remainder of a/b

>>
<<

a >> b
a << b

a, right-shifted b bits
a, left-shifted b bits

(continued on next page)
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Table 6–1 (Cont.) C Operators

Operator Example Description/Meaning

<
>
<=
>=
==
!=

a < b
a > b
a <= b
a >= b
a == b
a != b

1 if a < b; 0 otherwise
1 if a > b; 0 otherwise
1 if a <= b; 0 otherwise
1 if a >= b; 0 otherwise
1 if a equal to b; 0 otherwise
1 if a not equal to b; 0 otherwise

& [binary]
|
^

a & b
a | b
a ^ b

Bitwise AND of a and b
Bitwise OR of a and b
Bitwise XOR (exclusive OR) of a and b

&&
| |
!

a && b
a | | b
!a

Logical AND of a and b (yields 0 or 1)
Logical OR of a and b (yields 0 or 1)
Logical NOT of a (yields 0 or 1)

?: a ? e1 : e2 Expression e1 if a is nonzero;
Expression e2 if a is zero

=
+=
-=
*=
/=
%=
>>=
<<=
&=
|=
^=
,

a = b
a += b
a -= b
a *= b
a /= b
a %= b
a >>= b
a <<= b
a &= b
a |= b
a ^= b
e1,e2

a, after b is assigned to it
a plus b (assigned to a)
a minus b (assigned to a)
a times b (assigned to a)
a divided by b (assigned to a)
Remainder of a/b (assigned to a)
a, right-shifted b bits (assigned to a)
a, left-shifted b bits (assigned to a)
a AND b (assigned to a)
a OR b (assigned to a)
a XOR b (assigned to a)
e2 (e1 evaluated first)

The C operators fall into the following categories:

• Postfix operators, which follow a single operand.

• Unary prefix operators, which precede a single operand.

• Binary operators, which take two operands and perform a variety of
arithmetic and logical operations.

• The conditional operator (a ternary operator), which takes three operands
and evaluates either the second or third expression, depending on the
evaluation of the first expression.

• Assignment operators, which assign a value to a variable.

• The comma operator, which guarantees left-to-right evaluation of comma-
separated expressions.

6–4 Expressions and Operators



Operator precedence determines the grouping of terms in an expression.
This affects how an expression is evaluated. Certain operators have higher
precedence than others; for example, the multiplication operator has higher
precedence than the addition operator:

x = 7 + 3 * 2; /* x is assigned 13, not 20 */

The previous statement is equivalent to the following:

x = 7 + ( 3 * 2 );

Using parenthesis in an expression alters the default precedence. For example:

x = (7 + 3) * 2; /* (7 + 3) is evaluated first */

In an unparenthesized expression, operators of higher precedence are evaluated
before those of lower precedence. Consider the following expression:

A+B*C

The identifiers B and C are multiplied first because the multiplication operator
( * ) has higher precedence than the addition operator ( + ).

Table 6–2 shows the precedence the compiler uses to evaluate the C operators.
Operators with the highest precedence appear at the top of the table; those
with the lowest appear at the bottom. Operators of equal precedence appear in
the same row.

Table 6–2 Precedence of C Operators

Category Operator Associativity

Postfix ( ) [] -> . ++ -- Left to right

Unary + - ! ~ ++ --
(type)
* & sizeof

Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

(continued on next page)

Expressions and Operators 6–5



Table 6–2 (Cont.) Precedence of C Operators

Category Operator Associativity

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR | | Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=
>>= <<= &= ^= |=

Right to left

Comma , Left to right

Associativity relates to precedence, and resolves any ambiguity over the
grouping of operators with the same precedence. In the following statement,
the rules of C specify that a * b is evaluated first:

y = a * b / c;

In a more complicated example, associativity rules specify that b ? c : d is
evaluated first in the following example:

a ? b ? c : d : e;

The associativity of the conditional operator is right-to-left on the line. The
assignment operator also associates right-to-left; for example:

int x = 0 , y = 5, z = 3;
x = y = z; /* x has the value 3, not 5 */

Other operators associate left-to-right; for example, the binary addition,
subtraction, multiplication, and division operators all have left-to-right
associativity.

Associativity applies to each row of operators in Table 6–2 and is right-
to-left for some rows and left-to-right for others. The kind of associativity
determines the order in which operators from the same row are evaluated in
an unparenthesized expression. Consider the following expression:

A*B%C

This expression is evaluated as follows because the multiplicative operators
(*, /, %) are evaluated from left to right:

(A*B)%C

Parentheses can always be used to control precedence and associativity within
an expression.
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6.3 Postfix Operators
Postfix expressions include array references, function calls, structure or union
references, and postfix increment and decrement expressions. The operators in
postfix expressions have left-to-right associativity.

Postfix expressions have the following syntax:

postfix-expression:

array-reference
function-call
structure-and-union-member-reference
postfix-increment-expression
postfix-decrement-expression

6.3.1 Array References
The bracket operator [ ] is used to refer to an element of an array. Array
references have the following syntax:

array-reference:

postfix-expression [ expression ]

For example, in a one-dimensional array, you can refer to a specific element
within the array as follows:

int sample_array[10]; /* Array declaration; array has 10 elements */
sample_array[0] = 180; /* Assign value to first array element */

This example assigns a value of 180 to the first element of the array,
sample_array[0]. Note that C uses zero-origin array subscripting.

In a two-dimensional array (more properly termed an array of arrays), you can
refer to a specific element within the array, as follows:

int sample_array[10][5]; /* Array declaration; array has 50 elements */
sample_array[9][4] = 180; /* Assign value to last array element */

This example assigns a value of 180 to the element sample_array[9][4].

Conceptually, multidimensional arrays are of type arrays of arrays of arrays ....
Therefore, if an array reference is not fully qualified, it refers to the address of
the first element in the dimension that is not specified. For example:

int sample_array[10][5]; /* Array declaration */
int *p1; /* Pointer declaration */

p1 = sample_array[7]; /* Assigns address of subarray to pointer */
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In this example, p1 contains the address of the first element in the one-
dimensional subarray sample_array[7]. Although, as in this example, a
partially qualified array can be used as an rvalue, only a fully qualified array
reference can be used as an lvalue. For example, C does not allow the following
statement, in which the second dimension of the array is omitted:

int sample_array[10][5]; /* Array declaration */

sample_array[7] = 21; /* Error */

A reference to an array name with no bracket can be used to pass the array’s
address to a function, as in the following statement:

funct(sample_array);

Bracket operators can also be used to perform general pointer arithmetic as
follows:

p1[intexp]

Here, p1 is a pointer and intexp is an integer-valued expression. The result
of the expression is the value pointed to by p1 incremented by the value of
intexp multiplied by the size, in bytes, of the addressed object (array element).
The expressions �(p1 + intexp) and p1[intexp] are defined to be equivalent;
both expressions refer to the same memory location and have the same type.
Array subscripting is a commutative operation: intexp[p1] is equivalent to
p1[intexp]. A subscripted expression is always an lvalue.

6.3.2 Function Calls
Function calls have the following syntax:

function-call:

postfix-expression ( argument-expression-listopt )

argument-expression-listopt:

assignment-expression
argument-expression-listopt, assignment-expression

A function call is a postfix expression consisting of a function designator
followed by parentheses. The order of evaluation of any expressions in the
function parameter list is undefined, but there is a sequence point before the
actual call. The parentheses can contain a list of arguments (separated by
commas) or can be empty. If the function called has not been declared, it is
assumed to be a function returning int.
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To pass an argument that is an array or function, specify the identifier in
the argument list without brackets or parentheses. The compiler passes the
address of the array or function to the called routine, which means that the
corresponding parameters in the called function must be declared as pointers.

In the following example, func1 is declared as a function returning double; the
number and type of the parameters are not specified:

double func1();

The function func1 can then be used in a function call, as follows:

result = func1(c);
or

result = func1();

The identifier func1 can also be used in other contexts, without the
parentheses. For example, as an argument to another function call:

dispatch(func1);

In this example, the address of the function func1 is passed to the function
dispatch. In general, if an identifier is declared as a ‘‘function returning . . . ’’
type, it is converted to ‘‘the address of function returning . . . ’’ when that
identifier is passed as an argument without its parentheses; the only exception
is when the function designator is the operand of the unary & operator, in
which case this conversion is explicit.

Functions can also be called by dereferencing a pointer to a function. In the
following example, pf is declared as a pointer to a function returning double
and assigned the address of the function func1:

double (*pf)( );
.
.
.

pf = func1;

The function func1 can then be called as follows:

result = (*pf)();

Although this function call is valid, the following form of the same function call
is simpler:

result = pf();
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In function calls, if the expression that denotes the called function has a
type that does not include a prototype, the integral promotions discussed in
Section 6.11.3 are performed on each applicable argument, and arguments
that have type float are converted to double. These are called the default
argument promotions. If the number of passed arguments does not agree with
the number of parameters, the behavior is undefined. If the function is defined
with a type that does not include a prototype, and the types of the arguments
after promotion are not compatible with the types of the parameters after
promotion, the behavior is undefined. If the function is defined with a type
that includes a prototype, and the types of the arguments after promotion
are not compatible with the types of the parameters, or if the prototype ends
with an ellipsis punctuator (indicating a variable-length parameter list), the
behavior is undefined.

If the expression that denotes the called function has a type that includes a
prototype, the passed arguments are implicitly converted to the types of the
corresponding parameters. The ellipsis punctuator in a function prototype
causes argument type conversion to stop after the last declared parameter.
The default argument promotions are performed on trailing arguments. If the
function is defined with a type that is not compatible with the type pointed to
by the expression that denotes the called function, the behavior is undefined.

No other conversions are implicitly performed; in particular, the number
and types of arguments are not compared with those of the parameters in a
function definition that does not include a prototype.

Recursive function calls are permitted, both directly and indirectly through any
chain of other functions.

6.3.3 Structure and Union References
A member of a structure or union can be referenced either directly using the
dot ( . ) operator, or indirectly using the arrow ( –> ) operator.

Structure and union references (also called component selections) have the
following syntax:

structure-and-union-reference:

postfix-expression . identifier
postfix-expression –> identifier

The arrow operator always produces an lvalue. The dot operator produces an
lvalue if the postfix expression is an lvalue.

In a direct member selection, the first operand must designate a structure or
union, and the identifier must name a declared member of that structure or
union.
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In an indirect member selection, the first operand must be a pointer to a
structure or union, and the identifier must name a declared member of that
structure or union. The arrow operator is specified with a hyphen ( – ) and a
greater-than symbol ( > ) and designates a reference to the structure or union
member. The expression E1–>name is, by definition, precisely the same as
(*E1).name. This also implies that E2.name is the same as (&E2)–>name, if E2
is an lvalue.

A named structure member must be fully qualified; that is, it must be
preceded by a list of the names of any higher-level members separated by
periods, arrows, or both. The value of the expression is the named member
of the structure or union, and its type is the type of that member. For more
information about structures and unions, see Sections 3.4.4 and 3.4.5.

With one exception, if a member of a union is accessed after a value has been
stored in a different member of that union, the result is dependent on the data
types of the members referenced and their alignment within the union.

The exception exists to simplify the use of unions. If a union contains several
structures that share a common initial sequence, and if the union currently
contains one of these structures, you can inspect the common initial part of
any of them. Two structures share a common initial sequence if corresponding
members have compatible types (and for bit fields, the same width) for a
sequence of one or more initial members.

6.3.4 Postfix Increment and Decrement Operators
C has two unary operators for incrementing and decrementing objects of scalar
type. Postfix incrementation has the following syntax:

postfix-increment-expression:

postfix-expression ++

Postfix decrementation has the following syntax:

postfix-decrement-expression:

postfix-expression – –

The increment operator ++ adds 1 to its operand, and the decrement operator
-- subtracts 1, except when the operand is a pointer. If the operand is a
pointer of type pointer to T, the pointer is incremented (or decremented) by
sizeof( T ). The effect is to point to the next (or previous) element within an
array of objects of type T.
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Both ++ and -- can be used either as prefix operators (before the operand: ++n)
or postfix operators (after the operand: n++). In both cases, the effect is to
increment n. The expression ++n increments n before its value is used, while
n++ increments n after its value is used.

Section 6.4.3 describes the prefix form of the increment and decrement
operators. This section addresses the postfix form.

Consider the following expression:

lvalue++

The postfix operator ++ adds the constant 1 to the operand, modifying the
operand. The value of the expression is the value of the operand incremented
by 1; otherwise, the result of the expression is the old value of the operand,
before it was incremented. For example:

int i, j;
j = 5;
j++; /* j = 6 (j incremented by 1) */
i = j++; /* i = 6, j = 7 */

When using the increment and decrement operators, do not depend on
the order of evaluation of expressions. Consider the following ambiguous
expression:

k = x[j] + j++;

It is unspecified whether the value of j in x[j] is evaluated before or after
j is incremented. To avoid ambiguity, increment the variable in a separate
statement, as in the following example:

j++;
k = x[j] + j;

The ++ and -- operators can also be used with floating-point objects. In this
case they scale the object by 1.0.

6.4 Unary Operators
Unary expressions are formed by combining a unary operator with a single
operand. All unary operators are of equal precedence and have right-to-left
associativity. The unary operators are:

• Unary minus ( – ) and unary plus ( + ) (see Section 6.4.1)

• Logical negation ( ! ) (see Section 6.4.2)

• Prefix increment ( ++ ) and decrement ( – – ) (see Section 6.4.3)

• Address operator ( & ) and indirection ( * ) (see Section 6.4.4)
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• Bitwise negation (one’s complement) ( ~ ) (see Section 6.4.5)

• Cast operator (see Section 6.4.6)

• sizeof operator (see Section 6.4.7)

6.4.1 Unary Plus and Minus
Consider the following expression:

– expression

This is the negative of the operand. The operand must have an arithmetic
type, and integral promotion is applied. The additive inverse of an unsigned
quantity is computed by subtracting the quantity from the largest value of the
unsigned type plus one.

The unary plus operator returns the value of an expression:

+ expression

Neither the unary plus nor unary minus operators produce lvalues.

6.4.2 Logical Negation
Consider the following expression:

! expression

The result is the logical (Boolean) negation of the expression. If the value of
the expression is 0, the negated result is 1; if the value of the expression is not
0, the negated result is 0. The type of the result is int. The expression must
have a scalar type.

6.4.3 Prefix Increment and Decrement Operators
C has two unary operators for incrementing and decrementing scalar objects.
The increment operator ++ adds 1 to its operand; the decrement operator --
subtracts 1. Both ++ and -- can be used either as prefix operators (before the
variable: ++n) or postfix operators (after the variable: n++). In both cases, the
effect is to increment n. The expression ++n increments n before its value is
used, while n++ increments n after its value is used.

Section 6.3.4 describes the postfix increment and decrement operators. This
section describes the prefix form.

Consider the following expression:

++modifiable lvalue
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After evaluating this expression, the result is the incremented rvalue, not the
corresponding lvalue. For this reason, expressions that use the increment and
decrement operators in this manner cannot appear by themselves on the left
side of an assignment expression where an lvalue is needed.

If declared as an integer or floating-point number, the operand is increased
or decreased by 1 (or 1.0). The results of the following C statements are
equivalent:

i = i + 1;
i++;
++i;
i += 1;

The following example shows the difference between the postfix and prefix
forms of the increment operator:

int i, j;
j = 5;
i = ++j; /* i = 6, j = 6 */
i = j++; /* i = 6, j = 7 */

If the operand is a pointer, the address is incremented by the size of the
addressed object as determined by its data type, not by the integer value 1.
For example:

char *cp;
int *ip;
++cp; /* Incremented by sizeof(char) */
++ip; /* Incremented by sizeof(int) */

Consider the following expression:

– – modifiable lvalue

The prefix operator -- is similar to the prefix operator ++ except that the value
of the operand is decremented.

When using the increment and decrement operators, do not depend on
the order of evaluation of expressions. Consider the following ambiguous
expression:

k = x[j] + ++j;

It is unspecified whether the value of j in x[j] is evaluated before or after
j is incremented. To avoid ambiguity, increment the variable in a separate
statement, as in the following example:

++j;
k = x[j] + j;
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6.4.4 Address Operator and Indirection
Consider the following expression:

&lvalue

This expression results in the address of the lvalue. The lvalue can be a
function designator or any lvalue that designates an object, including an
unqualified array identifier. The lvalue cannot be a register variable or a bit
field.

Consider the following expression:

*pointer

When an expression resolves to an address, the value stored at that address
can be accessed by using the dereferencing operator ( * ).

If the operand of * is a function name or function pointer, then the result is
a function designator. If the operand of * is a pointer to an object, then the
result is an lvalue designating the object. If an invalid value (0, for example) is
assigned to the pointer, then the * operation is undefined.

The dereferencing operator * always produces an lvalue. The address operator
& never produces an lvalue.

6.4.5 Bitwise Negation
Consider the following expression:

~ expression

The result is the bitwise negation (one’s complement) of the evaluated
expression. Each 1-bit is converted into a 0-bit and vice versa. The expression
must have an integer type. The compiler performs the usual arithmetic
conversions (see Section 6.11.1).

6.4.6 The Cast Operator
The cast operator forces the conversion of its scalar operand to a specified
scalar data type, or to void. The operator consists of a type-name, in
parentheses, that precedes an expression, as follows:

( type-name ) expression

The value of the expression is converted to the named data type, as if the
expression were assigned to a variable of that type. The expression’s type and
value are not themselves changed; the value is converted to the cast type for
the duration of the cast operation. The type-name has the following syntax:
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type-name:

type-specifier abstract-declarator

In simple cases, type-specifier is the keyword for a data type, such as char or
double, and abstract-declarator is empty. For example:

(int)x;

The type-specifier can also be an enum specifier, or a typedef name. The type-
specifier can be a structure or union only if the abstract-declarator is a pointer.
That is, the type-name can be a pointer to a structure or union, but cannot be
a structure or union because structures and unions are not scalar types. For
example:

(struct abc *)x /* allowed */

(struct abc)x /* not allowed */

The abstract-declarator in a cast operation is a declarator without an identifier.
Abstract declarators have the following syntax:

abstract-declarator:

empty
abstract-declarator
* abstract-declarator
abstract-declarator ( )
abstract-declarator [ constant-expression ]

The abstract-declarator cannot be empty in the following form:

(abstract-declarator)

Abstract declarators can include the brackets and parentheses that indicate
arrays and functions. However, cast operations cannot force the conversion of
any expression to an array, function, structure, or union. The brackets and
parentheses are used in operations such as the following example, which casts
the identifier P1 to pointer to array of int:

(int (*)[10]) P1;

This kind of cast operation does not change the contents of P1; it only causes
the compiler to treat the value of P1 as a pointer to such an array. For example,
casting pointers this way can change the scaling that occurs when an integer is
added to a pointer:

int *ip;
((char *)ip) + 1; /* Increments by 1 not by 4 */
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Cast operators can be used in the following conversions that involve pointers:

• A pointer can be converted to an integral type. A pointer occupies the
same amount of storage as objects of type int or long (or their unsigned
equivalents). Therefore, a pointer can be converted to any of these integer
types and back again without changing its value. No scaling takes place,
and the representation of the value does not change.

Converting from a pointer to a shorter integer type is similar to converting
from an unsigned long type to a shorter integer type; that is, the high-
order bits of the pointer are discarded.

Converting from a shorter integer type to a pointer is similar to the
conversion from a shorter integer type to an object of unsigned long type;
that is, the high-order bits of the pointer are filled with copies of the sign
bit. Compaq C, with the check option enabled, issues a warning message
for cast operations of this type.

• A pointer to an object or incomplete type can be converted to a pointer
to a different object or a different incomplete type. The resulting pointer
might not be valid if it is improperly aligned for the type pointed to. It is
guaranteed, however, that a pointer to an object of a given alignment can
be converted to a pointer to an object of the same alignment or less strict
alignment, and back again. The result is equal to the original pointer. (An
object of character type has the least strict alignment.)

• A pointer to a function of one type can be converted to a pointer to a
function of another type and back again; the result is equal to the original
pointer. If a converted pointer is used to call a function that has a type not
compatible with the type of the called function, the behavior is undefined.

6.4.7 The sizeof Operator
Consider the syntax of the following expressions:

sizeof expression

sizeof ( type-name )

type-name cannot be an incomplete type, function type, or a bit field. The
sizeof operator produces a compile-time integer constant value. expression
is inspected only to deduce its type; it is not fully evaluated. For example,
sizeof(i++) is equivalent to sizeof(i).
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The result of the sizeof operation is the size, in bytes, of the operand. In
the first case, the result of sizeof is the size determined by the type of the
expression. In the second case, the result is the size of an object of the named
type. The expression should be enclosed in parentheses if it contains operators,
because the precedence of sizeof is higher than that of most operators.

The syntax of type-name is the same as that for the cast operator. For example:

int x;
x = sizeof(char *); /* assigns the size of a character pointer to x */

The type of the sizeof operator’s result, size_t, is an unsigned integer type.
In Compaq C, size_t is unsigned int.

6.4.8 The __typeof__ Operator

The _ _typeof_ _ operator is another way to refer to the type of an expression.
This feature is provided for compatiblity with the gcc compiler.

The syntax of this operator keyword looks like sizeof, but the construct acts
semantically like a type-name defined with typedef.

_ _typeof_ _ ( expression )

_ _typeof_ _ ( type-name )

There are two ways of writing the argument to _ _typeof_ _: with an
expression or with a type.

The following is an example with an expression. This example assumes that x
is an array of ints; the type described is int:

__typeof__(x[0](1))

The following is an example with a type-name as the argument. The type
described is that of pointers to int:

__typeof__(int *)

A _ _typeof_ _ construct can be used anywhere a typedef name can be used.
For example, you can use it in a declaration, in a cast, or inside a sizeof or
_ _typeof_ _ operator:

__typeof__(*x) y; // Declares y with the type of what x points to.

__typeof__(*x) y[4]; // Declares y as an array of such values.

__typeof__(__typeof__(char *)[4]) y; // Declares y as an array of
// pointers to characters:
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The last example (the nested _ _typeof_ _ operators) is equivalent to the
following traditional C declaration:

char *y[4];

To see the meaning of the declaration using _ _typeof_ _, and why it might be
a useful way to write it that way, let’s rewrite it with these macros:

#define pointer(T) __typeof__(T *)
#define array(T, N) __typeof__(T [N])

Now the declaration can be rewritten this way:

array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to char.

6.5 Binary Operators
The binary operators are categorized as follows:

• Multiplicative operators: multiplication ( * ), remainder ( % ), and
division ( / ) (see Section 6.5.1)

• Additive operators: addition ( + ) and subtraction ( – ) (see Section 6.5.2)

• Shift operators: left shift ( << ) and right shift ( >> ) (see Section 6.5.3)

• Relational operators: less than ( < ), less than or equal to ( <= ), greater
than ( > ), and greater than or equal to ( >= ) (see Section 6.5.4)

• Equality operators: equality ( = = ) and inequality ( != ) (see Section 6.5.5)

• Bitwise operators: AND ( & ), OR ( | ), and XOR ( ^ ) (see Section 6.5.6)

• Logical operators: AND ( && ) and OR ( || ) (see Section 6.5.7)

The following sections describe these binary operators.

6.5.1 Multiplicative Operators
The multiplicative operators are *, /, and %. Operands must have arithmetic
type. Operands are converted, if necessary, according to the usual arithmetic
conversion rules (see Section 6.11.1).

The * operator performs multiplication.

The / operator performs division. When integers are divided, truncation is
toward zero. If either operand is negative, the result is truncated toward
zero (the largest integer of lesser magnitude than the algebraic quotient).
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The % operator divides the first operand by the second and yields the
remainder. Both operands must be integral. When both operands are unsigned
or positive, the result is positive. If either operand is negative, the sign of
the result is the same as the sign of the left operand.

The following statement is true if b is not zero:

(a/b)*b + a%b == a;

The Compaq C compiler, with the check option enabled, issues warnings for
these undefined behaviors:

• Integer overflow occurs

• Division by zero is attempted

• Remainder by zero is attempted

6.5.2 Additive Operators
The additive operators + and – perform addition and subtraction. Operands
are converted, if necessary, according to the usual arithmetic conversion rules
(see Section 6.11.1).

When two enum constants or variables are added or subtracted, the type of the
result is int.

When an integer is added to or subtracted from a pointer expression, the
integer is scaled by the size of the object being pointed to. The result has the
pointer’s type. For example:

int arr[10];
int *p = arr;
p = p + 1; /* Increments by sizeof(int) */

An array pointer can be decremented by subtracting an integral value from
a pointer or address; the same conversions apply as for addition. Pointer
arithmetic also applies one element beyond the end of the array. For example,
the following code works because the pointer arithmetic is limited to the
elements of the array and to only one element beyond:

int i = 0;
int x[5] = {0,1,2,3,4};
int y[5];
int *ptr = x;
while (&y[i] != (ptr + 5)) { /* ptr + 5 marks one beyond the end of the array */
y[i] = x[i];
i++;

}
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When two pointers to elements of the same array are subtracted, the result
(calculated by dividing the difference between the two addresses by the
length of one element) is of type ptrdiff_t, which in Compaq C is int, and
represents the number of elements between the two addressed elements. If
the two elements are not in the same array, the result of this operation is
undefined.

6.5.3 Shift Operators
The shift operators << and >> shift their left operand to the left or to the
right, respectively, by the number of bits specified by the right operand. Both
operands must be integral. The compiler performs integral promotions on each
of the operands (see Section 6.11.1.1). The type of the result is the type of the
promoted left operand. Consider the following expression:

E1 << E2

The result is the value of expression E1 shifted to the left by E2 bits. Bits
shifted off the end are lost. Vacated bits are filled with zeros. The effect of
shifting left is to multiply the left operand by 2 for each bit shifted. In the
following example, the value of i is 100:

int n = 25;
int m = 2;
int i;

i = n << m;

Consider the following expression:

E1 >> E2

The result is the value of expression E1 shifted to the right by E2 bits. Bits
shifted off the end are lost. If E1 is unsigned or if E1 has a signed type but
nonnegative value, vacated bits are filled with zeros. If E1 has a signed type
and negative value, vacated bits are filled with ones.

The result of the shift operation is undefined if the right operand is negative or
if its value is greater than the number of bits in an int.

For a nonnegative left operand, the effect of shifting right is to divide the left
operand by 2 for each bit shifted. In the following example, the value of i is
12:

int n = 100;
int m = 3;
int i;

i = n >> m;

Expressions and Operators 6–21



6.5.4 Relational Operators
The relational operators compare two operands and produce a result of type
int. The result is 0 if the relation is false, and 1 if it is true. The operators
are: less than ( < ), greater than ( > ), less than or equal ( <= ), and greater
than or equal ( >= ). Both operands must have an arithmetic type or must be
pointers to compatible types. The compiler performs the necessary arithmetic
conversions before the comparison (see Section 6.11.1).

When two pointers are compared, the result depends on the relative locations
of the two addressed objects. Pointers to objects at lower addresses are less
than pointers to objects at higher addresses. If two addresses indicate elements
in the same array, the address of an element with a lower subscript is less than
the address of an element with a higher subscript.

The relational operators associate from left to right. Therefore, the following
statement relates a to b, and if a is less than b, the result is 1 (true). If a is
greater than or equal to b, the result is 0 (false). Then, 0 or 1 is compared with
c for the expression result. This statement does not determine ‘‘if b is between
a and c’’.

if ( a < b < c )
statement;

To check if b is between a and c, use the following code:

if ( a < b && b < c )
statement;

6.5.5 Equality Operators
The equality operators, equal ( = = ) and not-equal ( != ), produce a result of type
int, so that the result of the following statement is 1 if both operands have the
same value, and 0 if they do not:

a == b

Operands must have one of the following type combinations:

• Both operands have an arithmetic type.

• Both operands are pointers to qualified or unqualified versions of
compatible types.

• One operand is a pointer to an object or incomplete type and the other is a
pointer to a qualified or unqualified version of void.

• One operand is a pointer and the other is a null pointer constant.

Operands are converted, if necessary, according to the usual arithmetic
conversion rules (see Section 6.11.1).
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Two pointers or addresses are equal if they identify the same storage location.

Note

Although different symbols are used for assignment ( = ) and equality
( = = ), C allows either operator in all contexts, so be careful not to
confuse them. Consider the following example:

if ( x = 1 )
statement_1;

else
statement_2;

In this example, statement_1 always executes, because the result of
the assignment x = 1 is equivalent to the value of x, which equals 1 (or
true).

6.5.6 Bitwise Operators
The bitwise operators require integral operands. The usual arithmetic
conversions are performed (see Section 6.11.1). The result of the expression
is the bitwise AND ( & ), inclusive OR ( | ), or exclusive OR ( ^ ), of the two
operands. The order of evaluation of their operands is not guaranteed.

The operands are evaluated bit by bit. The result of the & operator is 0 if one
bit value is 0 and the other is 1, or if both bit values are 0. The result is 1 if
both bit values are 1.

The result of the | operator is 0 if both bit values are 0. The result for each
bit is 1 if either bit value is 1, or both bit values are 1.

The result of the ^ operator is 0 if both bit values are 0, or if both bit values
are 1. The result for each bit is 1 if either bit value is 1 and the other is 0.

6.5.7 Logical Operators
The logical operators are AND ( && ) and OR ( || ). These operators guarantee
left-to-right evaluation. The result of the expression (of type int) is either 0
(false) or 1 (true). The operands need not have the same type, but both types
must be scalar. If the compiler can make an evaluation by examining only
the left operand, the right operand is not evaluated. Consider the following
expression:

E1 && E2
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The result of this expression is 1 if both operands are nonzero, or 0 if one
operand is 0. If expression E1 is 0, expression E2 is not evaluated because the
result is the same regardless of E2’s value.

Similarly, the following expression is 1 if either operand is nonzero, and 0
otherwise. If expression E1 is nonzero, expression E2 is not evaluated, because
the result is the same regardless of E2’s value.

E1 || E2

6.6 Conditional Operator
The conditional operator ( ?: ) takes three operands. It tests the result of the
first operand and then evaluates one of the other two operands based on the
result of the first. Consider the following example:

E1 ? E2 : E3

If expression E1 is nonzero (true), then E2 is evaluated, and that is the value
of the conditional expression. If E1 is 0 (false), E3 is evaluated, and that is
the value of the conditional expression. Conditional expressions associate from
right to left. In the following example, the conditional operator is used to get
the minimum of x and y:

a = (x < y) ? x : y; /* a = min(x, y) */

There is a sequence point after the first expression (E1). The following
example’s result is predictable, and is not subject to unplanned side effects:

i++ > j ? y[i] : x[i];

The conditional operator does not produce an lvalue. Therefore, a statement
such as a ? x : y = 10 is not valid.

The following restrictions apply:

• The first operand must have a scalar type.

• One of the following must hold for the second and third operands:

Both operands have an arithmetic type (the usual arithmetic
conversions are performed to bring the second and third operands
to a common type). The result has that type.

Both operands have compatible structure or union types.

Both operands have a type of void.

Both operands are pointers to qualified or unqualified versions of
compatible types. The result has the composite type.
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One operand is a pointer and the other is a null pointer constant. The
result has the type of the pointer that is not a null pointer constant.

One operand is a pointer to an object or incomplete type and the other
is a pointer to a qualified or unqualified version of void. The result has
the type pointer to void.

6.7 Assignment Operators
There are several assignment operators. Assignments result in the value of
the target variable after the assignment. They can be used as subexpressions
in larger expressions. Assignment operators do not produce lvalues.

Assignment expressions have two operands: a modifiable lvalue on the left and
an expression on the right. A simple assignment consists of the equal sign ( = )
between two operands:

E1 = E2;

The value of expression E2 is assigned to E1. The type is the type of E1, and
the result is the value of E1 after completion of the operation.

A compound assignment consists of two operands, one on either side of the
equal sign ( = ), in combination with another binary operator. For example:

E1 += E2;

This is equivalent to the following simple assignment (except that in the
compound assignment E1 is evaluated once, while in the simple assignment E1
is evaluated twice):

E1 = E1 + E2;

In the following example, the following assignments are equivalent:

a *= b + 1;

a = a * (b + 1);

In another example, the following expression adds 100 to the contents of
number[1]:

number[1] += 100;

The result of this expression is the result after the addition and has the same
type as number[1].

If both assignment operands are arithmetic, the right operand is converted to
the type of the left before the assignment (see Section 6.11.1).
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The assignment operator ( = ) can be used to assign values to structures and
unions. In the VAX C compatibility mode of Compaq C, one structure can
be assigned to another as long as the structures are defined to be the same
size, in bytes. In ANSI mode, the structure values must also have the same
type. With all compound assignment operators, all right operands and all
left operands must be either pointers or evaluate to arithmetic values. If the
operator is –= or +=, the left operand can be a pointer, and the right operand
(which must be integral) is converted in the same manner as the right operand
in the binary plus ( + ) and minus ( – ) operations.

Do not reverse the characters that comprise a compound assignment operator,
as in the following example:

E1 =+ E2;

This is an obsolete form that is no longer supported, but it will pass through
the compiler undetected. (It is interpreted as an assignment operator followed
by the unary plus operator).

6.8 Comma Operator
When two or more expressions are separated by the comma operator, they
evaluate from left to right. The result has the type and value of the rightmost
expression (although side effects of the other expressions, if any, do take place).
The result is not an lvalue. In the following example, the value 1 is assigned
to R, and the value 2 is assigned to T:

R = T = 1, T += 2, T -= 1;

Side effects for each expression are completed before the next expression is
evaluated.

A comma expression must be enclosed with parentheses if it appears where
commas have some other meaning, as in argument and initializing lists.
Consider the following expression:

f(a, (t=3,t+2), c)

This example calls the function f with the arguments a, 5, and c. In addition,
variable t is assigned the value 3.
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6.9 Constant Expressions
A constant expression is an expression that contains only constants. A
constant expression can be evaluated during compilation rather than at run
time, and can be used in any place that a constant can occur. In the following
example, limit+1 is a constant expression, and is evaluated at compile time:

#define limit 500
char x[limit+1]

A constant expression cannot contain assignment, increment, decrement,
function-call, or comma operators, except when they are within the operand of
a sizeof operator. Each constant expression must evaluate to a constant that
is in the range of representable values for its type.

There are several contexts in which C requires an expression that must
evaluate to a constant:

• The size of a bit field

• The value of an enumeration constant

• The size of an array (and the second and subsequent dimensions in all
array declarations)

• The value of a case label

• An integral constant expression used in conditional-inclusion preprocessing
directives

• The initializer list for an object with static storage duration

6.9.1 Integral Constant Expressions
An integral constant expression has an integral type and contains only
operands that are integer constants, enumeration constants, character
constants, sizeof expressions whose operand does not have variable-length
array type or a parenthesized name of such a type, or floating constants that
are the immediate operands of casts. Cast operands in an integral constant
expression only convert arithmetic types to integral types, except as part of an
operand to the sizeof operator.

C allows more latitude for constant expressions in initializers. Such a constant
expression can evaluate to one of the following:

• An arithmetic constant expression

• A null pointer constant

• An address constant
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• An address constant for an object type plus or minus an integral constant
expression

6.9.2 Arithmetic Constant Expressions
An arithmetic constant expression has an arithmetic type and contains only
operands that are integer constants, floating constants, enumeration constants,
character constants, or sizeof expressions whose operand does not have
variable-length array type or a parenthesized name of such a type. Cast
operators in an arithmetic constant expression only convert arithmetic types to
arithmetic types, except as part of an operand to the sizeof operator.

6.9.3 Address Constants
An address constant is a pointer to an lvalue designating an object of static
storage duration (see Section 2.10), or to a function designator. Address
constants must be created explicitly by using the unary & operator, or implicitly
by using an expression of array or function type. The array subscript [ ] and
member access operators . and –>, the address & and indirection * unary
operators, and pointer casts can be used to create an address constant, but the
value of an object cannot be accessed by use of these operators.

6.10 Compound Literal Expressions
A compound literal, also called a constructor expression, is a form of expression
that constructs the value of an object, including objects of array, struct, or
union type.

In the C89 Standard, passing a struct value to a function typically involves
declaring a named object of the type, initializing its members, and passing that
object to the function. With the C9x Standard, this can now be done with a
single compound literal expression. (Note that compound literal expressions
are not supported in the common C, VAX C, and Strict ANSI89 modes of the
Compaq C compiler.)

A compound literal is an unnamed object specified by a syntax consisting of a
parenthesized type name (the same syntax as a cast operator1) followed by a
brace-enclosed list of initializers. The value of this unnamed object is given by
the initializer list. The initializer list can use the designator syntax.

For example, to construct an array of 1000 ints that are all zero except for
array element 9, which is to have a value of 5, you can write the following:

(int [1000]){[9] = 5}.

1 However, this differs from a cast expression in that a cast specifies a conversion to
scalar types or void only, and the result of a cast expression is not an lvalue.
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A compound literal object is an lvalue. The object it designates has static
storage duration if it occurs outside all function definitions. Otherwise, it has
automatic storage duration associated with the nearest enclosing block.

Usage Notes

• The type name must specify an object type or an array of unknown
size.

• An initializer cannot provide a value for an object not contained
within the entire unnamed object specified by the compound literal.

• If the compound literal occurs outside the body of a function, the
initializer list must consist of constant expressions.

• If the type name specifies an array of unknown size, the size is
determined by the initializer list as specified in Section 4.7.1, and
the type of the compound literal is that of the completed array type.
Otherwise (when the type name specifies an object type), the type
of the compound literal is that specified by the type name. In either
case, the result is an lvalue.

• All the semantic rules and constraints for initializer lists in
Sections 4.2, 4.7.1, 4.8.4, 4.8.5, and 4.9 are applicable to compound
literals.

• String literals, and compound literals with const-qualified types,
need not designate distinct objects. This allows implementations
to share storage for string literals and constant compound literals
with the same or overlapping representations.

The following examples illustrate the use of compound literals.

Examples

1.
int *p = (int []){2, 4};

This example initializes p to point to the first element of an array of two
ints, the first having the value 2 and the second having the value 4. The
expressions in this compound literal are required to be constant. The
unnamed object has static storage duration.
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2.
void f(void)
{

int *p;
/*...*/
p = (int [2]){*p};
/*...*/

}

In this example, p is assigned the address of the first element of an array
of two ints, the first having the value previously pointed to by p and the
second having the value zero. The expressions in this compound literal
need not be constant. The unnamed object has automatic storage duration.

3.
drawline((struct point){.x=1, .y=1},

(struct point){.x=3, .y=4});

Or, if drawline instead expected pointers to struct point:

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

Initializers with designations can be combined with compound literals.
Structure objects created using compound literals can be passed to
functions without depending on member order.

4.
(const float []){1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6}

A read-only compound literal can be specified through constructions like
the one in this example.

5.
"/tmp/testfile"
(char []){"/tmp/testfile"}
(const char []){"/tmp/testfile"}

The three expressions in this example have different meanings:

The first always has static storage duration and has type "array of char",
but need not be modifiable.

The last two have automatic storage duration when they occur within the
body of a function, and the first of these two is modifiable.
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6. (const char []){"abc"} == "abc"

Like string literals, const-qualified compound literals can be placed into
read-only memory and can even be shared. This example might yield 1 if
the literal’s storage is shared.

7.
struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

Because compound literals are unnamed, a single compound literal cannot
specify a circularly linked object. In this example, there is no way to
write a self-referential compound literal that could be used as the function
argument in place of the named object endless_zeros.

8.
struct s { int i; };

int f (void)
{

struct s *p = 0, *q;
int j = 0;

while (j < 2)
q = p, p = &((struct s){ j++ });

return p == q && q->i == 1;
}

As shown in this example, each compound literal creates only a single *
object in a given scope.

The function f( ) always returns the value 1.

6.11 Data-Type Conversions
C performs data-type conversions in the following four situations:

• When two or more operands of different types appear in an expression.

• When arguments of type char, short, and float are passed to a function
using the old style declaration.

• When arguments that do not conform exactly to the parameters declared in
a function prototype are passed to a function.
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• When the data type of an operand is deliberately converted by the cast
operator. See Section 6.4.6 for more information on the cast operator.

The following sections describe how operands and function arguments are
converted.

6.11.1 Usual Arithmetic Conversions
The following rules—referred to as the usual arithmetic conversions—govern
the conversion of all operands in arithmetic expressions. The effect is to bring
operands to a common type, which is also the type of the result. The rules
govern in the following order:

1. If either operand is not of arithmetic type, no conversion is performed.

2. If either operand has type long double, the other operand is converted to
long double.

3. Otherwise, if either operand has type double, the other operand is
converted to double.

4. Otherwise, if either operand has type float, the other operand is converted
to float.

5. Otherwise, the integral promotions are performed on both operands, and
the following rules apply:

a. If either operand has type unsigned long int, the other operand is
converted to unsigned long int.

b. Otherwise, if one operand has type long int and the other has type
unsigned int, and if a long int can represent all values of an unsigned
int, the operand of type unsigned int is converted to long int. If a
long int cannot represent all the values of an unsigned int, both
operands are converted to unsigned long int.

c. Otherwise, if either operand has type long int, the other operand is
converted to long int.

d. Otherwise, if either operand has type unsigned int, the other operand
is converted to unsigned int.

e. Otherwise, both operands have type int.

The following sections elaborate on the usual arithmetic conversion rules.
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6.11.1.1 Characters and Integers
A char, short int, or int bit field, either signed or unsigned, or an object
that has enumeration type, can be used in an expression wherever an int
or unsigned int is permitted. If an int can represent all values of the
original type, the value is converted to an int. Otherwise, it is converted
to an unsigned int. These conversion rules are called the integral promotions.

This implementation of integral promotion is called value preserving, as
opposed to unsigned preserving in which unsigned char and unsigned short
widen to unsigned int. Compaq C uses value-preserving promotions, as
required by the ANSI C standard, unless the common C mode is specified.

To help locate arithmetic conversions that depend on unsigned preserving
rules, Compaq C, with the check option enabled, flags any integral promotions
of unsigned char and unsigned short to int that could be affected by the
value-preserving approach for integral promotions.

All other arithmetic types are unchanged by the integral promotions.

In Compaq C, variables of type char are bytes treated as signed integers.
When a longer integer is converted to a shorter integer or to char, it is
truncated on the left; excess bits are discarded. For example:

int i;
char c;

i = 0xFFFFFF41;
c = i;

This code assigns hex 41 (’A’) to c. The compiler converts shorter signed
integers to longer ones by sign extension.

6.11.1.2 Signed and Unsigned Integers
Conversions also take place between the various kinds of integers.

When a value with an integral type is converted to another integral type (such
as int converted to long int) and the value can be represented by the new
type, the value is unchanged.

When a signed integer is converted to an unsigned integer of equal or greater
size, and the signed integer value is nonnegative, its value is unchanged. If the
signed integer value is negative, then:

• If the unsigned integer type is larger, the signed integer is first promoted
to the signed integer that corresponds to the unsigned integer; then the
value is converted to unsigned by adding to it one greater than the largest
number that can be represented in the unsigned integer type.
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• If the unsigned integer type is equal or smaller than the signed integer
type, then the value is converted to unsigned by adding to it one greater
than the largest number that can be represented in the unsigned integer
type.

When an integer value is demoted to an unsigned integer of smaller size, the
result is the nonnegative remainder of the value divided by the number one
greater than the largest representable unsigned value for the new integral
type.

When an integer value is demoted to a signed integer of smaller size, or an
unsigned integer is converted to its corresponding signed integer, the value is
unchanged if it is small enough to be represented by the new type. Otherwise,
the result is truncated; excess high-order bits are discarded and precision is
lost.

Conversion between integral types of the same size, whether signed or
unsigned, results in no machine-level representation change.

6.11.1.3 Floating and Integral
When a floating-type operand is converted to an integer, the fractional part is
discarded.

When a floating-type value is to be converted at compile time to an integer
or another floating type, and the result cannot be represented, the compiler
reports a warning in the following instances:

• The conversion is to unsigned int and the result cannot be represented by
the unsigned int type.

• The conversion is to a type other than unsigned int, and the result cannot
be represented by the int type.

When a value of integral type is converted to floating type, and the value is
in the range of values that can be represented, but not exactly, the result
of the conversion is either the next higher or next lower value, whichever is
the natural result of the conversion on the hardware. See your Compaq C
documentation for the conversion result on your platform.

6.11.1.4 Floating Types
If an operand of type float appears in an expression, it is treated as a single-
precision object unless the expression also involves an object of type double or
long double, in which case the usual arithmetic conversion applies.

When a float is promoted to double or long double, or a double is promoted
to long double, its value is unchanged.
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The behavior is undefined when a double is demoted to float, or a long
double to double or float, if the value being converted is outside the range of
values that can be represented.

If the value being converted is inside the range of values that can be
represented, but not exactly, the result is rounded to either the next higher
or next lower representable float value.

6.11.2 Pointer Conversions
Although two types (for example, int and long) can have the same
representation, they are still different types. This means that a pointer to
int cannot be assigned to a pointer to long without using a cast. Nor can
a pointer to a function of one type be assigned to a pointer to a function of
a different type without using a cast. In addition, pointers to functions that
have different parameter-type information, including the old-style absence
of parameter-type information, are different types. In these instances, if a
cast is not used, the compiler issues an error. Because there are alignment
restrictions on some target processors, access through an unaligned pointer can
result in a much slower access time or a machine exception.

A pointer to void can be converted to or from a pointer to any incomplete
or object type. If a pointer to any incomplete or object type is converted to a
pointer to void and back, the result compares equal to the original pointer.

An integral constant expression equal to 0, or such an expression cast to the
void * type, is called a null pointer constant. If a null pointer constant is
assigned to or compared for equality with a pointer, the constant is converted
to a pointer of that type. Such a pointer is called a null pointer, and is
guaranteed to compare unequal to a pointer to any object or function.

An array designator is automatically converted to a pointer to the array type,
and the pointer points to the first element of the array.

6.11.3 Function Argument Conversions
The data types of function arguments are assumed to match the types of the
formal parameters unless a function prototype declaration is present. In the
presence of a function prototype, all arguments in the function invocation
are compared for assignment compatibility to all parameters declared in the
function prototype declaration. If the type of the argument does not match the
type of the parameter but is assignment compatible, C converts the argument
to the type of the parameter (see Section 6.11.1). If an argument in the
function invocation is not assignment compatible to a parameter declared in
the function prototype declaration, an error message is generated.
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If a function prototype is not present, all arguments of type float are
converted to double, all arguments of type char or short are converted
to type int, all arguments of type unsigned char and unsigned short are
converted to unsigned int, and an array or function name is converted to
the address of the named array or function. The compiler performs no other
conversions automatically, and any mismatches after these conversions are
programming errors.

A function designator is an expression that has function type. Except when
it is the operand of the sizeof operator or the unary & operator, a function
designator with type "function returning type" is converted to an expression
that has type "pointer to function returning type."
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7
Statements

This section describes the following kinds of statements in the C programming
language. Except as indicated in this chapter, statements are executed in the
sequence in which they appear in a function body:

• Labeled statements (Section 7.1)

• Compound statements (Section 7.2)

• Expression statements (Section 7.3)

• Null statements (Section 7.4)

• Selection statements (Section 7.5)

• Iteration statements (Section 7.6)

• Jump statements (Section 7.7)

7.1 Labeled Statements
A label is an identifier used to flag a location in a program as the target of a
goto statement or switch statement. A label has the following syntax:

identifier : statement

case constant-expression : statement
default : statement

The scope of the label is the containing function body. Variables can have
the same name as a label in the function because labels and variables have
different name spaces (see Section 2.15).

There are three kinds of labeled statements in C:

• Any statement preceded by a label

• A case statement

• A default statement
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The last two statements are discussed in Section 7.5.2 because they can appear
only within a switch statement.

7.2 Compound Statements
A compound statement, or block, allows a sequence of statements to be treated
as a single statement. A compound statement begins with a left brace, contains
any mix of declarations and statements, and ends with a right brace, as shown
in the following example:

{
int a;
a = 1;
int b;
b = 2;

}

Note

The ability to mix declarations and statements in any sequence in a
compound statement is not allowed in common C, VAX C, and Strict
ANSI89 modes. In these modes, the declarations must be specified
first, followed by the statements.

Block declarations are local to the block, and, for the rest of the block, they
supersede other declarations of the same name in outer scopes.

A block is entered normally when control flows into it, or when a goto
statement transfers control to a label at the beginning of the block itself. Each
time the block is entered normally, storage is allocated for auto or register
variables. If, on the other hand, a goto statement transfers control to a label
inside the block or if the block is the body of a switch statement, these storage
allocations do not occur. For more information about storage classes, see
Section 2.10.

Function definitions contain compound statements. The compound statement
following the parameter declarations in a function definition is called the
function body.
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7.3 Expression Statements
Any valid expression can be used as a statement by following the expression
with a semicolon, as shown in the following example:

i++;

This statement increments the value of the variable i. Note that i++ is a
valid C expression that can appear in more complex C statements. For more
information about the C expressions, see Chapter 6.

7.4 Null Statements
A null statement is used to provide a null operation in situations where the
grammar of the language requires a statement, but the program requires no
work to be done. The null statement consists of a semicolon:

;

The null statement is useful with the if, while, do, and for statements. The
most common use of this statement is in loop operations in which all the loop
activity is performed by the test portion of the loop. For example, the following
statement finds the first element of an array that has a value of 0:

for (i=0; array[i] != 0; i++)
;

In this example, the for statement is executed for its side effects only; the loop
body is a null statement. See Section 7.6 for more information about iteration
statements.

The null statement is also useful where a label is needed just before a brace
that terminates a compound statement. (A label cannot immediately precede
the right brace; it must always be attached to a statement.) For example:

if (expression1)
{
...

goto label_1; /* Terminates this part of the if statement */
...

label_1: ;
}
else ...
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7.5 Selection Statements
A selection statement selects among a set of statements depending on the value
of a controlling expression. The selection statements are the if statement and
the switch statement, which are discussed in the following sections.

7.5.1 The if Statement
The if statement has the following syntax:

if ( expression )

statement

elseopt

else-statementopt

The statement following the control expression is executed if the value of the
control expression is true (nonzero). An if statement can be written with an
optional else clause that is executed if the control expression is false (0).

Consider the following example:

if (i < 1)
funct(i);

else
{
i = x++;
funct(i);
}

In this example, if the value of i is less than 1, then the statement funct(i)
is executed and the compound statement following the keyword else is
not executed. If the value of i is not less than 1, then only the compound
statement following the keyword else is executed.

The control expression in a selection statement is usually a logical expression,
but it can be any expression of scalar type.

When if statements are nested, an else clause matches the most recent if
statement that does not have an else clause, and is in the same block. For
example:
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if (i < 1)
{
if (j < 1)

funct(j);
if (k < 1) /* This if statement is associated with */

funct(k);
else /* this else clause. */

funct(j + k);
}

7.5.2 The switch Statement
The switch statement executes one or more of a series of cases, based on the
value of a controlling expression. The switch statement has the following
syntax:

switch ( expression )

statement

The usual arithmetic conversions are performed on the control expression,
but the result must have an integral type. For more information about
data-type conversion, see Section 6.11. The switch statement is typically a
compound statement, within which are one or more case statements executed
if the control expression matches the case. The syntax for a case label and
expression follows:

case constant-expression : statement

The constant expression must have an integral type. No two case labels can
specify the same value. There is no limit on the number of case labels in a
switch statement.

Only one statement in the compound statement can have the following label:

default :

The case and default labels can occur in any order, but it is common practice
for the default statement to follow the case statements. Note that execution
flows from the selected case into the cases following unless explicit action is
taken, such as a break statement.

When the switch statement is executed, the following sequence takes place:

1. The switch control expression is evaluated (and integral promotions
applied) and compared with the constant expressions in the case labels.
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2. If the control expression’s value matches a case label, control transfers to
the statement following that label. If a break statement is encountered,
the switch statement terminates; otherwise, execution continues into the
following case or default statements until a break statement or the end of
the switch statement is encountered (see Example 7–1).

A switch statement can also be terminated by a return or goto statement.
If a switch statement is inside a loop, the switch statement is terminated
if a continue statement terminates the loop. See Section 7.7 for more
information about these statements.

3. If the control expression’s value does not match any case label, and there is
a default label, control is transferred to the statement following that label.
If a break statement does not end the default statement, and a case label
follows, that case statement is executed.

4. If the control expression’s value does not match any case label and there is
no default label, execution of the switch statement terminates.

Example 7–1 uses the switch statement to count blanks, tabs, and new-line
characters entered from the terminal.

Example 7–1 Using switch to Count Blanks, Tabs, and New Lines

/* This program counts blanks, tabs, and new lines in text *
* entered from the keyboard. */

(continued on next page)
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Example 7–1 (Cont.) Using switch to Count Blanks, Tabs, and New Lines

#include <stdio.h>
main()
{

int number_tabs = 0, number_lines = 0, number_blanks = 0;
int ch;
while ((ch = getchar()) != EOF)

switch (ch)
{

1 case ’\t’: ++number_tabs;
2 break;

case ’\n’: ++number_lines;
break;

case ’ ’ : ++number_blanks;
break;

default:;
}

printf("Blanks\tTabs\tNewlines\n");
printf("%6d\t%6d\t%6d\n", number_blanks,

number_tabs,number_lines);
}

Key to Example 7–1:

1 A series of case statements is used to increment separate counters
depending on the character encountered.

2 The break statement causes control to return to the while loop. Control is
passed to the while loop if the value of ch does not match any of the case
constant expressions.

Without the break statements, each case would drop through to the next.

If variable declarations appear in the compound statement within a switch
statement, initializers on auto or register declarations are ineffective.
However, initializations within the statements following a case are effective.
Consider the following example:
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switch (ch)
{

int nx = 1; /* Initialization ignored */
printf("%d", n); /* This first printf is not executed */
case ’a’ :
{ int n = 5; /* Proper initialization occurs */
printf("%d", n);
break; }

case ’b’ :
{ break; }

default :
{ break; }

}

In this example, if ch = = ’a’, then the program prints the value 5. If the
variable equals any other letter, the program prints nothing because the
initialization occurs outside of the case label, and statements outside of the
case label are ineffective.

7.6 Iteration Statements
An iteration statement, or loop, repeatedly executes a statement, known as the
loop body, until the controlling expression is false (0). The control expression
must have a scalar type.

The while statement evaluates the control expression before executing the loop
body (see Section 7.6.1).

The do statement evaluates the control expression after executing the loop
body; at least one execution of the loop body is guaranteed (see Section 7.6.2).

The for statement executes the loop body based on the evaluation of the
second of three expressions (see Section 7.6.3).

7.6.1 The while Statement
The while statement evaluates a control expression before each execution
of the loop body. If the control expression is true (nonzero), the loop body is
executed. If the control expression is false (0), the while statement terminates.
The while statement has the following syntax:

while ( expression )

statement

7–8 Statements



Consider the following while statement:

n = 0;
while (n < 10)

{
a[n] = n;
n++;

}

This statement tests the value of n; if n is less than 10, it assigns n to the
nth element of the array a and then increments n. The control expression (in
parentheses) is then evaluated; if true (nonzero), the loop body is executed
again; if false (0), the while statement terminates. If the statement n++ were
missing from the loop body, this while statement would never terminate. If the
statement n = 0 were replaced by the statement n = 10, the control expression
is initially false (0), and the loop body is never executed.

7.6.2 The do Statement
The do statement evaluates the control expression after each execution of the
loop body. The do statement has the following syntax:

do

statement
while ( expression ) ;

The loop body is executed at least once. The control expression is evaluated
after each execution of the loop body. If the control expression is true (nonzero),
the statement is executed again. If the control expression is false (0), the do
statement terminates.

7.6.3 The for Statement
The for statement evaluates three expressions and executes the loop body until
the second controlling expression evaluates to false (0). The for statement
is useful for executing a loop body a specified number of times. The for
statement has the following syntax:

for ( expression-1opt ;

expression-2opt ; expression-3opt)
statement

The for statement is equivalent to the following code:

expression-1;

while ( expression-2 )

{
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statement
expression-3 ;
}

The for statement executes the loop body zero or more times. Semicolons ( ; )
are used to separate the control expressions. A for statement executes the
following steps:

1. expression-1 is evaluated once before the first iteration of the loop. This
expression usually specifies the initial values for variables used in the loop.

2. expression-2 is any scalar expression that determines whether to terminate
the loop. expression-2 is evaluated before each loop iteration. If the
expression is true (nonzero), the loop body is executed. If the expression
is false (0), execution of the for statement terminates.

3. expression-3 is evaluated after each iteration.

4. The for statement executes until expression-2 is false (0), or until a jump
statement, such as break or goto, terminates execution of the loop.

Any of the three expressions in a for loop can be omitted:

• If expression-2 is omitted, the test condition is always true; that is, the
while loop equivalent becomes while(1). This is an infinite loop. For
example:

for (i = 0; ;i++)
statement;

Infinite loops can be terminated with a break, return, or goto statement
within the loop body.

• If either expression-1 or expression-3 is omitted from the for statement,
the omitted expression is evaluated as a void expression and is effectively
dropped from the expansion. For example:

n = 1;
for ( ; n < 10; n++)

func(n);

In this example, n is initialized before the for statement is executed.

In relaxed ANSI C mode, the first clause of the for statement can be a
declaration whose scope includes the remaining clauses of the for header
and the entire loop body. This is normally used to declare and initialize a local
loop control variable. For example:

for (int i=0; i<10; i++)
printf("%d\n", i);
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7.7 Jump Statements
Jump statements cause an unconditional jump to another statement elsewhere
in the code. They are used primarily to interrupt switch statements and loops.

The jump statements are the goto statement, the continue statement, the
break statement, and the return statement, which are discussed in the
following sections.

7.7.1 The goto Statement
The goto statement unconditionally transfers program control to a labeled
statement, where the label identifier is in the scope of the function containing
the goto statement. The labeled statement is the next statement executed.
The goto statement has the following syntax:

goto identifier;

Care must be taken when branching into a block by using the goto statement,
because storage is allocated for automatic variables declared within a block
when the block is activated. When a goto statement branches into a block,
automatic variables declared in the block are not initialized.

7.7.2 The continue Statement
The continue statement passes control to the end of the immediately enclosing
while, do, or for statement. The continue statement has the following syntax:

continue;

The continue statement is equivalent to a goto statement within an iteration
statement that passes control to the end of the loop body. For example, the
following two loops are equivalent:

while(1) while(1)
{ {

. .

. .

. .
goto label_1; continue;
. .
. .
. .
label_1:
; ;

} }

The continue statement can be used only in loops. A continue inside a switch
statement that is inside a loop causes continued execution of the enclosing loop
after exiting from the body of the switch statement.
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7.7.3 The break Statement
The break statement terminates execution of the immediately enclosing while,
do, for, or switch statement. Control passes to the statement following the
loop body (or the compound statement of a switch statement). The break
statement has the following syntax:

break;

See Example 7–1 which uses a break statement within a switch statement.

7.7.4 The return Statement
The return statement terminates execution of a function and returns control
to the calling function, with or without a return value. A function may contain
any number of return statements. The return statement has the following
syntax:

return expressionopt;

If present, the expression is evaluated and its value is returned to the calling
function. If necessary, its value is converted to the declared type of the
containing function’s return value.

A return statement with an expression cannot appear in a function whose
return type is void. For more information about the void data type and
function return types, see Sections 3.5 and 3.4.1.

If there is no expression and the function is not defined as void, the return
value is undefined. For example, the following main function returns an
unpredictable value to the operating system:

main ( )
{
return;

}

Reaching the closing brace that terminates a function is equivalent to executing
a return statement without an expression.
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8
Preprocessor Directives and Predefined

Macros

The C preprocessor provides the ability to perform macro substitution,
conditional compilation, and inclusion of named files. Preprocessor directives,
lines beginning with # and possibly preceded by white space, are used to
communicate with the preprocessor.

The following sections describe the preprocessor directives and operators
available with the Compaq C compiler:

• The #define and #undef directives, and the # and ## operators
(Section 8.1)

• The #if, #ifdef, #ifndef, #else, #elif, and #endif directives, and the
defined operator (Section 8.2)

• The #include directive (Section 8.3)

• The #line directive (Section 8.4)

• The #pragma directive (Section 8.5)

• The #error directive (Section 8.6)

• The null directive (#) (Section 8.7)

Preprocessor directives are independent of the usual scope rules; they remain
in effect from their occurrence until the end of the compilation unit or until
their effect is canceled.

See Section 8.2 for more information about conditional compilation. See
your platform-specific Compaq C documentation for implementation-defined
information about preprocessor directives.

The ANSI standard allows only comments as text following a preprocessing
directive. The Compaq C compiler issues a warning if this syntax rule is
violated in all modes but the strict ANSI mode, in which it issues an error
message.
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8.1 Macro Definition (#define and #undef)
The #define directive specifies a macro identifier and a replacement list, and
terminates with a new-line character. The replacement list, a sequence of
preprocessing tokens, is substituted for every subsequent occurrence of that
macro identifier in the program text, unless the identifier occurs inside a
character constant, a comment, or a literal string. The #undef directive is used
to cancel a definition for a macro.

A macro definition is independent of block structure, and is in effect from the
#define directive that defines it until either a corresponding #undef directive
or the end of the compilation unit is encountered.

The #define directive has the following syntax:

#define identifier replacement-list newline

#define identifier ( identifier-listopt ) replacement-list newline

If the replacement-list is empty, subsequent occurrences of the identifier are
deleted from the source file.

The first form of the #define directive is called an object-like macro. The
second form is called a function-like macro.

The #undef directive has the following syntax:

#undef identifier newline

This directive cancels a previous definition of the identifier by #define.
Redefining a macro previously defined is not legal, unless the new definition is
precisely the same as the old.

The replacement list in the macro definition, as well as arguments in a
function-like macro reference, can contain other macro references. Compaq C
does not limit the depth to which such references can be nested.

For a given macro definition, any macro names contained in the replacement
list are themselves replaced by their currently specified replacement lists. If
a macro name being defined is contained in its own replacement list or in a
nested replacement list, it is not replaced. These nonreplaced macro names
are then no longer available for further replacement, even if they are later
examined in contexts in which they would otherwise be replaced.

The following example shows nested #define directives:
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/* Show multiple substitutions and listing format. */

#define AUTHOR james + LAST

main()
{

int writer,james,michener,joyce;

#define LAST michener
writer = AUTHOR;
#undef LAST
#define LAST joyce
writer = AUTHOR;

}

After this example is compiled with the appropriate options to show
intermediate macro expansions, the following listing results:

1 /* Show multiple substitutions and listing format. */
2
3 #define AUTHOR james + LAST
4
5 main()
6 {
7 int writer, james, michener, joyce;
8
9 #define LAST michener

10 writer = AUTHOR;
10.1 james + LAST
10.2 michener
11 #undef LAST
12 #define LAST joyce
13 writer = AUTHOR;
13.1 james + LAST
13.2 joyce
14 }

On the first pass, the compiler replaces the identifier AUTHOR with the
replacement list james + LAST. On the second pass, the compiler replaces the
identifier LAST with its currently defined replacement list value. At line 9,
the replacement list value for LAST is the identifier michener, so michener
is substituted at line 10. At line 12, the replacement list value for LAST is
redefined to be the identifier joyce, so joyce is substituted at line 13.

The #define directive may be continued onto subsequent lines if necessary.
To do this, end each line to be continued with a backslash ( \ ) immediately
followed by a new-line character. The backslash and new-line characters
do not become part of the definition. The first character in the next line is
logically adjacent to the character that immediately precedes the backslash.
The backslash/newline as a continuation sequence is valid anywhere. However,
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comments within the definition line can be continued without the backslash
/newline.

If you plan to port programs to and from other C implementations, take care in
choosing which macro definitions to use within your programs, because some
implementations define different macros than others.

8.1.1 Object-Like Form
A preprocessing directive of the following form defines an object-like macro
that causes each subsequent occurrence of the macro name to be replaced by
the replacement list:

#define identifier replacement-list newline

An object like macro may be redefined by another #define directive provided
that the second definition is an object-like macro definition and the two
replacement lists are identical. This means that two files, each with a
definition of a certain macro, must be consistent in that definition.

The object-like form of macro definition defines a descriptive name for a
frequently used token. A common use of the directive is to define the end-of-file
(EOF) indicator as follows:

#define EOF (-1)

8.1.2 Function-Like Form
The function-like form of macro definition includes a list of parameters.
References to such macros look like function calls. When a function is called,
control passes from the program to the function at run time; when a macro
is referenced, source code is inserted into the program at compile time. The
parameters are replaced by the corresponding arguments, and the text is
inserted into the program stream.

If the replacement list is omitted from the macro definition, the entire macro
reference disappears from the source text.

The library macro _toupper, available on some systems in the ctype.h header
file, is a good example of macro replacement. This macro is defined as follows:

#define _toupper(c) ((c) >= ’a’ && (c) <= ’z’ ? (c) & 0X5F : (c))

When the macro _toupper is referenced, the compiler replaces the macro and
its parameter with the replacement list from the directive, substituting the
argument of the macro reference for each occurrence of the parameter (c in
this case) in the replacement list.
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The replacement list of C source code can be translated in the following
manner: if parameter c is a lowercase letter (between ’a’ and ’z’), the
expression evaluates to an uppercase letter (c & 0X5F); otherwise, it evaluates
to the character as specified. This replacement list uses the if-then-else
conditional operator (?:). For more information about the conditional operator,
see Section 6.6. For more information about the bitwise operators, see
Section 6.5.6.

8.1.2.1 Rules for Specifying Macro Definitions
Preprocessor directives and macro references have syntax that is independent
of the C language. Follow these rules when specifying macro definitions:

• The macro name and the formal parameters are identifiers and are
specified according to the rules for identifiers in the C language.

• Spaces, tabs, and comments may be used freely within a #define directive
anywhere that the delta symbol (�) appears in the following example:

� #� define � name(� parm1� ,� parm2� )� \

� token-string�

Spaces, tabs, and comments are replaced by a single space.

• White space cannot appear between the name and the left parenthesis
that introduces the parameter list. White space may appear inside the
replacement list. Also, at least one space, tab, or comment must separate
name from define.

8.1.2.2 Rules for Specifying Macro References
Follow these rules when specifying macro references:

• Comments and white-space characters (spaces, horizontal and vertical tabs,
new-line characters, and form feeds) may be used freely within a macro
reference anywhere that the delta symbol (�) appears in the following
example:

� name� (� arg1� ,� arg2� )

• Arguments consist of arbitrary text. Syntactically, they are not restricted
to C expressions. They may contain embedded comments and white space.
Comments are replaced with a single space. White space (except for
leading and trailing white space) is preserved during the substitution.

• The number of arguments in the reference must match the number of
parameters in the macro definition. Null arguments result in undefined
behavior.
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• Commas separate arguments except where the commas occur inside string
or character constants, comments, or pairs of parentheses. Parentheses
must be balanced within arguments.

8.1.2.3 Side Effects in Macro Arguments
It is not good programming practice to specify macro arguments that use the
increment ( ++ ), decrement ( – – ), and assignment operators (such as +=) or
other arguments that can cause side effects. For example, do not pass the
following argument to the _toupper macro:

_toupper(p++)

When the argument p++ is substituted in the macro definition, the effect within
the program stream is as follows:

((p++) >= ’a’ && (p++) <= ’z’ ? (p++) & 0X5F : (p++))

Because p is being incremented, it does not have the same value for each
occurrence in this macro replacement. Even if you are aware of possible side
effects, the replacement lists within macro definitions can be changed, which
changes the side effects without warning.

8.1.3 Conversions to String Literals (#)
The # preprocessor operator is used to convert the argument that follows it to
a string literal. The preprocessor operator # can be used only in a function-like
macro definition. For example:

#include <stdio.h>

#define PR(id) printf("The value of " #id " is %d\n", id)

main()
{
int i = 10;

PR(i);
}

The output produced is:

The value of i is 10

The macro call expands in the following steps:

/*1*/ printf("The value of " #id " is %d\n", id)
/*2*/ printf("The value of " "i" " is %d\n", 10)
/*3*/ printf("The value of i is %d\n", 10)
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The unary # operator produces a string from its operand. This example also
uses the fact that adjacent string literals are concatenated. If the operand to
# contains double quotes or escape sequences, they are also expanded. For
example:

#include <stdio.h>

#define M(arg) printf(#arg " is %s\n", arg)

main()
{
M("a\nb\tc");

}

The macro call expands using the following steps:

/*1*/ printf(#arg " is %s\n", arg)
/*2*/ printf("\"a\\nb\\tc\"" " is %s\n", "a\nb\tc");
/*3*/ printf("\"a\\nb\\tc\" is %s\n", "a\nb\tc");

8.1.4 Token Concatenation(##)
The ## preprocessor operator is used to concatenate two tokens into a third
valid token, as in the following example:

#define glue(a,b) a ## b

main()
{
int wholenum = 5000;

printf("%d", glue(whole,num));
}

The preprocessor converts the line printf("%d", glue(whole,num)); into
printf("%d", wholenum);, and when executed, the program prints 5000. If the
result is not a valid token, an error occurs when the tokens are concatenated.

In Compaq C, the ## operator is evaluated before any # operators on the line.
## and # operators group left-to-right.

8.2 Conditional Compilation (#if, #ifdef, #ifndef, #else, #elif,
#endif, and defined)

Six directives are available to control conditional compilation. They delimit
blocks of program text that are compiled only if a specified condition is true.
These directives can be nested. The program text within the blocks is arbitrary
and may consist of preprocessor directives, C statements, and so on. The
beginning of the block of program text is marked by one of three directives:
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• #if

• #ifdef

• #ifndef

Optionally, an alternative block of text can be set aside with one of two
directives:

• #else

• #elif

The end of the block or alternative block is marked by the #endif directive.

If the condition checked by #if, #ifdef, or #ifndef is true (nonzero), then
all lines between the matching #else (or #elif) and an #endif directive, if
present, are ignored.

If the condition is false (0), then the lines between the #if, #ifdef, or #ifndef
and an #else, #elif, or #endif directive are ignored.

8.2.1 The #if Directive
The #if directive has the following syntax:

#if constant-expression newline

This directive checks whether the constant-expression is true (nonzero). The
operand must be a constant integer expression that does not contain any
increment ( ++ ), decrement ( – – ), sizeof, pointer ( * ), address ( & ), and cast
operators.

Identifiers in the constant expression either are or are not macro names. There
are no keywords, enumeration constants, and so on. The constant expression
can also include the defined preprocessing operator (see Section 8.2.7).

The constant expression in an #if directive is subject to text replacement and
can contain references to identifiers defined in previous #define directives.
The replacement occurs before the expression is evaluated. Each preprocessing
token that remains after all macro replacements have occurred is in the lexical
form of a token.

If an identifier used in the expression is not currently defined, the compiler
treats the identifier as though it were the constant zero.
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8.2.2 The #ifdef Directive
The #ifdef directive has the following syntax:

#ifdef identifier newline

This directive checks whether the identifier is currently defined. Identifiers can
be defined by a #define directive or on the command line. If such identifiers
have not been subsequently undefined, they are considered currently defined.

8.2.3 The #ifndef Directive
The #ifndef directive has the following syntax:

#ifndef identifier newline

This directive checks to see if the identifier is not currently defined.

8.2.4 The #else Directive
The #else directive has the following syntax:

#else newline

This directive delimits alternative source text to be compiled if the condition
tested for in the corresponding #if, #ifdef, or #ifndef directive is false. An
#else directive is optional.

8.2.5 The #elif Directive
The #elif directive has the following syntax:

#elif constant-expression newline

The #elif directive performs a task similar to the combined use of the else-
if statements in C. This directive delimits alternative source lines to be
compiled if the constant expression in the corresponding #if, #ifdef, #ifndef,
or another #elif directive is false and if the additional constant expression
presented in the #elif line is true. An #elif directive is optional.

8.2.6 The #endif Directive
The #endif directive has the following syntax:

#endif newline

This directive ends the scope of the #if, #ifdef, #ifndef, #else, or #elif
directive.
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The number of necessary #endif directives changes according to whether the
elif or #else directive is used. Consider the following equivalent examples:

#if true #if true
. .
. .
. .
#elif true .
. #else
. #if false
. .
#endif .

.
#endif
#endif

8.2.7 The defined Operator
Another way to verify that a macro is defined is to use the defined unary
operator. The defined operator has one of the following forms:

defined name

defined (name)

An expression of this form evaluates to 1 if name is defined and to 0 if it is not.

The defined operator is especially useful for checking many macros with just a
single use of the #if directive. In this way, you can check for macro definitions
in one concise line without having to use many #ifdef or #ifndef directives.

For example, consider the following macro checks:

#ifdef macro1
printf( "Hello!\n" );
#endif

#ifndef macro2
printf( "Hello!\n" );
#endif

#ifdef macro3
printf( "Hello!\n" );
#endif

Another use of the defined operator is in a single #if directive to perform
similar macro checks:

#if defined (macro1) || !defined (macro2) || defined (macro3)
printf( "Hello!\n" );
#endif
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Note that defined operators can be combined in any logical expression using
the C logical operators. However, defined can only be used in the evaluated
expression of an #if or #elif preprocessor directive.

8.3 File Inclusion (#include)
The #include directive inserts the contents of a specified file into the text
stream delivered to the compiler. Usually, standard headers and global
definitions are included in the program stream with the #include directive.
This directive has two forms:

#include "filename" newline

#include <filename> newline

The format of filename is platform-dependent. If the filename is enclosed in
quotation marks, the search for the named file begins in the directory where
the file containing the #include directive resides. If the file is not found there,
or if the file name is enclosed in angle brackets (< >), the file search follows
platform-defined search rules. In general, the quoted form of #include is used
to include files written by users, while the bracketed form is used to include
standard library files.

See your platform-specific Compaq C documentation for information on the
search path rules used for file inclusion.

Macro substitution is allowed within the #include preprocessor directive.

For example, the following two directives can be used to include a file:

#define macro1 "file.ext"

#include macro1

Defined macros used in #include directives must evaluate to one of the two
following acceptable #include file specifications or an error is reported:

"filename"

<filename>

An included file may itself contain #include directives. Although the
Compaq C compiler imposes no inherent limitation on the nesting level of
inclusion, the permitted depth depends on hardware and operating system
restrictions.
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8.4 Explicit Line Numbering (#line)
The compiler keeps track of information about line numbers in each file
involved in the compilation, and uses the line number when issuing diagnostic
messages to the terminal or, when compiling in batch mode, to a log file.

The #line directive can be used to alter the line numbers assigned to source
code. This directive gives a new line number to the following line, which is
then incremented to derive the line number for subsequent lines. The directive
can also specify a new file specification for the program source file. The #line
directive does not change the line numbers in your compilation listing, only
the line numbers given in diagnostic messages sent to the terminal screen or
log file. This directive is useful for referring to original source files that are
preprocessed into C code.

The #line directive has three forms:

#line integer-constant newline

#line integer-constant "filename" newline

#line pp-tokens newline

In the first two forms, the compiler gives the line following a #line directive
the number specified by the integer constant. The optional filename in
quotation marks indicates the name of the source file that the compiler will
provide in its diagnostic messages. If the file name is omitted, the file name
used is the name of the current source file or the last file name specified in a
previous #line directive.

In the third form, macros in the #line directive are expanded before it is
interpreted. This allows a macro call to expand into the integer-constant,
filename, or both. The resulting #line directive must match one of the other
two forms, and is then processed as appropriate.

8.5 Implementation-Specific Preprocessor Directive
(#pragma)

The #pragma directive is a standard method for implementing platform-
dependent features. This directive has the following syntax:

#pragma pp-tokensopt newline

The supported pragmas vary across platforms. All unrecognized pragmas
are diagnosed with an informational message. See your platform-specific
Compaq C documentation for a list of supported pragmas.
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Some pragma directives are subject to macro expansion. A macro reference can
occur anywhere after the keyword pragma. For example:

#define opt inline
#define f func
#pragma opt(f)

After both macros are expanded, the #pragma directive becomes
#pragma inline (func).

The following pragmas are subject to macro expansion:

builtins inline linkage standard
dictionary noinline module nostandard
extern_model member_alignment message use_linkage
extern_prefix nomember_alignment

The following pragmas are also subject to macro expansion, primarily for use
in preprocess-only mode (that is, with the /PREPROCESS_ONLY qualifier
on OpenVMS systems or the -E switch on Tru64 UNIX systems), and are not
normally used when generating an object module with the Compaq C compiler:

• _KAP—Relevant only to the KAPC product.

• define_template—Relevant only to Compaq C++.

• code_psect

• linkage_psect

Note

Macro expansion is a feature of pragmas introduced in early versions of
DEC C and is retained for backward compatibility.

Pragmas added in more recent versions of the compiler and pragmas
added in the future have changed that practice to conform to the
defacto industry standard of not performing macro expansion. (ANSI C
places no requirement on macro expansion of pragmas.)

The following describes how the compiler decides whether or not to macro-
expand a given pragma:

In compilation modes other than /STANDARD=COMMON (OpenVMS systems)
or -std0 (Tru64 UNIX systems), do Step 1:
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Step 1:

The token following the keyword pragma is first checked to see if it is a
currently-defined macro. If it is a macro and the identifier does not match
the name of a pragma that is not subject to macro expansion, then just
that macro (with its arguments, if function-like) is expanded. The tokens
produced by that macro expansion are then processed along with the rest
of the tokens on the line in Step 2.

In all compilation modes, do Step 2:

Step 2:

The first token following the keyword pragma is checked to see if it matches
the name of a pragma that is subject to macro expansion. If it does, then
macro expansion is applied to that token and to the rest of tokens on the
line.

The test for matching a known pragma permits an optional double leading
underscore. For example, #pragma _ _nostandard is equivalent to #pragma
standard.

Example
The following example illustrates that for pragmas coded directly with a name
that matches a known pragma, the macro-expansion behavior is generally the
same in all modes and is backward-compatible. It is only in cases where a
pragma was coded with a name that was not the name of a known pragma,
expecting macro expansion to produce the pragma name, that backward-
compatibility is broken, and then only in common mode. The exception is made
in common mode to maintain compatibility with the Tru64 UNIX preprocessor.

#define pointer_size error
#define m1 e1
#define e1 pointer_size 32
#define standard message
#define x disable(all)
#define disable(y) enable(y)

#pragma pointer_size 32 /* In common mode, Step 1 skipped.
In other modes, Step 1 finds that pointer_size

is known not to expand.
In any mode, Step 2 finds pointer_size is

not a pragma requiring expansion. */

#pragma m1 /* In common mode, Step 1 skipped.
In other modes, Step 1 expands m1 to pointer_size 32.
In common mode, Step 2 finds m1 is not a pragma requiring

expansion.
In other modes, Step 2 finds pointer_size is not a pragma

requiring expansion. */
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#pragma standard x /* In common mode, Step 1 skipped.
In other modes, Step 1 expands to message x.
In common mode, Step 2 expands to message enable(all).
In other modes, Step 2 expands message x to

message enable(all). */

8.6 Error Directive (#error)
The #error preprocessor directive issues a diagnostic message and ends
compilation. This directive has the following syntax:

#error messageopt newline

8.7 Null Directive (#)
A preprocessing directive of the form # newline is a null directive and has no
effect.

8.8 Predefined Macro Names
The following sections describe the predefined macro names that are provided
to assist in transporting code and performing simple tasks common to many
programs.

8.8.1 The _ _DATE__ Macro
The _ _DATE_ _ macro evaluates to a string literal specifying the date on which
the compilation started. The date has the following format:

"Mmm dd yyyy"

The names of the months are the same as those generated by the asctime
library function. The first d is a space if dd is less than 10. For example:

printf("%s",_ _DATE_ _);

The value of this macro remains constant throughout the translation unit.

8.8.2 The _ _FILE_ _ Macro
The _ _FILE_ _ macro evaluates to a string literal specifying the file
specification of the current source file. For example:

printf("file %s", _ _FILE_ _);
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8.8.3 The __LINE__ Macro
The _ _LINE_ _ macro evaluates to a decimal constant specifying the number of
the line in the source file containing the macro reference. For example:

printf("At line %d in file %s", _ _LINE_ _, _ _FILE_ _);

8.8.4 The __TIME_ _ Macro
The _ _TIME_ _ macro evaluates to a string specifying the time that the
compilation started. The time has the following format (the same as the
asctime function):

hh:mm:ss

For example:

printf("%s", _ _TIME_ _);

The value of this macro remains constant throughout the translation unit.

8.8.5 The __STDC__ Macro
The _ _STDC_ _ macro evaluates to the integer constant 1, which indicates a
conforming implementation.

The value of this macro remains constant throughout the translation unit.

8.8.6 System-Identification Macros
Compaq C defines platform-specific macros that can be used to identify the
system on which the program is running. These macros can assist in writing
code that executes conditionally depending on whether the program is running
on a Compaq system or some other system, or one Compaq C platform or
another.

These macro definitions can be used to separate portable and nonportable code
in a C program by enclosing the nonportable code in conditionally compiled
sections.

They can also be used to conditionally compile sections of C programs used on
more than one operating system to take advantage of system-specific features.
See Section 8.2 for more information about using the conditional-compilation
preprocessor directives.

See your platform-specific Compaq C documentation for a list of the system-
identification macros.
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8.9 The __func__ Predeclared Identifier
The _ _func_ _ predeclared identifier evaluates to a static array of char
initialized with the spelling of the function’s name. It is visible anywhere
within the body of a function definition.

For example, a function defined as follows will print "f1".

void f1(void) {printf("%s\n", __func__);}
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9
The ANSI C Standard Library

The ANSI C standard defines a set of functions, as well as related types and
macros, to be provided with any implementation of ANSI C. This chapter
lists and briefly describes the ANSI-conformant library features common to
all Compaq C platforms. See your Compaq C library routine documentation
for a detailed description of these routines and their use in your system
environment, and for additional headers, functions, types, and macros that
may be available on your operating system.

All library functions are declared in a header file. To make the contents of a
header file available to your program, include the header file with an #include
preprocessor directive. For example:

#include <stddef.h>

Each header file declares a set of related functions, as well as defining any
types and macros needed for their use.

The standard headers are:

• Diagnostics: <assert.h> (Section 9.1)

• Character processing: <ctype.h> (Section 9.2)

• Error codes: <errno.h> (Section 9.3)

• ANSI C limits: <limits.h> and <float.h> (Section 9.4)

• Localization: <locale.h> (Section 9.5)

• Mathematics: <math.h> (Section 9.6)

• Nonlocal jumps: <setjmp.h> (Section 9.7)

• Signal handling: <signal.h> (Section 9.8)

• Variable arguments: <stdarg.h> (Section 9.9)

• Common definitions: <stddef.h> (Section 9.10)

• Input/output: <stdio.h> (Section 9.11)
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• General utilities: <stdlib.h> (Section 9.12)

• String processing: <string.h> (Section 9.13)

• Date and time: <time.h> (Section 9.14)

Header files can be included in any order. Each can be included more than
once in a given scope with no effect different from being included once.
However, the effect of including <assert.h> depends on the definition of
NDEBUG. Include headers outside of any external declaration or definition, and
before any reference to the functions, types, or macros declared or defined in
the headers. If an identifier is declared or defined in more than one included
header, the second and subsequent headers containing that identifier can be
included after the initial reference to that identifier.

9.1 Diagnostics (<assert.h>)
The header <assert.h> defines the assert macro and refers to another macro,
NDEBUG, defined elsewhere. If NDEBUG is defined as a macro name at the point
in the source file where <assert.h> is included, the assert macro is defined as
follows:

#define assert(ignore) ((void) 0)

Macro
void assert(int expression);

Puts diagnostics into programs. If expression is false (zero), the assert
macro writes information about the particular call that failed on the
standard error file in an implementation-defined format. It then calls the
abort function. The assert macro returns no value.

9.2 Character Processing (<ctype.h>)
The <ctype.h> header file declares several functions for testing characters.
For each function, the argument is an int whose value must be EOF or
representable as an unsigned char, and the return value is an integer.

Functions
int isalnum(int c);

Returns a nonzero integer if the character passed to it is an alphanumeric
ASCII character. Otherwise, isalnum returns 0.
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int isalpha(int c);

Returns a nonzero integer if the character passed to it is an alphabetic
ASCII character. Otherwise, isalpha returns 0.

int iscntrl(int c);

Returns a nonzero integer if the character passed to it is an ASCII DEL
character (177 octal, 0x7F hex) or any nonprinting ASCII character (a code
less than 40 octal, 0x20 hex). Otherwise, iscntrl returns 0.

int isdigit(int c);

Returns a nonzero integer if the character passed to it is a decimal digit
character (0 to 9). Otherwise, isdigit returns 0.

int isgraph(int c);

Returns a nonzero integer if the character passed to it is a graphic ASCII
character (any printing character except a space character). Otherwise,
isgraph returns 0.

int islower(int c);

Returns a nonzero integer if the character passed to it is a lowercase
alphabetic ASCII character. Otherwise, islower returns 0.

int isprint(int c);

Returns a nonzero integer if the character passed to it is an ASCII printing
character, including a space character. Otherwise, isprint returns 0.

int ispunct(int c);

Returns a nonzero integer if the character passed to it is an ASCII
punctuation character (any printing character that is nonalphanumeric
and greater than 40 octal, 0x20 hex). Otherwise, ispunct returns 0.

int isspace(int c);

Returns a nonzero integer if the character passed to it is white space.
Otherwise, isspace returns 0. The standard white space characters are:

• space (’ ’)

• form feed (’\f ’)

• new line (’\n’)

• carriage return (’\r’)

• horizontal tab (’\t’)
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• vertical tab (’\v’)

int isupper(int c);

Returns a nonzero integer if the character passed to it is an uppercase
alphabetic ASCII character. Otherwise, isupper returns 0.

int isxdigit(int c);

Returns a nonzero integer if the character passed to it is a hexadecimal
digit (0 to 9, A to F, or a to f). Otherwise, isxdigit returns 0.

int tolower(int c);

Converts an uppercase letter to lowercase. c remains unchanged if it is not
an uppercase letter.

int toupper(int c);

Converts a lowercase letter to uppercase. c remains unchanged if it is not
a lowercase letter.

9.3 Error Codes (<errno.h>)
The <errno.h> header file defines several macros used for error reporting.

Macros
EDOM
ERANGE

Error codes that can be stored in errno. They expand to integral constant
expressions with unique nonzero values.

Variable or Macro
errno

An external variable or a macro that expands to a modifiable lvalue with
type int, depending on the operating system.

The errno variable is used for holding implementation-defined error codes
from library routines. All error codes are positive integers. The value of
errno is 0 at program startup, but is never set to 0 by any library function.
Therefore, errno should be set to 0 before calling a library function and
then inspected afterward.
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9.4 ANSI C Limits (<limits.h> and <float.h>)
The <limits.h> and <float.h> header files define several macros that expand
to various implementation-specific limits and parameters, most of which
describe integer and floating-point properties of the hardware. See your
platform-specific Compaq C documentation for details.

9.5 Localization (<locale.h>)
The <locale.h> header file declares two functions and one type and defines
several macros.

Type
struct lconv

A structure containing members relating to the formatting of numeric
values. The structure contains the following members in any order, with
values shown in the comments:

char *decimal_point; /* "." */
char *thousands_sep; /* "" */
char *grouping; /* "" */
char *int_curr_symbol; /* "" */
char *currency_symbol; /* "" */
char *mon_decimal_point; /* "" */
char *mon_thousands_sep; /* "" */
char *mon_grouping; /* "" */
char *positive_sign; /* "" */
char *negative_sign; /* "" */
char int_frac_digits; /* CHAR_MAX */
char frac_digits; /* CHAR_MAX */
char p_cs_precedes; /* CHAR_MAX */
char p_sep_by_space; /* CHAR_MAX */
char n_cs_precedes; /* CHAR_MAX */
char n_sep_by_space; /* CHAR_MAX */
char p_sign_posn; /* CHAR_MAX */
char n_sign_posn; /* CHAR_MAX */

These members are described under the localeconv function in this
section.

Macros
NULL
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME
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Expand to integral constant expressions with distinct values, and can be
used as the first argument to the setlocale function.

Functions
char *setlocale(int category, const char *locale);

Selects the appropriate portion of the program’s locale as specified by the
category and locale arguments. This function can be used to change or
query the program’s entire current locale or portions thereof.

The following values can be specified for the category argument:

LC_ALL—affects the program’s entire locale.

LC_COLLATE—affects the behavior of the strcoll and strxfrm
functions.

LC_CTYPE—affects the behavior of the character-handling functions
and multibyte functions.

LC_MONETARY—affects the monetary-formatting information
returned by the localeconv function.

LC_NUMERIC—affects the decimal-point character for the formatted
I/O functions and string-conversion functions, as well as the
nonmonetary formatting information returned by the localeconv
function.

LC_TIME—affects the behavior of the strftime function.

The following values can be specified for the locale argument:

• "C"—specifies the minimal environment for C translation

• ""—specifies the use of the environment variable corresponding to
category. If this environment variable is not set, the LANG environment
variable is used. If LANG is not set, an error is returned.

At program startup, the equivalent of the following is executed:

setlocale(LC_ALL, "C");

The setlocale function returns one of the following:

• If a pointer to a string is specified for locale and the selection can be
honored, setlocale returns a pointer to the string associated with
the specified category for the new locale. If the selection cannot be
honored, setlocale returns a null pointer and the program’s locale is
not changed.
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• If a null pointer is specified for locale, setlocale returns a pointer to
the string associated with the category for the program’s current locale.
The program’s locale is not changed.

In either case, the returned pointer to the string is such that a subsequent
call with that string value and its associated category will restore that part
of the program’s locale. This string must not be modified by the program,
but it can be overwritten by subsequent calls to setlocale.

struct lconv *localeconv(void);

Sets the components of an object with type struct lconv with values
appropriate for formatting numeric quantities according to the rules of the
current locale.

The structure members with type char * are pointers to strings, any of
which (except decimal_point) can point to "", which indicates that the
value has zero length or is not available in the current locale. Structure
members of type char are nonnegative numbers, any of which can be
CHAR_MAX to indicate that the value is not available in the current locale.
Structure members include the following:

char *decimal_point

The decimal-point character used to format nonmonetary
quantities.

char *thousands_sep

The character used to separate groups of digits before the decimal
point in formatted nonmonetary quantities.

char *grouping

A string whose elements indicate the size of each group of digits in
formatted nonmonetary quantities.

char *int_curr_symbol

The international currency symbol applicable to the current locale.
The first three characters contain the alphabetic international
currency symbol in accordance with those specified in ISO 4217
Codes for the Representation of Currency and Funds. The fourth
character (immediately preceding the null character) is the
character used to separate the international currency symbol
from the monetary quantity.
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char *currency_symbol

The local currency symbol applicable to the current locale.

char *mon_decimal_point

The decimal-point character used to format monetary quantities.

char *mon_thousands_sep

The character used to separate groups of digits before the decimal
point in formatted monetary quantities.

char *mon_grouping

A string whose elements indicate the size of each group of digits in
formatted monetary quantities.

char *positive_sign

The string used to indicate a nonnegative formatted monetary
quantity.

char *negative_sign

The string used to indicate a negative formatted monetary
quantity.

char int_frac_digits

The number of fractional digits to be displayed in internationally
formatted monetary quantities.

char frac_digits

The number of fractional digits to be displayed in formatted
monetary quantities.

char p_cs_precedes

Set to 1 if the currency_symbol precedes the value for a
nonnegative formatted monetary quantity; set to 0 if the
currency_symbol follows the value.
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char p_sep_by_space

Set to 1 if the currency_symbol is separated by a space from the
value for a nonnegative formatted monetary quantity; set to 0 if
there is no space.

char n_cs_precedes

Set to 1 if the currency_symbol precedes the value for a negative
formatted monetary quantity; set to 0 if the currency_symbol
follows the value.

char n_sep_by_space

Set to 1 if the currency_symbol is separated by a space from the
value for a negative formatted monetary quantity; set to 0 if there
is no space.

char p_sign_posn

Set to a value indicating the positioning of the positive_sign for a
nonnegative formatted monetary quantity.

char n_sign_posn

Set to a value indicating the positioning of the negative_sign for a
negative formatted monetary quantity.

The elements of grouping and mon_grouping are interpreted according to
the following:

• CHAR_MAX—no further grouping is to be performed.

• 0—the previous element is to be repeatedly used for the remainder of
the digits.

• other—the integer value is the number of digits that comprise the
current group. The next element is examined to determine the size of
the next group of digits before the current group.

The value of p_sign_posn and n_sign_posn is interpreted as follows:

• 0—parentheses surround the quantity and currency_symbol

• 1—the sign string precedes the quantity and currency_symbol

• 2—the sign string follows the quantity and currency_symbol

• 3—the sign string immediately precedes the currency_symbol

• 4—the sign string immediately follows the currency_symbol
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The localeconv function returns a pointer to the filled in structure. The
structure must not be modified by the program, but might be overwritten
by subsequent calls to localeconv or to setlocale with categories LC_ALL,
LC_MONETARY, or LC_NUMERIC.

9.6 Mathematics (<math.h>)
The <math.h> header file defines one macro and several mathematical
functions. The functions take double arguments and return double-precision
values.

The behavior of the functions in this header is defined for all representable
values of their input arguments. Each function executes as if it were a single
operation, without generating any externally visible exceptions.

For all functions, a domain error occurs if an input argument is outside the
domain over which the mathematical function is defined. The description of
each function lists any domain errors. On a domain error, the function returns
an implementation-defined value; the value of the EDOM macro is stored in
errno.

For all functions, a range error occurs if the result of the function cannot be
represented as a double value. If the result overflows (the magnitude of the
result is so large that it cannot be represented in an object of the specified
type), the function returns the value of the macro HUGE_VAL, with the same sign
(except for the tan function) as the correct value of the function; the value of
the ERANGE macro is stored in errno. If the result underflows (the magnitude of
the result is so small that it cannot be represented in an object of the specified
type), the function returns 0; whether the value of the ERANGE macro is stored
in errno is implementation-defined.

Macros
HUGE_VAL

Expands to a positive double expression.

Trigonometric Functions
double acos(double x);

Returns the value, in radians, of the arc cosine of x in the range [0,�].
A domain error occurs for arguments not in the interval [–1,+1].

double asin(double x);

Returns the value, in radians, of the arc sine of x in the range [–�/2,+�/2].
A domain error occurs for arguments not in the interval [–1,+1].
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double atan(double x);

Returns the value, in radians, of the arc tangent of x in the range [–�/2,+�
/2].

double atan2(double y, double x);

Returns the value, in radians, of the arc tangent of y/x, using the signs
of both arguments to determine the quadrant of the return value. The
value returned is in the range [–�,+�]. A domain error may occur if both
arguments are 0.

double cos(double x);

Returns the value, in radians, of the cosine of x.

double sin(double x);

Returns the value, in radians, of the sine of x.

double tan(double x);

Returns the value, in radians, of the tangent of x.

Hyperbolic Functions
double cosh(double x);

Returns the value of the hyperbolic cosine of x. A range error occurs if the
magnitude of x is too large.

double sinh(double x);

Returns the value of the hyperbolic sine of x. A range error occurs if the
magnitude of x is too large.

double tanh(double x);

Returns the value of the hyperbolic tangent of x.

Exponential and Logarithmic Functions
double exp(double x);

Returns the value of the exponential function of x. A range error occurs if
the magnitude of x is too large.

double frexp(double value, int *eptr);

Breaks the floating-point number value into a normalized fraction in the
interval [1/2, 1) or 0, which it returns, and an integral power of 2, which it
stores in the int object pointed to by eptr. If value is 0, both parts of the
result are 0.
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double ldexp(double x, int exp);

Multiplies a floating-point number by an integral power of 2, and returns
the value x � 2exp. A range error may occur.

double log(double x);

Returns the natural logarithm of x. A domain error occurs if the argument
is negative. A range error may occur if the argument is 0.

double log10(double x);

Returns the base-ten logarithm of x. A domain error occurs if x is negative.
A range error may occur if x is 0.

double modf(double value, double *iptr);

Breaks the argument value into integral and fractional parts, each of
which has the same sign as the argument. The modf function returns the
signed fractional part and stores the integral part as a double in the object
pointed to by iptr.

Power Functions
double pow(double x, double y);

Returns the value xy. A domain error occurs if x is negative and y is not an
integral value. A domain error occurs if the result cannot be represented
when x is 0 and y is less than or equal to 0. A range error may occur.

double sqrt(double x);

Returns the nonnegative square root of x. A domain error occurs if x is
negative.

Nearest Integer, Absolute Value, and Remainder Functions
double ceil(double x);

Returns the smallest integral value not less than x.

double fabs(double x);

Returns the absolute value of a floating-point number x.

double floor(double x);

Returns the largest integral value not greater than x.

double fmod(double x, double y);

Computes the floating-point remainder of x/y. The fmod function returns
the value x – i * y, for some integer i such that if y is nonzero, the result
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has the same sign as x and magnitude less than the magnitude of y. The
function returns 0 if y is 0.

9.7 Nonlocal Jumps (<setjmp.h>)
The <setjmp.h> header file contains declarations that provide a way to
avoid the normal function call and return sequence, typically to permit an
intermediate return from a nested function call.

Macro
int setjmp(jmp_buf env)

Sets up the local jmp_buf buffer and initializes it for the jump (the jump
itself is performed with longjmp.) This macro saves the program’s calling
environment in the environment buffer specified by the env argument for
later use by the longjmp function. If the return is from a direct invocation,
setjmp returns 0. If the return is from a call to longjmp, setjmp returns a
nonzero value.

Type
jmp_buf

An array type suitable for holding the information needed to restore a
calling environment.

Function
void longjmp(jmp_buf env, int value;)

Restores the context of the environment buffer env that was saved by
invocation of the setjmp function in the same invocation of the program.
The longjmp function does not work if called from a nested signal handler;
the result is undefined.

The value specified by value is passed from longjmp to setjmp. After
longjmp is completed, program execution continues as if the corresponding
invocation of setjmp had just returned value. If value is passed to setjmp
as 0, it is converted to 1.

9.8 Signal Handling (<signal.h>)
The <signal.h> header file declares a type and two functions and defines
several macros for handling exception conditions that might be reported during
program execution.
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Type
sig_atomic_t

The integral type of an object that can be accessed as an atomic entity,
even in the presence of asynchronous interrupts.

Macros

SIG_DFL
SIG_ERR
SIG_IGN

Expand to constant expressions with distinct values that have a type
compatible with the second argument to, and the return value of, the
signal function, and whose value compares unequal to the address of any
declarable function.

Functions
void (*signal(int sig, void (*handler) (int))) (int);

Determines how subsequent signals are handled. Signals are handled in
the following way:

1. If the value of handler is SIG_DFL, default handling of that signal
occurs.

2. If the value of handler is SIG_IGN, the signal is ignored.

3. Otherwise, when that signal occurs, a function pointed to by handler is
called with the argument of the type of signal. Such a function is called
a signal handler. Valid signals include:

• SIGABRT—abnormal termination, such as from the abort function

• SIGFPE—arithmetic error, such as zero divide or overflow

• SIGILL—invalid function image, such as an invalid instruction

• SIGINT—interactive attention, such as an interrupt

• SIGSEGV—invalid access to storage, such as outside of memory
limit

• SIGTERM—termination request sent to the program

Any other signals are operating-system dependent.
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If the request can be honored, the signal function returns the value of
handler for the most recent call to signal for the specified signal sig.
Otherwise, a value of SIG_ERR is returned and an implementation-defined
positive value is stored in errno.

int raise(int sig);

Sends the signal sig to the executing program. The raise function returns
0 if successful and nonzero if unsuccessful.

9.9 Variable Arguments (<stdarg.h>)
The <stdarg.h> header file declares a type and defines three macros for
advancing through a list of function arguments of varying number and type.

Type
va_list

A type suitable for holding information needed by the macros va_start,
va_arg, and va_end.

To access varying arguments, the called function must declare an object
(referred to as ap in this section) that has the type va_list:

va_list ap;

The object ap can be passed as an argument to another function. If that
function invokes the va_arg macro with parameter ap, the value of ap in
the calling function is indeterminate and is passed to the va_end macro
before any further reference to ap.

Macros
void va_start(va_list ap, parmN);

Initializes ap for subsequent use by va_arg and va_end. The va_start
macro must be invoked before any access to the unnamed arguments.

The parameter parmN is the identifier of the rightmost parameter in the
variable parameter list of the function definition. If parmN is declared with
the register storage class, with a function or array type, or with a type
that is not compatible with the type that results after application of the
default arguments promotions, the behavior is undefined. The va_start
macro returns no value.
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type va_arg(va_list ap, type);

Expands to an expression that has the type and value of the next argument
in the call. The parameter ap is the same as the va_list ap that was
initialized by va_start. Each invocation of va_arg modifies ap so that the
values of successive arguments are returned in turn. The parameter type
is a type name specified such that the type of a pointer to an object that
has the specified type can be obtained by postfixing an asterisk (*) to type.
The behavior is undefined if there is no actual next argument, or if type
is not compatible with the type of the next actual argument (as promoted
according to the default argument promotions).

The first invocation of va_arg after that of va_start returns the value of
the argument after that specified by parmN. Successive invocations return
the values of the remaining arguments in turn.

void va_end(va_list ap);

Facilitates a normal return from the function whose variable argument
list was referred to by the expansion of va_start that initialized the
va_list ap object. The va_end macro can modify ap so that it can no
longer be used (without an intervening invocation of va_start). If there is
no corresponding invocation of va_start or if va_end is not invoked before
the return, the behavior is undefined. The va_end macro returns no value.

9.10 Common Definitions (<stddef.h>)
The <stddef.h> header file defines several types and macros, some of which
are also defined in other header files.

Types
ptrdiff

A signed integral type of the result of subtracting two pointers.

size_t

An unsigned integral type of the result of the sizeof operator.

wchar_t

An integral type whose range of values can represent distinct codes for
all members of the largest extended character set specified among the
supported locales.
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Macros
NULL

Expands to an implementation-defined null pointer constant.

offsetof(type, member-designator)

Expands to an integral constant expression that has type size_t and
a value that is the offset, in bytes, to the structure member (specified
by member-designator) from the beginning of its structure (specified by
type). The member-designator is such that the expression &(t.member-
designator) evaluates to an address constant given the following:

static type t;

If the specified member is a bit field, the behavior is undefined.

9.11 Standard Input/Output (<stdio.h>)
The <stdio.h> header file declares three types, several macros, and many
functions for performing text input and output. A text stream consists of a
sequence of lines; each line ends with a new-line character.

Types
size_t

An unsigned integral type of the result of the sizeof operator.

FILE

An object type capable of recording all the information needed to control a
data stream, including its file-position indicator, a pointer to its associated
buffer (if any), an error indicator that records whether a read/write error
occurred, and an end-of-file indicator that records whether the end of the
file has been reached.

fpos_t

An object capable of recording all the information needed to uniquely
specify every position within a file.

Macros
NULL

Expands to an implementation-defined null pointer constant.
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_IOFBF
_IOLBF
_IONBF

Expand to integral constant expressions with distinct values, suitable for
use as the third argument to the setvbuf function.

BUFFSIZ

Expands to an integral constant expression, which is the size of the buffer
used by the setbuf function.

EOF

Expands to a negative integral constant expression that is returned by
several functions to indicate end-of-file.

FOPEN_MAX

Expands to an integral constant expression that is the minimum number of
files that the Compaq C compiler for your system guarantees can be open
simultaneously.

FILENAME_MAX

Expands to an integral constant expression that is the size needed for an
array of char large enough to hold the longest file name string that the
Compaq C compiler for your system guarantees can be opened.

L_tmpnam

Expands to an integral constant expression that is the size needed for an
array of char large enough to hold a temporary file name string generated
by the tmpnam function.

SEEK_CUR
SEEK_END
SEEK_SET

Expand to integral constant expressions with distinct values; suitable for
use as the third argument to the fseek function.

TMP_MAX

Expands to an integral constant expression that is the minimum number of
unique file names that can be generated by the tmpnam function.
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stderr
stdin
stdout

Expressions of type pointer to FILE that point to the FILE objects
associated, respectively, with the standard error, input, and output streams.

File Operation Functions
int remove(const char *filename);

Makes the file whose name is pointed to by filename no longer accessible by
that name. Any subsequent attempt to open that file using that name will
fail. The remove function returns 0 if the operation succeeds, nonzero if it
fails. If the file is open, the behavior of this function is implementation-
defined.

int rename(const char *old, const char *new);

Renames the file from the name pointed to by old to the name pointed
to by new. The file is no longer accessible by the old name. The rename
function returns 0 if the operation succeeds, nonzero if it fails (in which
case the file, if it existed, is still known by its original name). If the
new file exists before rename is called, the behavior of this function is
implementation-defined.

FILE *tmpfile(void);

Creates a temporary binary file that is automatically removed when it
is closed or when program execution ends. If execution ends abnormally,
whether an open temporary file is removed is implementation-dependent.
The file is opened for update with wb+ mode (see Table 9–1). The tmpfile
function returns a pointer to the stream of the file that it created. If the
file cannot be created, tmpfile returns a null pointer.

FILE *tmpnam(void);

Generates a valid file name that is different than the name of an existing
file. Each call to tmpnam, up to TMP_MAX times, generates a different
name. If tmpnam is called more than TMP_MAX times, the behavior is
implementation-defined.

If the argument is a null pointer, the tmpnam function leaves its result in
an internal static object and returns a pointer to that object. Subsequent
calls to tmpnam can modify the same object. If the argument is not a null
pointer, it is assumed to point to an array of at least L_tmpnam chars. The
tmpnam function writes its result into that array and returns the argument
as its value.
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File Access Functions
int fclose(FILE *stream);

Flushes the stream pointed to by stream and closes the associated file.
Any unwritten buffered data for the stream is delivered to the host
environment to be written to the file. Any unread buffered data is
discarded. The stream is disassociated from the file. If the associated
buffer was automatically allocated, it is deallocated. The fclose function
returns 0 if the stream was successfully closed, or it returns EOF if any
errors are detected.

int fflush(FILE *stream);

If stream points to an output stream or an update stream in which the most
recent operation was not input, the fflush function delivers any unwritten
data to the host environment to be written to the file. Otherwise, the
behavior is undefined. If stream is a null pointer, fflush flushes all output
or update streams in which the most recent operation was not input. The
fflush function returns 0 if the operation is successful, or it returns EOF if
a write error occurs.

FILE *fopen(const char *filename, const char *mode);

Opens the file pointed to by filename and associates a stream with it. The
argument mode points to a string beginning with one of the character
sequences listed in Table 9–1. Additional characters can follow these
sequences.

Table 9–1 File Modes

Mode Description

r open text file for reading

w truncate to zero length or create text file for writing

a append; open or create text file for writing at end-of-file

rb open binary file for reading

wb truncate to zero length or create binary file for writing

ab append; open or create binary file for writing at end-of-file

r+ open text file for update (reading and writing)

w+ truncate to zero length or create text file for update

(continued on next page)
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Table 9–1 (Cont.) File Modes

Mode Description

a+ append; open or create text file for update, writing at end-of-file

r+b or rb+ open binary file for update (reading and writing)

w+b or wb+ truncate to zero length or create binary file for update

a+b or ab+ append; open or create binary file for update, writing at end-of-file

The fopen function returns a pointer to the object controlling the stream.
If the open operation fails, fopen returns a null pointer.

FILE *freopen(const char *filename, const char *mode, FILE *stream);

Opens the file pointed to by filename and associates the stream pointed to
by stream with it. The mode argument is used in the same way as with the
fopen function. The freopen function first tries to close any file associated
with the specified stream. Failure to close the file successfully is ignored.
The error and end-of-file indicators for the stream are cleared.

The primary use of freopen is to change the file associated with a standard
text stream (stderr, stdin, or stdout), because those identifiers need not
be modifiable lvalues to which the value returned by the fopen function
can be assigned.

The freopen function returns a pointer to the object controlling the stream.
If the open operation fails, freopen returns a null pointer.

void setbuf(FILE *stream, char *buf);

Except that it returns no value, the setbuf function is equivalent to the
setvbuf function invoked with the values _IOFBF for mode and BUFSIZ for
size, or (if buf is a null pointer) with the value _IONBF for mode.

int setvbuf(FILE *stream, char *buf, int mode size_t size);

Associates a buffer with an input or an output file. The setvbuf function
can be used only after the stream pointed to by stream has been associated
with an open file and before any other operation is performed on the
stream. The argument mode determines how stream is to be buffered:

• IOFBF causes I/O to be fully buffered.

• IOLBF causes I/O to be line buffered.

• IONBF causes I/O to be unbuffered.
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If buf is not a null pointer, the array it points to can be used instead of a
buffer allocated by the setvbuf function. The size of the array is specified
by size. The contents of the array at any time are indeterminate. The
setvbuf function returns 0 if successful, or nonzero if an invalid value is
specified for mode or if the request cannot be honored.

Formatted Input/Output Functions
int fprintf(FILE *stream, const char *format, ...);

Writes output to the stream pointed to by stream, under control of the
string pointed to by format, which specifies how subsequent arguments
are converted for output. If there are an insufficient number of arguments
for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the excess arguments are evaluated but are otherwise
ignored. The fprintf function returns when the end of the format string
is encountered. The fprintf function returns the number of characters
transmitted, or it returns a negative value if an output error occurred.

See your Compaq C library routine documentation for more information.

int fscanf(FILE *stream, const char *format, ...);

Reads input from the stream pointed to by stream, under control of the
string pointed to by format, which specifies the allowable input sequences
and how they are to be converted for assignment, using subsequent
arguments as pointers to the objects to receive the converted input. If
there are an insufficient number of arguments for the format, the behavior
is undefined. If the format is exhausted while arguments remain, the
excess arguments are evaluated but are otherwise ignored.

The fscanf function returns the value of the macro EOF if an input failure
occurs before any conversion. Otherwise, fscanf returns the number of
input items assigned, which can be fewer than provided for, or even 0, if
there is an early matching failure.

See your Compaq C library routine documentation for more information.

int printf(const char *format, ...);

Equivalent to the fprintf function except that printf writes formatted
output to the standard output stream (stdout).

int scanf(const char *format, ...);

Equivalent to the fscanf function except that scanf reads formatted input
from the standard input stream (stdin).
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int sprintf(char *s, const char *format, ...);

Equivalent to the fprintf function except that the argument s specifies
an array, rather than a stream, into which the generated output will be
written. A null character is written at the end of the characters written. If
copying takes place between objects that overlap, the behavior is undefined.
The sprintf function returns the number of characters written into the
array, not counting the terminating null character.

int sscanf(const char *s, const char *format, ...);

Equivalent to the fscanf function except that the argument s specifies a
string, rather than a stream, from which the input will be read. Reaching
the end of the string is equivalent to the fscanf function encountering end-
of-file. If copying takes place between objects that overlap, the behavior is
undefined.

#include <stdarg.h>
int vfprintf(FILE *stream, const char *format, va_list arg);

Equivalent to the fprintf function with the variable argument list
replaced by arg, which must have been initialized by the va_start macro
(and possibly subsequent va_arg calls). The vfprintf function does not
invoke the va_end macro.

#include <stdarg.h>
int vprintf(const char *format, va_list arg);

Equivalent to the printf function with the variable argument list replaced
by arg, which must have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vprintf function does not invoke
the va_end macro.

#include <stdarg.h>
int vsprintf(char *s, const char *format, va_list arg);

Equivalent to the sprintf function with the variable argument list
replaced by arg, which must have been initialized by the va_start macro
(and possibly subsequent va_arg calls). The vsprintf function does not
invoke the va_end macro.
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Character Input/Output Functions
int fgetc(FILE *stream);

Returns the next character (if there is one) as an unsigned char converted
to an int, from the input stream pointed to by stream, and advances the
associated file-position indicator for the stream (if defined). If the stream
is at end-of-file, the end-of-file indicator for the stream is set, and fgetc
returns EOF. If a read error occurs, the error indicator is set, and fgetc
returns EOF.

char *fgets(char *s, int n, FILE *stream);

Reads at most one less than the number of characters specified by n
from the stream pointed to by stream into the array pointed to by s. No
additional characters are read after a new-line character (which is retained)
or after the end-of-file. A null character is written immediately after the
last character read into the array.

The fgets function returns s if successful. If the end-of-file is encountered
and no characters have been read into the array, the contents of the array
remain unchanged and a null pointer is returned. If a read error occurs
during the operation, the array contents are indeterminate and a null
pointer is returned.

int fputc(int c, FILE *stream);

Writes the character c (converted to an unsigned char) to the output
stream pointed to by stream, at the position indicated by the associated file
position indicator for the stream (if defined), and advances the indicator
appropriately. If the file cannot support positioning requests, or if the
stream was opened with append mode, the character is appended to the
output stream. The fputc function returns the character written. If a
write error occurs, the error indicator for the stream is set, and fputc
returns EOF.

int fputs(const char *s, FILE *stream);

Writes the string pointed to by s to the stream pointed to by stream. The
terminating null character is not written.

The fputs function returns EOF if a write error occurs. Otherwise, it
returns a nonnegative value.

int getc(FILE *stream);

Equivalent to the fgetc function, but if it is implemented as a macro it
can evaluate stream more than once. For this reason, the argument should
never be an expression with side effects.
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int getchar(void);

Equivalent to the getc function with the argument stdin.

char *gets(char *s);

Reads characters from the input stream pointed to by stdin into the array
pointed to by s, until the end-of-file is encountered or a new-line character
is read. Any new-line character is discarded, and a null character is
written immediately after the last character read into the array.

The fgets function returns s if successful. If the end-of-file is encountered
and no characters have been read into the array, the contents of the array
remain unchanged and a null pointer is returned. If a read error occurs
during the operation, the array contents are indeterminate and a null
pointer is returned.

int putc(int c, FILE *stream);

Equivalent to the fputc function, but if it is implemented as a macro it
can evaluate stream more than once. For this reason the argument should
never be an expression with side effects.

int putchar(int c);

Equivalent to the putc function with the second argument stdout.

int puts(const char s);

Writes the string pointed to by s to the stream pointed to by stdout,
and appends a new-line character to the output. The terminating null
character is not written. The puts function returns EOF if a write error
occurs. Otherwise, it returns a nonnegative value.

int ungetc(int c, FILE *stream);

Pushes a character c (converted to an unsigned char) back into the input
stream pointed to by stream, and leaves the stream positioned before
the character. The pushed back characters are returned by subsequent
reads on that stream in the reverse order of their pushing. A successful
intervening call to a file positioning function for that stream (fseek,
fsetpos, or rewind) discards any pushed-back characters.

One pushback is guaranteed, even if there has been no previous activity on
the file. The ungetc function returns the converted pushed-back character,
or it returns EOF if the operation fails.

The ANSI C Standard Library 9–25



Direct Input/Output Functions
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

Reads into the array pointed to by ptr up to nmemb elements of size size
from the stream pointed to by stream. The file-position indicator for the
stream (if defined) is advanced by the number of characters successfully
read. If an error occurs, the resulting value of the file-position indicator
for the stream is indeterminate. If a partial element is read, its value is
indeterminate.

The fread function returns the number of elements successfully read,
which may be less than nmemb if a read error or end-of-file is encountered.
If size or nmemb is 0, fread returns 0, and the contents of the array and
the state of the stream are unchanged.

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

Writes from the array pointed to by ptr up to nmemb elements of size
size to the stream pointed to by stream. The file-position indicator for the
stream (if defined) is advanced by the number of characters successfully
written. If an error occurs, the resulting value of the file-position indicator
for the stream is indeterminate.

The fwrite function returns the number of elements successfully written,
which is less than nmemb only if a write error is encountered.

File Positioning Functions
int fgetpos(FILE *stream, fpos_t *pos);

Stores the current value of the file-position indicator for the stream pointed
to by stream into the object pointed to by pos. The value stored contains
unspecified information used by the fsetpos function to return the stream
to its position at the time of the call to fgetpos.

If successful, the fgetpos function returns 0. On failure, fgetpos returns
nonzero and stores an implementation-defined positive value in errno.

int fseek(FILE *stream, long int offset, int whence);

Sets the file-position indicator to the specified byte offset in the stream
pointed to by stream.

For a binary stream, the new position, measured in characters from the
beginning of the file, is obtained by adding offset to the position specified
by whence, which is one of the following:

• The beginning of the file if whence is SEEK_SET

• The current value of the file-position indicator if whence is SEEK_CUR
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• The end of the file if whence is SEEK_END

For a text stream, either offset is 0 or it is a value returned by an earlier
call to the ftell function on the same stream and whence is SEEK_SET.

A successful call to fseek clears the end-of-file indicator for the stream and
reverses any effects of the ungetc function on the same stream. After an
fseek call, the next operation on an update stream can be either input or
output. The fseek function returns nonzero only for a request that cannot
be satisfied.

int fsetpos(FILE *stream, const fpos_t *pos);

Sets the file-position indicator for the stream pointed to by stream
according to the value of the object pointed to by pos, which is a value
obtained from an earlier call to the fgetpos function on the same stream.

A successful call to fsetpos clears the end-of-file indicator for the stream
and reverses any effects of the ungetc function on the same stream. After
an fsetpos call, the next operation on an update stream can be either
input or output.

If successful, the fsetpos function returns 0. On failure, fsetpos returns
nonzero and stores an implementation-defined positive value in errno.

long int ftell(FILE *stream);

Gets the current value of the file-position indicator for the stream pointed
to by stream. For a binary stream, the value is the number of characters
from the beginning of the file. For a text stream, its file-position indicator
contains unspecified information used by the fseek function for returning
the file-position indicator for the stream to its position at the time of
the call to ftell. The difference between two such return values is not
necessarily a meaningful measure of the number of characters written or
read.

If successful, the ftell function returns the current value of the file-
position indicator for the stream. On failure, ftell returns --1L and stores
an implementation-defined positive value in errno.

void rewind(FILE *stream);

Sets the file-position indicator for the stream pointed to by stream to the
beginning of the file. It is equivalent to the following, except that the error
indicator for the stream is also cleared:

(void)fseek(stream, 0L, SEEK_SET)

The rewind function returns no value.
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Error-Handling Functions
void clearerr(FILE *stream);

Clears the end-of-file and error indicators for the stream pointed to by
stream. The clearerr function returns no value.

int feof(FILE *stream);

Tests the end-of-file indicator for the stream pointed to by stream. The feof
function returns nonzero only if the end-of-file indicator is set for stream.

int ferror(FILE *stream);

Tests the error indicator for the stream pointed to by stream. The ferror
function returns nonzero only if the end-of-file indicator is set for stream.

void perror(const char *s);

Maps the error number in the integer expression errno to an error
message. It writes the following sequence of characters to the standard
error stream:

1. The string pointed to by s followed by a colon (:) and a space (if s is
not a null pointer and the character pointed to by s is not the null
character)

2. An appropriate error message string followed by a new-line character

The contents of the error message strings are the same as those returned
by the strerror function with argument errno, which are implementation-
defined. The perror function returns no value.

9.12 General Utilities (<stdlib.h>)
The <stdlib.h> header file declares four types and several functions of general
use, and defines several macros. The functions perform string conversion,
random number generation, searching and sorting, memory management, and
similar tasks.

Types
size_t

An unsigned integral type of the result of the sizeof operator.

wchar_t

An integral type whose range of values can represent distinct codes for
all members of the largest extended character set specified among the
supported locales.
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div_t

A structure type that is the type of the value returned by the div function.

ldiv_t

A structure type that is the type of the value returned by the ldiv function.

Macros
NULL

Expands to an implementation-defined null pointer constant.

EXIT_FAILURE/EXIT_SUCCESS

Expand to integral expressions for use as the argument to the exit
function to return unsuccessful or successful termination status,
respectively, to the host environment. These macros are useful as return
values from the main function as well.

RAND_MAX

Expands to an integral constant expression whose value is the maximum
value returned by the rand function.

MB_CUR_MAX

Expands to a positive integer expression whose value is the maximum
number of bytes in a multibyte character for the extended character set
specified by the current locale (category LC_TYPE), and whose value is never
greater than MB_LEN_MAX.

String Conversion Functions
double atof(const char *nptr);

Converts the string pointed to by nptr to double representation and returns
the converted value. Except for its behavior when an error occurs, this
function is equivalent to:

strtod(nptr, (char **)NULL)

int atoi(const char *nptr);

Converts the string pointed to by nptr to int representation and returns
the converted value. Except for its behavior when an error occurs, this
function is equivalent to:

(int)strtol(nptr, (char **)NULL, 10)
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long int atol(const char *nptr);

Converts the string pointed to by nptr to long int representation and
returns the converted value. Except for its behavior when an error occurs,
this function is equivalent to:

strtol(nptr, (char **)NULL, 10)

double strtod(const char *nptr, char **endptr);

Converts the string pointed to by nptr to double representation.

See your Compaq C library routine documentation for a detailed
description of this function.

long int strtol(const char *nptr, char **endptr, int base);

Converts the string pointed to by nptr to long int representation.

See your Compaq C library routine documentation for a detailed
description of this function.

unsigned long int strtoul(const char *nptr, char **endptr, int base);

Converts the string pointed to by nptr to unsigned long int representation.

See your Compaq C library routine documentation for a detailed
description of this function.

Pseudo-Random Sequence Generation Functions
int rand(void);

Returns a sequence of pseudo-random integers in the range 0 to RAND_MAX.

void srand(unsigned int seed);

Uses the argument as a seed for a new sequence of pseudo-random integers
to be returned by subsequent calls to rand. If srand is then called with the
same seed value, the sequence of pseudo-random integers is repeated. If
rand is called before any calls to srand are made, the sequence generated
is the same as when srand is first called with a seed value of 1. The srand
function returns no value.

Memory Management Functions
void *calloc(size_t nmemb, size_t size);

Allocates an area in memory for an array of nmemb items, each with size
size. The area is initialized to all bits 0. The calloc function returns either
a null pointer if unable to allocate, or a pointer to the allocated area.

9–30 The ANSI C Standard Library



void free(void *ptr);

Deallocates the memory area pointed to by ptr that was allocated by a
previous calloc, malloc, or realloc. If ptr is null, no action occurs. No
value is returned.

void *malloc(size_t size);

Allocates a contiguous area in memory for an object of size size. The area
is not initialized. This function returns a pointer to the allocated area, or it
returns a null pointer if unable to allocate.

void *realloc(void *ptr, size_t size);

Changes the size of the area pointed to by ptr to the number of bytes
specified by size. If ptr is null, the behavior of realloc is identical to
malloc. The contents of the area are unchanged up to the lesser of the
old and new sizes. This function returns either a null pointer if unable to
resize, or a pointer to the possibly moved reallocated area.

Communication with the Environment
void abort(void);

Causes abnormal program termination to occur, unless the SIGABRT signal
is being caught and the signal handler does not return. The abort function
cannot return to its caller.

int atexit(void (*func)(void));

Registers the function pointed to by func to be called without arguments
at normal program termination. Up to 32 functions can be registered. The
atexit function returns 0 if the registration succeeds; otherwise, it returns
nonzero.

void exit(int status);

Causes normal program termination to occur. If a program executes more
than one call to exit, the behavior is undefined. Upon execution, the
following occurs:

1. All functions registered by atexit are called in the reverse order of
their registration.

2. All open output streams are flushed, all open streams are closed, and
all files created by tmpfile are removed.
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3. Control is returned to the host environment. The value of status
corresponds to an errno value:

• If the value status is 0 or EXIT_SUCCESS, a successful termination
status is returned.

• If the value status is EXIT_FAILURE, an unsuccessful termination
status is returned.

• Otherwise, an unsuccessful termination status is returned.

char *getenv(const char *name);

Searches an environment list provided by the host environment.

See your Compaq C library routine documentation for a detailed
description of this function.

int *system(const char *string);

Passes the string pointed to by string to the host environment for execution
by a command processor. A null pointer can be specified to inquire whether
a command processor exists. If the argument is a null pointer, the system
function returns nonzero if a command processor is available or 0 if one is
not available. If the argument is not a null pointer, the return value is the
status returned by the command processor or 0 if a command processor is
not available.

See your Compaq C library routine documentation for a detailed
description of this function.

Searching and Sorting Utilities
void *bsearch(const void *key, const void *base,
size_t nmemb, size_t size, int (*compar)
(const void *, const void *));

Searches an array of nmemb objects for an element that matches the object
pointed to by key. The first element of the array is pointed to by base; the
size of each element is specified by size.

You must first sort the array in ascending order according to the function
pointed to by compar. The bsearch function calls the specified comparison
function pointed to by compar with two arguments that point to the objects
being compared (the key object and an array element). The comparison
function returns:

• An integer less than 0, if the first argument is less than the second
argument

• An integer greater than 0, if the first argument is greater than the
second argument
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• An integer equal to 0, if the first argument equals the second argument

The bsearch function returns a pointer to the matching element of the
array, or a null pointer if no match is found.

void qsort(void *base, size_t nmemb,
size_t size, int (*compar) (const void *,
const void *));

Sorts an array of nmemb objects in place. The first element of the array is
pointed to by base; the size of each element is specified by size.

The contents of the array are sorted in ascending order according to
a comparison function pointed to by compar, which is called with two
arguments that point to the objects being compared. The comparison
function returns:

• An integer less than 0, if the first argument is less than the second
argument

• An integer greater than 0, if the first argument is greater than the
second argument

• An integer equal to 0, if the first argument equals the second argument

If two compared elements are equal, their order in the sorted array is
unspecified.

The qsort function returns no value.

Integer Arithmetic Functions
int abs(int j);

Returns the absolute value of an integer j.

div_t div(int numer, int denom);

Computes the quotient and remainder of the division of numer by denom.
The div function returns a structure of type div_t containing the quotient
and remainder:

int quot; /* quotient */
int rem; /* remainder */

long int labs(long int j);

Returns the absolute value of a long integer j.

ldiv_t ldiv(long int numer, long int denom);

Similar to the div function, except that the arguments and the members of
the returned structure (which has type ldiv_t) all have type long int.

The ANSI C Standard Library 9–33



Multibyte Character Functions
int mblen(const char *s, size_t n);

If s is not a null pointer, mblen determines the number of bytes comprising
the multibyte character pointed to by s. The mblen function is equivalent
to the following, except that the shift state of the mbtowc is not affected:

mbtowc((wchar_t *)0, s, n);

If s is a null pointer, the mblen function returns a nonzero value if
multibyte character encodings have state-dependent encodings, and 0 if
they do not.

If s is not a null pointer, the mblen function returns one of the following
values:

• 0, if s points to the null character

• The number of bytes that comprise the multibyte character, if the next
n or fewer bytes form a valid multibyte character

• –1, if they do not form a valid multibyte character

int mbtowc(wchar_t *pwc, const char *s, size_t n);

If s is not a null pointer, mbtowc determines the number of bytes comprising
the multibyte character pointed to by s. It then determines the code for the
value of type wchar_t that corresponds to that multibyte character. (The
value of the code corresponding to the null character is 0.) If the multibyte
character is valid and pwc is not a null pointer, mbtowc stores the code in
the object pointed to by pwc. At most, n bytes of the array pointed to by s
are examined.

If s is a null pointer, the mbtowc function returns a nonzero value if
multibyte character encodings have state-dependent encodings, and 0 if
they do not.

If s is not a null pointer, the mbtowc function returns one of the following
values:

• 0, if s points to the null character

• The number of bytes that comprise the converted multibyte character,
if the next n or fewer bytes form a valid multibyte character

• –1, if they do not form a valid multibyte character
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int wctomb(char *s, wchar_t wchar);

Determines the number of bytes needed to represent the multibyte
character corresponding to the code whose value is wchar, including any
change in shift state. This function then stores the multibyte character
representation in the array object pointed to by s, if s is not a null pointer.
At most, MB_CUR_MAX characters are stored. If the value of wchar is 0, the
wctomb function is left in the initial shift state.

If s is a null pointer, the wctomb function returns a nonzero value if
multibyte character encodings have state-dependent encodings, and 0 if
they do not.

If s is not a null pointer, the wctomb function returns one of the following
values:

• –1, if the value of wchar does not correspond to a valid multibyte
character

• the number of bytes that comprise the multibyte character correspond-
ing to the value of wchar

Multibyte String Functions
size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

Converts a sequence of multibyte characters that begin in the initial shift
state from the array pointed to by s into a sequence of corresponding codes,
and stores not more than n codes into the array pointed to by pwcs. A null
character is converted to a code value of zero. No multibyte characters
that follow a null character are examined or converted. Each multibyte
character is converted as if by a call to mbtowc, except that the shift state
of mbtowc is not affected.

If an invalid multibyte character is encountered, the mbstowcs function
returns (size_t) - 1. Otherwise, it returns the number of array elements
modified, not including a terminating zero code, if any.

size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

Converts a sequence of codes that correspond to multibyte characters from
the array pointed to by pwcs into a sequence of multibyte characters that
begins in the initial shift state, and stores these multibyte characters into
the array pointed to by s. The conversion stops if a multibyte character
would exceed the limit of n total bytes or if a null character is stored.

Each code is converted as if by a call to wctomb, except that the shift state
of wctomb is not affected.
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If a code is encountered that does not correspond to a valid multibyte
character, the wcstombs function returns (size_t) - 1. Otherwise, it
returns the number of bytes modified, not including a terminating null
character, if any.

9.13 String Processing (<string.h>)
The <string.h> header file declares one type and several functions, and
defines one macro useful for manipulating character arrays that other objects
treat as character arrays.

There are two kinds of string functions declared. The first, with names
beginning with str, manipulate character arrays; the second, with names
beginning with mem, manipulate other objects treated as character arrays.
Except for memmove, function behavior is undefined if copying takes place
between overlapping objects.

Type
size_t

An unsigned integral type of the result of the sizeof operator.

Macro
NULL

Expands to an implementation-defined null pointer constant.

Functions
void *memcpy(void *s1, const void *s2, size_t n);

Copies n characters from the object pointed to by s2 to the object pointed to
by s1. The function returns s1.

void *memmove(void *s1, const void *s2, size_t n);

Copies n characters from the object pointed to by s2 to the object pointed
to by s1. Copying takes place as if the n characters from the object pointed
to by s2 are first copied into a temporary array of n characters that does
not overlap the object pointed to by s1 and s2, and then the n characters
from the temporary array are copied into the object pointed to by s1. The
memmove function returns s1.

void *memchr(const void *s, int c, size_t n);

Locates the first occurrence of c (converted to an unsigned char) in the first
n unsigned characters of the object pointed to by s. The memchr function
returns a pointer to the located character, or a null pointer if the character
was not found.
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int memcmp(const void *s1, const void *s2, size_t n);

Compares the first n characters of the object pointed to by s1 to the first
n characters of the object pointed to by s2. The memcmp function returns
an integer less than, equal to, or greater than 0, depending on whether
the object pointed to by s1 is less than, equal to, or greater than the object
pointed to by s2.

void *memset(void *s, int c, size_t n);

Copies the value of c (converted to an unsigned char) into each of the first
n characters pointed to by s. The function returns s.

char *strcpy(char *s1, const char *s2);

Copies the string pointed to by s2 (including the terminating null
character) to the string pointed to by s1. The strcpy function returns
s1.

char *strncpy(char *s1, const char *s2, size_t n);

Copies no more than n characters from the string pointed to by s2 to the
string pointed to by s1, up to but not including the null terminator of the
string pointed to by s2; returns s1. If the string pointed to by s2 is less
than n characters, strncpy pads the copy with null characters.

char *strcat(char *s1, const char *s2);

Appends a copy of the the string pointed to by s2 (including the terminating
null character) to the end of the string pointed to by s1. The strcat
function returns s1. The first character of s2 overwrites the null character
of s1.

char *strncat(char *s1, const char *s2, size_t n);

Appends no more than n characters from the string pointed to by s2 (up
to but not including a null character) to the string pointed to by s1. The
strncat function returns s1. The first character of s2 overwrites the null
character of s1. A terminating null character is appended to the result.
The first character of s2 overwrites the null character of s1.

int strcmp(const char *s1, const char *s2);

Compares the string pointed to by s1 to the string pointed to by s2. The
strcmp function returns an integer less than, equal to, or greater than 0,
depending on whether the string pointed to by s1 is less than, equal to, or
greater than the string pointed to by s2.
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int strcoll(const char *s1, const char *s2);

Compares the string pointed to by s1 to the string pointed to by s2, both
interpreted as appropriate to the LC_COLLATE category of the current locale
(see Section 9.5). The strcoll function returns an integer less than, equal
to, or greater than 0, depending on whether the string pointed to by s1 is
less than, equal to, or greater than the string pointed to by s2, when both
are interpreted as appropriate to the current locale.

int strncmp(const char *s1, const char *s2, size_t n);

Compares no more than n characters from the string pointed to by s1 to
the string pointed to by s2. The strings are compared until a null character
is encountered, the strings differ, or n is reached. The strncmp function
returns an integer less than, equal to, or greater than 0, depending on
whether the string pointed to by s1 is less than, equal to, or greater than
the string pointed to by s2.

size_t strxfrm(char *s1, const char *s2, size_t n);

Transforms the string pointed to by s2 and places the resulting string into
the array pointed to by s1.

See your Compaq C library routine documentation for a detailed
description of this function.

char *strchr(const char *s, int c);

Locates the first occurrence of c (converted to a char) in the string pointed
to by s. The terminating null character is considered to be part of the
string. The function returns a pointer to the located character, or a null
pointer if the character was not found.

size_t strcspn(const char *s1, const char *s2);

Computes the length of the maximum initial segment of the string pointed
to by s1 that consists entirely of characters not found in the string pointed
to by s2. The strcspn function returns the length of the segment.

char *strpbrk(const char *s1, const char *s2);

Locates the first occurrence in the string pointed to by s1 of any character
from the string pointed to by s2. The function returns a pointer to the
character, or a null pointer if no character in s1 occurs in s2.

char *strrchr(const char *s, int c);

Locates the last occurrence of c (converted to a char) in the string pointed
to by s. The terminating null character is considered to be part of the
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string. The function returns a pointer to the located character, or a null
pointer if the character was not found.

size_t strspn(const char *s1, const char *s2);

Computes the length of the maximum initial segment of the string pointed
to by s1 that consists entirely of characters from the string pointed to by
s2. The strspn function returns the length of the segment.

char *strstr(const char *s1, const char *s2);

Locates the first occurrence in the string pointed to by s1 of the sequence of
characters (excluding the terminal null character) in the string pointed to
by s2. The strstr function returns a pointer to the located string, or a null
pointer if the string was not found. If s2 points to a string of zero length,
the function returns s1.

char *strtok(const char *s1, char *s2);

Breaks the string pointed to by s1 into a sequence of tokens, each of which
is delimited by a character from the string pointed to by s2. The first
call to strtok( ) skips characters, looking for the first one that is not in
s2. The function keeps track of its position in the string pointed to by s1
between calls and, as successive calls are made, the function works through
this string, identifying the text token following the one identified by the
previous call. When the function finds a character in s1 that matches a
character in s2, it replaces the character in s1 with a null character. The
strtok function returns a pointer to the first character of the token, or a
null pointer if there is no token.

char *strerror(int errnum);

Maps the error number in errnum to an error message string; returns a
pointer to the string. The string pointed to must not be modified by the
program, but can be overwritten by a subsequent call to strerror.

size_t strlen(const char *s);

Computes the length of the string pointed to by s. The function returns the
number of characters that precede the terminating null character.

9.14 Date and Time (<time.h>)
The <time.h> header file defines two macros, and declares four types and
several functions for manipulating time and date information. Some functions
process local time, which may differ from calendar time because of time zone.
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Types
size_t

An unsigned integral type of the result of the sizeof operator.

clock_t
time_t

Arithmetic types capable of representing times.

struct tm

Holds the components of a calendar time, called the broken-down time. The
structure contains the following members:

int tm_sec; /* seconds after the minute -- [0,61] */
int tm_min; /* minutes after the hour -- [0,59] */
int tm_hour; /* hours since midnight -- [0,23] */
int tm_mday; /* day of the month -- [1,31] */
int tm_mon; /* months since January -- [0,11] */
int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday -- [0,6] */
int tm_yday; /* days since January 1 -- [0,365] */
int tm_isdst; /* Daylight Saving Time flag -- 0 if */

/* DST not in effect; positive if it is; */
/* negative if information is not available. */

Macros
NULL

Expands to an implementation-defined null pointer constant.

CLOCKS_PER_SEC

The number per second of the value returned by the clock function.

Time Conversion Functions
char *asctime(const struct tm *timeptr);

Converts a broken-down time in the structure pointed to by timeptr into a
26-character string in the form of this example:

Sat Sep 08 08:10:32 1990\n\0

A pointer to the string is returned.

char *ctime(const time_t *timer);

Converts the calendar time pointed to by timer to local time in a string
of the form generated by the asctime function. A pointer to the string is
returned. The ctime function is equivalent to the following:
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asctime(localtime(timer))

struct tm *gmtime(const time_t *timer);

Converts the calendar time pointed to by timer into a broken-down time
expressed as Coordinated Universal Time (UTC). The gmtime function
returns a pointer to the broken-down time, or a null pointer if UTC is not
available.

struct tm *localtime(const time_t *timer);

Converts the calendar time pointed to by timer into a broken-down time
expressed as local time. The localtime function returns a pointer to the
broken-down time.

size_t strftime(char *s, size_t maxsize, const char *format, const
struct tm *timeptr);

Places characters into the array pointed to by s as controlled by the
string pointed to by format. The format string consists of zero or more
conversion specifiers and ordinary multibyte characters. All ordinary
multibyte characters (including the terminating null character) are copied
unchanged into the array. Each conversion specifier is replaced by the
appropriate characters as shown in Table 9–2. The appropriate characters
are determined by the LC_TIME category of the current locale and by the
values contained in the structure pointed to by timeptr.

Table 9–2 strftime Conversion Specifiers

Specifier Replaced by

%a The locale’s abbreviated weekday name

%A The locale’s full weekday name

%b The locale’s abbreviated month name

%B The locale’s full month name

%c The locale’s appropriate date and time representation

%d The day of the month as a decimal number (01 – 31)

%H The hour (24-hour clock) as a decimal number (00 – 23)

%I The hour (12-hour clock) as a decimal number (01 – 12)

%j The day of the year as a decimal number (001 – 366)

%m The month as a decimal number (01 – 12)

(continued on next page)
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Table 9–2 (Cont.) strftime Conversion Specifiers

Specifier Replaced by

%M The minute as a decimal number (00 – 59)

%p The locale’s equivalent of the AM/PM designations associated with a
12-hour clock

%S The second as a decimal number (00 – 61)

%U The week number of the year (the first Sunday as the first day of week
1) as a decimal number (00 – 53)

%w The weekday as a decimal number (0 [Sunday] – 6)

%W The week number of the year (the first Monday as the first day of week
1) as a decimal number (00 – 53)

%x The locale’s appropriate date representation

%X The locale’s appropriate time representation

%y The year without century as a decimal number (00 – 99)

%Y The year with century as a decimal number

%Z The time zone name or abbreviation, or by no characters if no time zone
can be determined

%% %

If the total number of resulting characters including the terminating null
character is not more than maxsize, the strftime function returns the
number of characters placed into the array pointed to by s, not including
the terminating null character. Otherwise, 0 is returned, and the array
contents are indeterminate.

Time Manipulation Functions
clock_t clock(void);

Determines the processor time used. The clock function returns the
processor time used by the program since the beginning of an event related
to the program invocation. To determine the time in seconds, divide the
return value by the value of the CLOCKS_PER_SEC macro. If the processor
time is not available or cannot be represented, the value returned is
(clock_t)-1. (To measure the time spent in a program, call the clock
function at the start of the program and subtract the return value from
that of subsequent calls.)
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double difftime(time_t time1, time_t time0);

Returns the difference between the two calendar times time1 and time0,
expressed in seconds, as a double.

time_t mktime(struct tm *timeptr);

Converts the broken-down time, expressed as local time, in the structure
pointed to by timeptr into a calendar time value with the same encoding
as that of the values returned by the time function (that is, a value of type
time_t), which it returns. If the calendar time cannot be represented, the
value (time_t)-1 is returned.

The original values of the tm_wday and tm_yday time components are
ignored, and the original values of the other components are not restricted
to the ranges indicated in the previous discussion of struct_tm. Upon
successful completion of the function, the values of the tm_wday and
tm_yday components are set appropriately, and the other components
are set to represent the specified calendar time, but with their values
forced to the ranges indicated in the discussion of struct_tm. The final
value of tm_wday is not set until tm_mon and tm_year are determined.

time_t time(time_t *timer);

Returns the current calendar time. If the calendar time is not available,
the value (time_t)-1 is returned.
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A
Language Syntax Summary

This section summarizes the syntax of the C language, using the syntax of
the ANSI C Standard. Syntactic categories are indicated with bold type, and
literal words or characters are indicated with monospaced, nonitalicized type.
A colon following a syntactic category introduces its definition. Alternative
definitions are listed on separate lines, or are prefaced by the words ‘‘one
of.’’ An optional element is indicated by the subscript opt. For example, the
following line indicates an optional expression enclosed in braces:

{ expressionopt }

The section numbers shown in parentheses refer to the section of the American
National Standard for Information Systems-Programming Language C
(document number: X3.159-1989) that discusses that part of the language.

A.1.1 Lexical Grammar
A.1.1.1 Tokens

token: (§3.1)

keyword
identifier
constant
string-literal
operator
punctuator

preprocessing-token: (§3.1)

header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator
each nonwhite-space character that cannot be one of the above
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A.1.1.2 Keywords

keyword: (§3.1.1) one of

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

A.1.1.3 Identifiers

identifier: (§3.1.2)

nondigit
identifier nondigit
identifier digit

nondigit: §3.1.2 one of

a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z _

digit: (§3.1.2) one of

0 1 2 3 4 5 6 7 8 9

A.1.1.4 Constants

constant: (§3.1.3)

floating-constant
integer-constant
enumeration-constant
character-constant

floating-constant: (§3.1.3.1)

fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

fractional-constant: (§3.1.3.1)

digit-sequenceopt . digit-sequence
digit-sequence .
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exponent-part: (§3.1.3.1)

e signopt digit-sequence
E signopt digit-sequence

sign: (§3.1.3.1) one of

+ –

digit-sequence: (§3.1.3.1)

digit
digit-sequence digit

floating-suffix: (§3.1.3.1) one of

f l F L

integer-constant: (§3.1.3.2)

decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant: (§3.1.3.2)

nonzero-digit
decimal-constant digit

octal-constant: (§3.1.3.2)

0
octal-constant octal-digit

hexadecimal-constant: (§3.1.3.2)

0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: (§3.1.3.2) one of

1 2 3 4 5 6 7 8 9

octal-digit: (§3.1.3.2) one of

0 1 2 3 4 5 6 7

hexadecimal-digit: (§3.1.3.2) one of

0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F
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integer-suffix: (§3.1.3.2)

unsigned-suffix long-suffixopt
long-suffix unsigned-suffixopt

unsigned-suffix: (§3.1.3.2) one of

u U

long-suffix: (§3.1.3.2) one of

l L

enumeration-constant: (§3.1.3.3)

identifier

character-constant: (§3.1.3.4)

’ c-char-sequence’
L’ c-char-sequence’

c-char-sequence: (§3.1.3.4)

c-char
c-char-sequence c-char

c-char: (§3.1.3.4)

any member of the source character set except
the single-quote (’), backslash (\ ), or new-line character

escape-sequence

escape-sequence: (§3.1.3.4)

simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: (§3.1.3.4) one of

\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence: (§3.1.3.4)

\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:(§3.1.3.4)

\ x hexadecimal-digit
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hexadecimal-escape-sequence hexadecimal-digit

A.1.1.5 String Literals

string-literal: (§3.1.4)

‘‘s-char-sequenceopt’’
L‘‘s-char-sequenceopt’’

s-char-sequence: (§3.1.4)

s-char
s-char-sequence s-char

s-char: (§3.1.4)

any member of the source character set except
the double-quote ("), backslash (\ ), or new-line character

escape-sequence

A.1.1.6 Operators

operator: (§3.1.5) one of

[ ] ( ) . ->
++ -- & * + - ~ ! sizeof
/ % << >> < > <= >= == != ^ | && ||
? :
= *= /= %= += -= <<= >>= &= ^= |=
, # ##

A.1.1.7 Punctuators

punctuator: (§3.1.6) one of

[ ] ( ) { } * , : = ; ... #

A.1.1.8 Header Names

header-name: (§3.1.7)

<h-char-sequence>
‘‘q-char-sequence’’

h-char-sequence: (§3.1.7)

h-char
h-char-sequence h-char

h-char: (§3.1.7)

any member of the source character set except
the new-line character and >
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q-char-sequence: (§3.1.7)

q-char
q-char-sequence q-char

q-char: (§3.1.7)

any member of the source character set except
the new-line character and "

A.1.1.9 Preprocessing Numbers

pp-number: (§3.1.8)

digit
. digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

A.1.2 Phrase Structure Grammar
A.1.2.1 Expressions

primary-expression: (§3.3.1)

identifier
constant
string-literal
( expression )

postfix-expression: (§3.3.2)

primary-expression
postfix-expression [ expression ]
postfix-expression ( argument-expression-listopt )
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression - -

argument-expression-list: (§3.3.2)

assignment-expression
argument-expression-list , assignment-expression
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unary-expression: (§3.3.3)

postfix-expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-name )

unary-operator: (§3.3.3) one of

& * + - ~ !

cast-expression: (§3.3.4)

unary-expression
( type-name ) cast-expression

multiplicative-expression: (§3.3.5)

cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

additive-expression: (§3.3.6)

multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

shift-expression: (§3.3.7)

additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

relational-expression: (§3.3.8)

shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression: (§3.3.9)

relational-expression
equality-expression = = relational-expression
equality-expression != relational-expression
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AND-expression: (§3.3.10)

equality-expression
AND-expression & equality-expression

exclusive-OR-expression: (§3.3.11)

AND-expression
exclusive-OR-expression ^ AND-expression

inclusive-OR-expression: (§3.3.12)

exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

logical-AND-expression: (§3.3.13)

inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

logical-OR-expression: (§3.3.14)

logical-AND-expression
logical-OR-expression | | logical-AND-expression

conditional-expression: (§3.3.15)

logical-OR-expression
logical-OR-expression ? expression : conditional-expression

assignment-expression: (§3.3.16)

conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: (§3.3.16) one of

= *= /= %= += -= <<= >>= &= ^= |=

expression: (§3.3.17)

assignment-expression
expression , assignment-expression

constant-expression: (§3.4)

conditional-expression

A.1.2.2 Declarations

declaration: (§3.5)

declaration-specifiers init-declarator-listopt ;
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declaration-specifiers: (§3.5)

storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt

init-declarator-list: (§3.5)

init-declarator
init-declarator-list , init-declarator

init-declarator: (§3.5)

declarator
declarator = initializer

storage-class-specifier: (§3.5.1)

typedef
extern
static
auto
register

type-specifier: (§3.5.2)

void
char
short
int
long
float
double
signed
unsigned

struct-or-union-specifier
enum-specifier
typedef-name

struct-or-union-specifier: (§3.5.2.1)

struct-or-union identifieropt { struct-declaration-list }
struct-or-union identifier

struct-or-union: (§3.5.2.1)

struct
union
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struct-declaration-list: (§3.5.2.1)

struct-declaration
struct-declaration-list struct-declaration

struct-declaration: (§3.5.2.1)

specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list: (§3.5.2.1)

type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-listopt

struct-declarator-list: (§3.5.2.1)

struct-declarator
struct-declarator-list , struct-declarator

struct-declarator: (§3.5.2.1)

declarator
declaratoropt : constant-expression

enum-specifier: (§3.5.2.2)

enum identifieropt { enumerator-list }
enum identifier

enumerator-list: (§3.5.2.2)

enumerator
enumerator-list , enumerator

enumerator: (§3.5.2.2)

enumeration-constant
enumeration-constant = constant-expression

type-qualifier: (§3.5.3)

const
volatile

declarator: (§3.5.4)

pointeropt direct-declarator

direct-declarator: (§3.5.4)

identifier
( declarator )
direct-declarator [ constant-expressionopt ]
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direct-declarator ( parameter-type-list )
direct-declarator ( identifier-listopt )

pointer: (§3.5.4)

* type-qualifier-listopt
* type-qualifier-listopt pointer

type-qualifier-list: (§3.5.4)

type-qualifier
type-qualifier-list type-qualifier

parameter-type-list: (§3.5.4)

parameter-list
parameter-list , ...

parameter-list: (§3.5.4)

parameter-declaration
parameter-list , parameter-declaration

parameter-declaration: (§3.5.4)

declaration-specifiers declarator
declaration-specifiers abstract-declaratoropt

identifier-list: (§3.5.4)

identifier
identifier-list , identifier

type-name: (§3.5.5)

specifier-qualifier-list abstract-declaratoropt

abstract-declarator: (§3.5.5)

pointer
pointeropt direct-abstract-declarator

direct-abstract-declarator: (§3.5.5)

( abstract-declarator )
direct-abstract-declaratoropt [ constant-expressionopt ]
direct-abstract-declaratoropt ( parameter-type-listopt )

typedef-name: (§3.5.6)

identifier
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initializer: (§3.5.7)

assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list: (§3.5.7)

initializer
initializer-list , initializer

A.1.2.3 Statements

statement: (§3.6)

labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

labeled-statement: (§3.6.1)

identifier : statement
case constant-expression : statement
default : statement

compound-statement: (§3.6.2)

{ declaration-listopt statement-listopt }

declaration-list: (§3.6.2)

declaration
declaration-list declaration

statement-list: (§3.6.2)

statement
statement-list statement

expression-statement: (§3.6.3)

expressionopt ;

selection-statement: (§3.6.4)

if ( expression ) statement
if ( expression ) statement else statement
switch ( expression) statement
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iteration-statement: (§3.6.5)

while ( expression ) statement
do statement while ( expression ) ;
for ( expressionopt ; expressionopt ; expressionopt ) statement

jump-statement: (§3.6.6)

goto identifier ;
continue ;
break ;
return expressionopt ;

A.1.2.4 External Definitions

translation-unit: (§3.7)

external-declaration
translation-unit external-declaration

external-declaration: (§3.7)

function-definition
declaration

function-definition: (§3.7.1)

declaration-specifiersopt declarator declaration-listopt compound-statement

A.1.3 Preprocessing Directives

preprocessing-file: (§3.8)

groupopt

group: (§3.8)

group-part
group group-part

group-part: (§3.8)

pp-tokensopt new-line
if-section
control-line

if-section: (§3.8.1)

if-group elif-groupsopt else-groupopt endif-line

if-group: (§3.8.1)

#if constant-expression new-line groupopt
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#ifdef identifier new-line groupopt
#ifndef identifier new-line groupopt

elif-groups: (§3.8.1)

elif-group
elif-groups elif-group

elif-group: (§3.8.1)

#elif constant-expression new-line groupopt

else-group: (§3.8.1)

#else new-line groupopt

endif-line: (§3.8.1)

#endif new-line

control-line:

#include pp-tokens new-line (§3.8.2)
#define identifier replacement-list new-line (§3.8.3)
#define identifier (identifier-list)opt replacement-list new-line (§3.8.3)
#undef identifier new-line (§3.8.3)
#line pp-tokens new-line (§3.8.4)
#error pp-tokensopt new-line (§3.8.5)
#pragma pp-tokensopt new-line (§3.8.6)
# new-line (§3.8.7)

lparen: (§3.8.3)

the left parenthesis character without preceding white space

replacement-list: (§3.8.3)

pp-tokensopt

pp-tokens: (§3.8)

preprocessing-token
pp-tokens preprocessing-token

new-line: (§3.8)

the new-line character
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B
ANSI Conformance Summary

Compaq C conforms to the ANSI standard for the Programming Language
C, as specified by the X3J11 Technical Committee and documented in the
American National Standard for Information Systems–Programming Language
C (document number: X3.159-1989). Compaq C has successfully passed the
Plum-Hall test suite for ANSI conformance. In strict ANSI C mode, the
Compaq C compiler is a conforming implementation as described by the ANSI
C Standard in Section 1.7, Compliance: ‘‘ A conforming hosted implementation
shall accept any strictly conforming program. A conforming implementation
can have extensions (including additional library functions), provided they do
not alter the behavior of any strictly conforming program. ’’

The ANSI C Standard defines a strictly conforming program as:

‘‘ A strictly conforming program shall use only those features of the language
and library specified in this Standard. It shall not produce output dependent
on any unspecified, undefined, or implementation-defined behavior, and shall
not exceed any minimum implementation limit. ’’

‘‘ An implementation shall be accompanied by a document that defines all
implementation-defined characteristics and all extensions. ’’

As with most language definitions, the ANSI C Standard does not encompass
the entire definition of the C language available within an implementation.
The C implementations currently supported by Compaq include a number of
features that are not defined in the ANSI C Standard.

The rest of this section describes the compiler’s functionality in a format
mirroring the outline of the ANSI C Standard. The relevant ANSI C Standard
section number is shown in parentheses following each heading. If a heading
from the ANSI C Standard is missing from this description, Compaq C
conforms to the Standard exactly, without extension or implementation-defined
behavior.
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The following sections document only the extensions and implementation-
defined portions of the Compaq C language. Together with the ANSI C
Standard, this section completely specifies the Compaq C implementation
of the C language. The ANSI C Standard is referred to as ‘‘the Standard’’
throughout this appendix.

B.1 Diagnostics (§2.1.1.3)
A diagnostic message is produced for the first violation of a syntax rule or
constraint specified in the Standard. Subsequent violations are reported if they
are not hidden by previous violations.

B.2 Hosted Environment (§2.1.2.2)
The semantics of the arguments to main( ), including envp, are determined
by the programming environment. See your platform-specific Compaq C
documentation for information on arguments to main( ).

B.3 Multibyte Characters (§2.2.1.2)
The shift states used for the encoding of multibyte characters are dependent on
translation tables available on the local system. A particular character set is
supported by the language if the local system’s translation tables support it.

B.4 Escape Sequences (§2.2.2)
Elements within a character constant or string literal of the source character
set are mapped directly into the elements of the execution character set.
Escape sequences other than those defined by the Standard are diagnosed with
a warning and the backslash is ignored, so that the character constant’s or
string literal’s value is the same as if the backslash were not present.

B.5 Translation Limits (§2.2.4.1)
Translation limits vary across platforms because of differences in the
underlying machine architecture and operating systems. Otherwise, Compaq C
avoids imposing translation limits.

The following lists show the only limits imposed in Compaq C. Translation
limits listed in the Standard, but not in the following list, are not imposed in
Compaq C:

• 32,767 characters in an internal identifier or a macro name

• 32,767 characters in a logical or physical source line
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• 32,767 bytes in the representation of a string literal (this limit does not
apply to string literals formed as a result of concatenation)

On Tru64 UNIX systems:

• 1023 significant initial characters in an external identifier. A warning is
issued if such an identifier is truncated.

On OpenVMS systems:

• 31 significant initial characters in an external identifier. A warning is
issued if such an identifier is truncated.

• 253 actual arguments or formal parameters to a function.

• 1012 bytes in a function argument list.

B.6 Numerical Limits (§2.2.4.2)
Compaq C’s numerical limits are defined in the limits.h and float.h header
files. These header files contain the implementation-defined values so that the
following descriptions hold:

• There are 8 bits in a character of the execution character set.

• The representation and set of values for the type char are the same as that
of type signed char. This equivalence can be changed from signed char to
unsigned char with a command-line option.

• On OpenVMS systems, the representation and set of values for the types
int and signed int are the same as that for type long (32 bits).

• On OpenVMS systems, the representation and set of values for the type
unsigned int are the same as that for type unsigned long (32 bits).

• On Tru64 UNIX systems, the long int and unsigned long int types are 64
bits, while int and unsigned int are 32 bits.

• The representation and set of values for the type long double are the same
as that for type double (64 bits).

Any limits not found in the previous list are defined as shown in the Standard.
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B.7 Keywords (§3.1.1)
The _ _inline, _ _unaligned, and _ _restrict keywords are supported on
OpenVMS Alpha systems and Tru64 UNIX systems.

All VAX C keywords are supported in VAX C mode. They are:

• _align

• globaldef

• globalref

• globalvalue

• noshare

• readonly

• variant_struct

• variant_union

The following keywords are accepted on Tru64 UNIX systems, but result in a
warning:

• _align

• noshare

• readonly

On Tru64 UNIX systems, globaldef and initialized globalvalue declarations
are treated as external definitions. globalref and uninitialized globalvalue
declarations are treated as if they were declared extern.

Note

The MAIN_PROGRAM option is also available with the VAX C compatibility
option on OpenVMS systems.

B.8 Identifiers (§3.1.2)
An identifier can include the character dollar sign ($). (A warning is given for
this in strict ANSI mode.)

On Tru64 UNIX systems, case distinctions are always significant in an
identifier with external linkage.
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On OpenVMS systems, all identifier names with external linkage are converted
to uppercase by default, but this can be controlled with a command-line option.

B.9 Linkages of Identifiers (§3.1.2.2)
An error is reported if, within a translation unit, the same identifier appears
with both internal and external linkage.

B.10 Types (§3.1.2.5)
The type char and the type signed char have the same representation and set
of values. (If the unsigned compile-time option is specified, then the types char
and unsigned char have the same representation and set of values.)

B.11 Integer Constants (§3.1.3.2)
The digits 8 and 9 are permitted as valid octal digits in common C and VAX C
modes, but a warning message is issued.

B.12 Character Constants (§3.1.3.4)
A character constant containing more than one character or wide character
is diagnosed with a warning under the error-checking compiler option and is
stored as an integer value. A character constant with more than one character
is represented with the last character in the low-order byte for compatibility
with common C. Representation of an integer character constant containing an
octal or hexadecimal escape sequence not in the basic execution character set is
the value specified by the octal or hexadecimal number in the escape sequence.
(Its value is interpreted as a signed or unsigned char, depending on whether
the unsigned compile-time option is in effect.)

The type of a wide character constant, wchar_t, is unsigned int.

B.13 String Literals (§3.1.4)
The Standard states that identical string literals need not be distinct, and
any attempt to modify a string literal is undefined. Therefore, it is an error to
modify either a character-string literal or wide-string literal.
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B.14 Operators—Compound Assignment (§3.1.5)
The old form of compound assignment operators (such as =+, =-, =*, =/, and
=%) are not defined in the Standard.1 Therefore, in expressions of the form
expression =unary_op expression, where the =unary_op would previously have
been interpreted as an assignment operator, the =unary_op is now interpreted
as two tokens: the assignment operator and the unary_op.

A warning message is issued if the error-checking option is specified for =-, =*,
=& and =+ (with no intervening white space) to remind you of this change in
meaning. Without the error-checking option, no message is issued.

B.15 Characters and Integers—Value-Preserving Promotions
(§3.2.1.1)
Two different approaches to the implementation of integral promotion rules
have been taken by earlier versions of C. The first approach is called unsigned
preserving, in which unsigned char and unsigned short widen to unsigned
int. The second approach is called value preserving, in which unsigned char
and unsigned short widen to signed int if the value can be represented;
otherwise they widen to unsigned int. The Standard specifies that integral
promotions are to be value-preserving. This approach is followed in all modes
except common C and VAX C mode, and results in a quiet change to programs
depending on unsigned-preserving arithmetic conversions.

To aid the programmer in locating arithmetic conversions that depend on
unsigned-preserving rules, any integral promotions of unsigned char and
unsigned short to int that could be affected by the value-preserving approach
for integral promotions are flagged with the error-checking option.

B.16 Signed and Unsigned Integer Conversions (§3.2.1.2)
If the value of an integer demoted to a signed integer is too large to be
represented, the result is truncated with excess high-order bits discarded. This
is compatible with common C and VAX C.

Conversions between signed and unsigned integers of the same size involve no
representation change.

1 Early versions of C allowed compound assignment operators to be written in reverse
form (=+, =-, = *) instead of the defined order (+=, -=, *=). This old form leads to
syntactic ambiguities for the compound assignment operators whose second operator
was also a valid unary operator.
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B.17 Floating and Integral Conversions (§3.2.1.3)
When an integer is converted to a floating-point number that cannot be
represented exactly, the result of the conversion is the nearest value that can
be represented exactly. This result is the natural result of the conversion on
the hardware, and can be higher or lower than the original value.

When a floating-point number is converted at compile time to an integer or
another floating-point type, and the result cannot be represented, the compiler
issues a diagnostic message.

When an integral number or double floating-point number is converted to
a floating-point number that cannot exactly represent the original value,
the result is rounded to the nearest value of type float. (For details, see
the architecture manual for your platform; for example, the MIPS R-Series
Processor Architecture Manual or the VAX Architecture Manual.)

When demoting a double value to float, if the value being converted is in
the range of values that can be represented, but not represented exactly, the
result is the nearest higher or lower value. Compaq C rounds the result to the
nearest representable float value.

Similar rounding is performed for demotions from long double to double or
float.

B.18 Pointer Conversions (§3.2.2.3)
Even if two types have the same representation (such as int and long), they
are still different types. This means that a pointer to int cannot be assigned
to a pointer to long without using a cast operation.

This rule is relaxed in the common C and VAX C modes. Pointer conversions
do not involve a representation change, but, because of alignment restrictions
on some machines, access through an unaligned pointer can result in much
slower access time, a machine exception, or unpredictable results.

B.19 Structure and Union Members (§3.3.2.3)
The result of accessing a union member different than the member holding a
value depends on the data types of the members and their alignment within
the union.
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B.20 The sizeof Operator (§3.3.3.4)
The type of the sizeof operator is size_t. Compaq C defines this type, which
is the type of integer required to hold the maximum size of an array, in the
<stddef.h> header as unsigned int.

B.21 Cast Operators (§3.3.4)
The Standard specifies that a pointer can be converted to an integral type, but
the size of the integer required and the result are implementation-defined. A
pointer occupies the same amount of storage as objects of type int or long
(or their unsigned equivalents). Therefore, a pointer can be converted to any
of these integer types and back again without changing its value. No scaling
takes place, and the representation of the value does not change.

Converting between a pointer and a shorter integer type, such as char,
is similar to the conversion between an object of unsigned long type and
a shorted integer type. The high-order bits of the pointer are discarded.
Converting between a shorter integer and a pointer is similar to the conversion
between the shorter integer type and unsigned long. The high-order bits of
the pointer are filled with copies of the sign bit if the shorter integer type
was signed. Messages are issued for cast operations of these types under the
error-checking compiler option.

B.22 Multiplicative Operators (§3.3.5)
The Standard does not provide portable semantics for the division and
remainder operators. Compaq C follows these semantics:

• If either operand of the division operator (/) is negative, the result is
truncated toward zero (the largest integer of lesser magnitude than the
algebraic quotient)

• If either operand of the remainder operator (%) is negative, the sign of the
result is the same as the sign of the first operand (for common C, MIPS C,
and VAX C compatibility)

The compiler issues a warning in the following cases of undefined behavior
detected at compile time:

• Integer overflow

• Division by zero

• Remainder by zero
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B.23 Additive Operators (§3.3.6)
Pointers to members of the same array can be subtracted. The result is the
number of elements between the two array members. The type of the result is
ptrdiff_t. Compaq C defines this type as int.

B.24 Bitwise Shift Operators (§3.3.7)
The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has a signed
type, the value of the result is the shifted value of E1 with the vacated
high-order bits filled with a copy of E1’s sign bit (arithmetic shift).

B.25 Storage-Class Specifiers (§3.5.1)
The register storage-class specifier suggests that access to the object be
as fast as possible. Specifying register is intended to give a variable an
increased probability of being stored in a register. However, compiler register
allocation techniques make using the register keyword obsolete. That is,
Compaq C accepts and ignores all register requests.

B.26 Type Specifiers (§3.5.2)
The combination long float is supported as a synonym for double for
compatibility with common C and VAX C. This combination results in a
warning if compiled with the default mode or the strict ANSI mode.

B.27 Structure and Union Specifiers (§3.5.2.1)
The high-order bit position of an int bit field is not treated as a sign bit, except
in the VAX C compatibility mode. In other words, the type int designates the
same type as unsigned int for all bit-field types. In VAX C mode, the type int
designates the same type as signed int for all bit-field types.

B.28 Variant Structures and Unions
Variant structures and unions are VAX C extensions that allow nested
structures and unions to be declared as members of the enclosing aggregate.
This eliminates the need to specify an intermediate qualifier when referring to
those members. These capabilities are only available in VAX C mode.

Your platform-specific Compaq C documentation contains details about these
extensions.
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B.29 Structure Alignment
The alignment and size of a structure is affected by the alignment
requirements and sizes of the structure components for each platform. A
structure can begin on any byte boundary and occupy any integral number
of bytes. However, individual architectures or operating systems can specify
particular default alignment and padding requirements, which can be
overridden by pragmas and command-line options.

OpenVMS Alpha and Tru64 UNIX
On OpenVMS Alpha and Tru64 UNIX systems, nonbit-field structure members
are, by default, aligned on natural boundaries.

The default alignment of a structure is the maximum alignment required by
any member within the structure. The structure is padded to ensure that
the size of a structure, in bytes, is a multiple of its alignment requirement to
achieve the appropriate alignment when the structure or union is a member of
an array.

The components of a structure are laid out in memory in the order they
are declared. The first component has the same address as the entire
structure. Padding is introduced between components to satisfy the alignment
requirements of individual components.

A bit field can have any integral type. However, the compiler issues a warning
with the error-checking option if the type is anything other than int, unsigned
int, or signed int. The presence of bit fields causes the alignment of the whole
structure or union to be at least the same as that of the bit field’s base type.

Bit fields (including zero-length bit fields) not immediately declared following
other bit fields have the alignment requirement imposed by their base type.
Bit fields are allocated within the alignment unit (of the same size as the bit
field’s base type) from low-order to high-order.

With #pragma member_alignment in effect, if a bit field immediately follows
another bit field, the bits are packed into adjacent space in the same unit, if
sufficient space remains. Otherwise, padding is inserted at the end of the first
bit field and the second bit field is put into the next unit.

With #pragma nomember_alignment in effect, bit fields are allowed to span
storage unit boundaries. Alpha systems default to member_alignment while
VAX systems default to nomember_alignment.

Bit fields of base type char cannot be larger than 8 bits. Bit fields of base type
short cannot be larger than 16 bits.
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OpenVMS VAX
OpenVMS VAX systems do not require that structures or structure members
be aligned on any particular boundaries; nonbit-field structure members are
byte-aligned by default.

The components of a structure are laid out in memory in the order they are
declared. The first component has the same address as the entire structure.
Each additional component follows its predecessor in the immediately following
byte.

Natural alignment of structure members, can be obtained by using the
following pragma:

pragma member_alignment

The Compaq C User’s Guide for OpenVMS Systems has examples and diagrams
of OpenVMS VAX structure alignment.

Bit fields can have any integral type. However, the compiler issues a warning
if /STANDARD=ANSI89 is specified, and the type is other than int, unsigned
int, or signed int. Bit fields are allocated within the unit from low order
to high order. If a bit field immediately follows another bit field, the bits are
packed into adjacent space, even if this overflows into another byte. However,
if an unnamed bit field is specified to have length 0, filler is added so the bit
field immediately following starts on the next byte boundary.

The Compaq C User’s Guide for OpenVMS Systems has examples and diagrams
of OpenVMS VAX bit-field alignment.

B.30 Enumeration Specifiers (§3.5.2.2)
The Standard specifies that each enumerated type be compatible with an
implementation-defined integer type. In Compaq C, each enumerated type is
compatible with the signed int type.

B.31 Type Qualifiers (§3.5.3)
The volatile storage class is specified for those variables that can be modified
in ways unknown to the compiler. Thus, if an object is declared volatile, every
reference to the object in the source code results in a reference to memory in
the object code.
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B.32 Declarators (§3.5.4)
There is no internal limit on the number of pointer, function or array
declarators that can modify an arithmetic, structure, union, or incomplete type.

B.33 Initialization (§3.5.7)
C allows initializers to be optionally surrounded by braces ( { } ) when they
are not logically necessary. This has resulted in aggregate initializers with
partially ignored braces that are parsed differently depending on the type
of parser implemented (bottom-up or top-down). The Standard has specified
the top-down parse originally specified in Kernighan and Ritchie’s The C
Programming Language. Programs depending on a bottom-up parse (common
C parse) of partially braced initializers can yield unexpected results. Even
though this construct is allowed, a warning message is given to inform the user
of ignored braces when in common C mode or if using the check option.

B.34 The switch Statement (§3.6.4.2)
There is no limit on the number of case labels in a switch statement.

B.35 External Object Definitions (§3.7.2)
In common C mode, all extern objects have file scope.

B.36 Conditional Inclusion (§3.8.1)
Previous preprocessors have allowed extraneous text after a preprocessor
directive. For example:

#endif system1

However, the Standard has stated that the only text allowed after a
preprocessing directive is a comment. Therefore, the Compaq C compiler
issues a warning message if this syntax rule is violated.

The numeric value for character constants within #if and #elif directives
matches the value obtained when an identical character constant occurs in
expressions that are not part of these directives.
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B.37 Source File Inclusion (§3.8.2)
Source files can be included using either a quoted path name (#include
"stdio.h") or bracketed path names (#include <stdio.h>). OpenVMS systems
also support a method of including modules from a text library. See your
platform-specific Compaq C documentation for the search-path algorithm for
including source files.

B.38 Macro Replacement—Predefined Macro Names (§3.8.3)
In addition to the predefined macro names defined in the Standard, the
Compaq C compiler defines other preprocessor macros for various identification
purposes. When the compiler is invoked, the appropriate identification macros
are defined depending on the operating system, architecture, language,
compiler mode, and other environment variables. You can reference these
macros in #ifdef preprocessor directives to isolate code that applies to a
particular environment.

Each Compaq C platform can have additional predefined macros. See your
platform-specific Compaq C documentation for more information.

Table B–1 shows the predefined macro names for Tru64 UNIX.

Table B–1 Tru64 UNIX Predefined Macro Names

Macro Name

Operating system name: unix

_ _unix_ _

_ _osf

SYSTYPE_BSD

_SYSTYPE_BSD

Architecture name: _ _alpha

Product name: _ _DECC

_ _DECC_VER

LANGUAGE_C

_ _LANGUAGE_C_ _

Table B–2 shows the predefined macro names for OpenVMS VAX and Alpha
systems. All forms are defined unless strict ANSI mode is in effect, in which
case only the new spellings are defined.
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Table B–2 OpenVMS VAX and Alpha Predefined Macro Names

New Spelling
Traditional
Spelling

Operating system name: _ _vms vms

_ _VMS VMS

_ _vms_version vms_version

_ _VMS_VERSION VMS_
VERSION

Architecture name: _ _vax (VAX) vax (VAX)

_ _VAX (VAX) VAX (VAX)

_ _alpha (Alpha) —

_ _ALPHA (Alpha) —

_ _Alpha_AXP (Alpha) —

_ _32BITS (Alpha) —

Product name: _ _vaxc vaxc

_ _VAXC VAXC

_ _vax11c vax11c

_ _VAX11C VAX11C

_ _STDC_ _ —

_ _DECC —

_ _DECC_VER —

_ _VMS_V6_RTL_COMPAT —

Compiler Mode: _ _DECC_MODE_STRICT —

_ _DECC_MODE_RELAXED —

_ _DECC_MODE_VAXC —

_ _DECC_MODE_COMMON —

Floating-Point: _ _D_FLOAT —

_ _G_FLOAT —

_ _IEEE_FLOAT (Alpha) —

_ _X_FLOAT (Alpha) —

Other: _ _HIDE_FORBIDDEN_NAMES —

(continued on next page)
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Table B–2 (Cont.) OpenVMS VAX and Alpha Predefined Macro Names

New Spelling
Traditional
Spelling

_ _INITIAL_POINTER_SIZE (Alpha) —

You can explicitly define the macros in Table B–3 to control which C library
routines are declared in header files and to obtain standards conformance
checking. To define these macros use one of the following:

• -D flag (Tru64 UNIX)

• /DEFINE qualifier (OpenVMS)

• #define preprocessor directive

Table B–3 Library Routine Standards Conformance Macros—All platforms

Macro Standard

_XOPEN_SOURCE_EXTENDED XPG4-UNIX

_XOPEN_SOURCE XPG4

_POSIX_C_SOURCE POSIX

_ANSI_C_SOURCE ISO C and ANSI C

_AES_SOURCE (Tru64 UNIX) Application Environment Services

_OSF_SOURCE (Tru64 UNIX) OSF compatibility

_VMS_V6_SOURCE (OpenVMS) OpenVMS Version 6 compatibility

_DECC_V4_SOURCE (OpenVMS) DEC C Version 4 compatibility

B.39 The ## Operator (§3.8.3.3)
The ## operator within a macro replacement list causes the two tokens on
either side of the operator to be concatenated into a single token.

In common C and VAX C compatibility mode, comments can also concatenate
two tokens because in these modes a comment is replaced by a null string after
macro invocations.

This behavior is not supported in strict ANSI or default mode, where comments
are replaced with a single space.
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B.40 Error Directive (§3.8.5)
The #error directive causes an error message to be issued and the compilation
to cease.

B.41 Pragma Directive (§3.8.6)
The Standard’s approved method of adding extensions to the language is
through the addition of pragmas. All unrecognized pragmas are diagnosed
with an informational message. Supported pragmas vary across platforms. See
your platform-specific Compaq C documentation for more information.

When only preprocessing a file, all pragmas recognized by Compaq C are
written unaltered to the output.

B.42 Function Inline Expansion
Function inline expansion eliminates procedure-call overhead and allows
general optimization methods to apply across the expanded code. Function
inlining has advantages over macros in that arguments are evaluated only
once, parentheses need not be overused to avoid problems with precedence, and
the actual expansion can be controlled from the command line.

The following pragmas are provided to control function inline expansion:

#pragma inline (function_name [,function_name....])
#pragma noinline (function_name [,function_name....])

If a function is named in an inline directive, calls to it are expanded as inline
code, if the function has the following properties:

• If a function is named in a noinline directive, calls to it are not expanded
as inline code.

• If a function is not named in an inline or a noinline directive, the
compiler uses a heuristic to perform inline expansion of calls where
appropriate.

• The compiler issues an error if a function is named in both an inline and
a noinline directive.

If the noinline compiler option is used, it overrides all inline pragma
directives.

Inline functions have the following properties:

• An inline function can be recursive, but only one level of inline expansion
is performed if it is.
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• Only calls from the source file containing the definition of the inlined
function are expanded inline.

• The address of an inline function can be taken and expressions that imply
the conversion of the inlined function name to an address are allowed.

• The use of the varargs package (allowing a function to take a variable
number of arguments) is not allowed for inline functions.

• An inline function cannot be declared with an ellipsis in its argument list.

B.43 Linkage Pragmas
Compaq C supports the #pragma linkage and #pragma use_linkage
preprocessor directives on OpenVMS Alpha systems.

These pragmas are used for defining special linkage characteristics and to
associate these linkage characteristics with functions. See your platform-
specific Compaq C documentation for more information.

B.44 Other Pragmas
The following pragmas are provided for VAX C compatibility mode only:

#pragma dictionary CDD_path
#pragma module title ident

These pragmas correspond to the #dictionary and #module directives,
respectively.

See your platform-specific Compaq C documentation for additional pragmas
supported on your system.
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C
ASCII Equivalence Table

Figure C–1 shows the ASCII character set. Each character’s octal, decimal,
and hexadecimal value is shown.
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Figure C–1 ASCII Equivalence Chart

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

0x28
0x29
0x2A
0x2B
0x2C
0x2D
0x2E
0x2F
0x30
0x31
0x32
0x33
0x34
0x35
0x36
0x37
0x38
0x39
0x3A
0x3B
0x3C
0x3D
0x3E
0x3F

0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
0x1A
0x1B
0x1C
0x1D
0x1E
0x1F

0x10

0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27

Oct Dec Hex
00
01
02
03
04
05
06
07

010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

13
14
15
16
17
18
19
20
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22
23
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25
26
27
28
29
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31
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0
1
2
3
4
5
6
7
8
9
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46
47
48
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56
57
58
59
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62
63

32
33
34
35
36
37
38
39
40
41

85
86
87
88
89
90
91
92
93
94
95

72
73
74
75
76
77
78
79
80
81
82
83
84

64
65
66
67
68
69
70
71

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

96
97
98
99

126
127

0100
0101
0102
0103
0104
0105
0106
0107

0170
0171
0172
0173
0174
0175
0176
0177

0140
0141
0142
0143
0144
0145
0146
0147
0150
0151
0152
0153
0154
0155
0156
0157
0160
0161
0162
0163
0164
0165
0166
0167

0110
0111
0112
0113
0114
0115
0116
0117
0120
0121
0122
0123
0124
0125
0126
0127
0130
0131
0132
0133
0134
0135
0136
0137

0x7F

0x48
0x49
0x4A
0x4B

0x40
0x41
0x42
0x43
0x44
0x45
0x46
0x47

0x4C
0x4D
0x4E
0x4F
0x50
0x51
0x52
0x53
0x54
0x55
0x56
0x57
0x58
0x59
0x5A
0x5B
0x5C
0x5D
0x5E
0x5F
0x60
0x61
0x62
0x63
0x64
0x65
0x66
0x67
0x68
0x69
0x6A
0x6B
0x6C
0x6D
0x6E
0x6F
0x70
0x71
0x72
0x73
0x74
0x75
0x76
0x77
0x78
0x79
0x7A
0x7B
0x7C
0x7D
0x7E

HexDecOct

!
"
#
$
%
&
\
(
)
*
+
,
_
.
/
0
1
2
3
4
5
6
7
8
9
|
;
<
=
>
?

\016
\017
\020
\021
\022
\023
\024
\025
\026
\027
\030
\031
\032
\033
\034
\035
\036

\b

\n
\v
\f
\r

\0
\001
\002
\003
\004
\005
\006
\007

Character

(space)

X
Y
Z
[

]
^
_
‘

O
P
Q
R
S
T
U
V
W

A
B
C
D
E
F
G
H
I
J
K
L
M
N

l

a
b
c
d
e
f
g
h
i
j
k

m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~
\177

Character
__

ZK−8422A−GE

\t

\037

\
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D
Common C Extensions Supported by

Compaq C

Compaq C supports several common C (old-style C) extensions to ANSI-
standard C. These extensions are recognized only when the common C
compatibility option is used on the compiler command line. The common C
extensions allow you to use the c89 compiler to compile code originally written
for the portable C compiler (pcc).

The following sections describe the common C extensions available with the
common C compatibility option. Extensions to the ANSI-standard C language
are divided into two categories:

• Extensions compatible with ANSI C programs that produce diagnostic
messages when compiled without the common C compatibility option

• Extensions incompatible with ANSI C programs, which could produce
different compiler behavior when used without the common C compatibility
option

D.1 Extensions Compatible with ANSI C

• Relaxed pointer and pointer/integer compatibility is allowed. That is, all
pointer and integer types are compatible, and pointer types are compatible
with each other regardless of the type of object they point to. Therefore,
under the common C option, a pointer to float is compatible with a pointer
to int.

• The digits 8 and 9 are valid in octal integer constants. (A warning message
is issued by the compiler, however.)

• Bit-field data types may include enum, short, char, and long. The ANSI C
Standard allows only int, unsigned int, or signed int.

• long float is recognized as a synonym for double.
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• A third argument to the function main( ), namely char *envp[ ], is
allowed.1

When Compaq C is run in common C compatibility mode, the main function
can accept a third parameter, the environment array envp. This array
contains process information such as the user name and controlling
information, and has no bearing on passing command-line arguments. Its
primary use is during exec and getenv library function calls.

See your platform-specific Compaq C documentation for more information
about invoking the main function within your host environment.

• Text is allowed following the preprocessing directives #else and #endif.

• Address constants may be cast to int.

• Tentative definitions that exist at the completion of a compilation remain
tentative to the linker, in accordance with the traditional model of
definition resolution.

• Casts that do not cause a change in representation are legal as lvalues.

• Implicit function declarations are created at file level, rather than at block
level.

• The types int and long are compatible.

• Taking the address of a variable with the register storage class is allowed.

• Block-level declarations of functions with static storage class are allowed.

• In array types, the element types are allowed to be incomplete.

• The type of a tentatively-defined variable is allowed to be incomplete at the
end of the compilation unit. A warning is issued for this case.

• Values in case labels are allowed to have a pointer type.

• Trailing (extra) commas are allowed in enumeration lists.

• The semicolon following the last structure or union member may be
omitted.

• Carriage returns are accepted and treated as white space.

1 Parameters to the function main() are only checked in strict ANSI mode.
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D.2 Extensions Incompatible with ANSI C

• Unsigned preserving rules apply. (unsigned char and unsigned short
promote to unsigned int.)

• Comments are converted to no spaces instead of a single space to allow
token concatenation. (The compiler attempts to concatenate the two
adjacent tokens.)

• All extern objects have file scope.

• Macro parameters are recognized and replaced within string or character
constants in the macro definition.

• During macro replacement, an argument’s preprocessing tokens are not
macro replaced before the macro is expanded.

If the name of a macro being replaced is found during the rescan of the
replacement list, it is macro replaced.

• Support for predefined macro names that do not conform to the ANSI C
Standard (that is, that do not start with two underscores or an underscore
followed by a capital letter).

• A preprocessor directive is only recognized as such if the beginning #
character occurs in the first column of a line. Any preprocessor directives
preceded by white space are ignored.

• #ifdef is treated as "#if defined"

• #ifndef is treated as "#if !defined"

• Comments in macro replacement lists behave like ## operators when a
valid token results after concatenation, except that adjoining white space
is not deleted. If the resulting token is not valid, the comment in a macro
replacement is deleted.

• Trigraphs are not recognized and replaced.
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E
VAX C Extensions Supported by

Compaq C

Compaq C supports several VAX C extensions to ANSI-standard C. These
extensions are recognized only when the VAX C compatibility option is used
on the compiler command line. The VAX C extensions allow you to use the
Compaq C compiler to compile code originally written for the VAX C compiler.

The following sections describe the VAX C extensions available with the VAX C
compatibility option. Extensions to the ANSI-standard C language are divided
into two categories:

• Extensions compatible with ANSI C programs that produce diagnostic
messages when compiled without the VAX C compatibility option

• Extensions incompatible with ANSI C programs, which could produce
different compiler behavior when used without the VAX C compatibility
option

E.1 Extensions Compatible with ANSI C

• VAX C specific pragmas are recognized.

• Relaxed pointer and pointer/integer compatibility is allowed. That is, all
pointer and integer types are compatible, and pointer types are compatible
with each other regardless of the type of object they point to. Therefore,
under the VAX C option, a pointer to float is compatible with a pointer to
int.

• The #module directive is allowed. (On Tru64 UNIX systems this directive
produces a warning message and is ignored.)

• The #dictionary directive is allowed. (On Tru64 UNIX systems this
directive produces a warning message and is ignored.)

• The module form of #include is allowed. (On Tru64 UNIX systems the
module form of this directive produces an error.)
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• Specifying int for the type of a bit field is equivalent to specifying signed
int in VAX C mode.

• Built-in functions are recognized.

• The main_program option may be used to identify a particular function as
the main function for a given program.

When compiling in VAX C mode, another way to specify the main function
in a program is to include the following option in the function definition:

main_program

This option is not a keyword, and it can be written uppercase or lowercase.
The main_program option is useful for allowing a name other than main for
the main program.

In a prototype-style function definition, include main_program between the
function declaration part and the left brace, as in the following example:

char lower(int c_up)
main_program
{

.

.

.
}

In an old-style function definition, include main_program in the same place
as in the prototype style, but before any parameter declarations, as in the
following example:

char lower(c_up)
main_program
int c_up;
{

.

.

.
}

Both examples establish the function lower as the main function; execution
begins there, regardless of the order in which the functions are linked.

• Bit-field data types may include enum, short, char, and long. The ANSI C
standard allows only int, unsigned int, or signed int.

• The last member of a structure may be an array with no size specified.

• Two struct types or two union types are considered the same type if their
sizes are the same.
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• Block-level declarations of functions with static storage class are allowed.

• The address of a constant may be passed to a function.

• Taking the address of a variable with register storage class is allowed.

• A third argument to the function main( ), namely char *envp[ ], is allowed.

When Compaq C is run in VAX C compatibility mode, the main function can
accept a third parameter, the environment array envp. This array contains
process information such as the user name and controlling information,
and has no bearing on passing command-line arguments. Its primary use
is during exec and getenv library function calls. 1

See your platform-specific Compaq C documentation for more information
about invoking the main function within your host environment.

• long float is recognized as a synonym for double.

• Character constants containing multiple characters are packed in little
endian order. For example, ’AB’ is treated as ’B’ << 8 + ’A’ instead of ’A’ <<
8 + ’B’.

• Trailing (extra) commas are allowed in enumeration lists.

• The element type of an array may be incomplete.

• Carriage returns are accepted and treated as white space.

E.2 Extensions Incompatible with ANSI C

• Unsigned preserving rules apply. (unsigned char and unsigned short
promote to unsigned int.)

• VAX C-specific predefined macros are recognized.

• VAX C-specific keywords are recognized.

• Macro parameters are recognized and are replaced as string or character
constants in the macro definition.

• Comments are converted to no spaces instead of a single space to allow
token concatenation. (The compiler attempts to concatenate the two
adjacent tokens.)

• Comments in macro replacement lists behave like ## operators when a
valid token results after concatenation, except that adjoining white space
is not deleted. If the resulting token is not valid, the comment in a macro
replacement is deleted.

1 Parameters to the function main() are only checked in strict ANSI mode.
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• Trigraphs are not recognized or replaced.

• Variant structures and unions are allowed.

Variant structure and union declarations allow reference to members
of nested aggregates without having to refer to intermediate structure
or union identifiers. When a variant structure or union declaration is
nested within another structure or union declaration, the enclosed variant
aggregate ceases to exist as a separate aggregate, and Compaq C copies its
members to the enclosing aggregate.

Variant structures and unions are declared using the variant_struct and
variant_union keywords. The format of these declarations is the same as
that for regular structures or unions, with the following exceptions:

• Variant aggregates must be nested within other valid structure or
union declarations.

• A tag cannot be used in a variant aggregate declaration.

• At least one member must be declared in the variant aggregate
declaration, and it may not be declared as a pointer or an array.

Initialization of a variant structure or union is the same as that of a
normal structure or union.

With the VAX C compatibility option, two structures or unions in an
assignment operation need only have the same size, rather than requiring
the same members and member types.

The following example shows the format of a variable structure declaration,
and how to reference members of a variant structure:

#include <stdio.h>
enum packet_type {TEXT, INTEGER};

/* This structure can contain either a text_packet or an integer value.
It can only contain one of these at a time, since they share the same
storage. */

E–4 VAX C Extensions Supported by Compaq C



struct packet
{

enum packet_type type;
variant_union
{

variant_struct
{

int str_size;
char *text;

} text_packet;
variant_struct
{

int value;
} value_packet;

} text_or_int;
} packet = {TEXT, 24 ,"I love the color purple"};

main()
{

if (packet.type == TEXT)
printf(" %s. \n",packet.text);

else
printf(" %d \n", packet.value);

packet.type = INTEGER;
packet.value = 42;

printf(" The meaning of life, the universe, and everything is: %d. \n",
packet.value);

}
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/ (division operator), 6–19
!(logical expression), 6–13
!= (inequality operator), 6–22
## operator, B–15
% (remainder operator), 6–19
& (address operator), 6–15
& (bitwise AND operator), 6–23
&& (logical AND operator), 6–23
( ) (cast operator), 6–15
( ) (Parenthesized expression), 6–2
* (indirection operator), 6–15
* (multiplication operator), 6–19
+ (addition operator), 6–20
++ (prefix increment operator), 6–13
++ (postfix increment operator), 6–11
, (comma operator), 6–26
–> (structure or union pointer operator),

6–10
– – (prefix decrement operator), 6–13
– – (postfix decrement operator), 6–11
. (structure and union operator), 6–10
0...Octal constant, 1–13
0x...Hexadecimal constant, 1–13
== (equality operator), 6–22
[ ] (bracket operator), 6–7
< (less-than operator), 6–22
<< (left shift operator), 6–21
<= (less-than or equal-to operator), 6–22
> (greater-than operator), 6–22
>= (greater-than or equal-to operator), 6–22
>> (right shift operator), 6–21
?: (conditional operator), 6–24

^ (bitwise XOR operator), 6–23
| (bitwise OR operator), 6–23
| | (logical OR operator), 6–23

A
abort library function, 9–31
abs library function, 9–33
Abstract declarator

cast, 6–16
defined, 2–27
example, 2–27

acos library function, 9–10
Active position, 1–22
Additive inverse, 6–13
Additive operator, 6–20

Compaq C behavior, B–9
Address-of operator (&), 6–15
Aggregate array, 4–15

See also Bracket operator ([ ])
Aggregate type, 3–9
Aggregate variant, E–4
Aliasing, 3–21
__align modifier, 2–21
Alignment unit, 3–12
Allocation

storage, 4–4
AND bitwise operator (&), 6–23
ANSI C Standard

document information, xiii
ANSI C standard limits, 1–21
ANSI compatible extensions of Compaq C

common C extensions, D–1
VAX C extensions, E–1
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ANSI conformance, B–1
argc

main function argument, 5–14
Argument

array as argument, 5–12
command-line, 5–14
Conversion, 5–11
conversion of function, 6–35
function as argument, 5–12
function prototype, 5–8
in #define preprocessor macros, 8–4
passing by value, 5–11
rules governing, 5–11
to a function

conversion, 5–12
variable

header file, 9–15
Argument promotions

default, 6–10
argv

main function argument, 5–14
Arithmetic

negation operator, 6–13
Arithmetic conversion

usual, 6–32
Arithmetic type, 3–3
Array

as argument, 5–12
as expression, 6–7
declaration of, 4–15
initialization, 4–18, 4–33
references, 6–7
size determination, 3–10
variable length, 4–22

Array declaration
syntax, 4–15

Array pointer, 4–21
Array storage

row-major order, 4–18
Array subscripts, 3–11
Array type

discussed, 3–10
Arrow operator (–>), 6–10

ASCII character set, 1–3
ASCII equivalence table, C–1
asctime library function, 9–40
asin library function, 9–10
assert macro, 9–2
<assert.h> header, 9–2
Assignment operator, 6–25 to 6–26

precedence of, 6–5
= (assignment operator), 6–25
+= (assignment operator), 6–25
–= (assignment operator), 6–25
*= (assignment operator), 6–25
Associativity of operator, 6–6
Asterisk operator ( * ), 4–13
atan library function, 9–11
atan2 library function, 9–11
atexit library function, 9–31
atof library function, 9–29
atoi library function, 9–29
atol library function, 9–30
auto class

defined, 2–14
example, 2–14

auto keyword
used in declaration inside block, 7–2

Automatic storage duration, 2–14

B
Backslash continuation character

in #define, 8–3
Backslash-newline continuation, 1–5
Basic concepts of C, 2–1
Basic data types, 3–2
Binary operator

additive, 6–20
bitwise, 6–23
defined, 1–10
equality, 6–22
logical, 6–23
multiplicative, 6–19
precedence of, 6–5
relational, 6–22
shift, 6–21
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Bit field
creation of, 4–29
declaration, 4–28
declaration syntax, 4–28
OpenVMS VAX alignment, B–11
restrictions, 4–29
ULTRIX RISC alignment, B–10

Bit-field
common C data types, D–1

Bitwise negation operator ( ~ ), 6–15
Bitwise operator, 6–23
Bitwise shift operator, B–9
Block

defined, 2–2
example, 2–2

Block scope
defined, 2–4
example, 2–4

Block statement, 7–2
Bracket operator ([ ]), 6–7
break statement

defined, 7–12
from switch statement, 7–5

bsearch library function, 9–32
BUFFSIZ macro, 9–18

C
C language

list of operators, 6–3
C lexicon

grammar, 1–1
C library

prototype, 5–10
calloc library function, 9–30
case label, 7–5
Cast operator, 6–15

Compaq C behavior, B–8
ceil library function, 9–12
Character

data type
object, 4–10

string, 4–15
See also Array

Character constant
Compaq C specific, B–5
defined, 1–16
value, 1–16

Character display
defined, 1–22

Character escape sequence
list, 1–18 to 1–19

Character object declaration, 4–10
Character processing

header file, 9–2
Character set

defined, 1–3
Character string, 3–8
Character type, 3–7
clearerr library function, 9–28
clock library function, 9–42
CLOCKS_PER_SEC macro, 9–40
clock_t type, 9–40
Comma operator ( , ), 6–26

precedence of, 6–5
Command-line argument, 5–14
Comment, 1–8
Common C extensions of Compaq C, D–1
Common definition

header file, 9–16
Compatible type

categories, 2–9
defined, 2–9

Compilation unit
data sharing, 2–3
defined, 1–2
discussed, 2–3

Complete type, 2–8
Composite type

conditions, 2–11
defined, 2–11

Compound assignment operator, B–6
Compound literal, 6–28
Compound statement, 7–2
Conditional compilation, 8–7 to 8–10
Conditional inclusion, B–12
Conditional operator (?:)

defined, 6–24
precedence of, 6–5
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Conditional statement, 7–4 to 7–8
Conforming implementation, B–1
Conforming program, B–1
const

in pointer declaration, 4–13
in variable declaration, 4–13

const type qualifier
discussed, 3–17 to 3–18
example, 3–17
rules, 3–17

Constant
character, 1–16
defined, 1–13
enumeration, 1–20
floating-point, 1–15
integer, 1–13

Constant expression
address constant, 6–28
arithmetic, 6–28
defined, 6–27
integral, 6–27

Constants
identifiers in #define macros, 8–4

Constructor expression, 6–28
Continuation

logical line, 1–4
string, 1–5
string termination, 1–12

Continuation character
in #define, 8–3

continue statement, 7–11
Control characters, 1–4
Conventions

notational, xviii
Conversion, 6–31

arithmetic data-type, 6–31
function argument, 6–8
function prototype present, 6–35
of data types, 6–31
usual arithmetic, 6–32
with cast operator, 6–15

cos library function, 9–11
cosh library function, 9–11

ctime library function, 9–40
<ctype.h> header, 9–2
Current object, 4–33

D
Data type

basic, 3–2
character, 3–7
conversion, 6–31
floating-point, 3–8
function, 5–2
function prototype, 5–8
integral, 3–5
introduction, 3–1
list, 3–2
range, 3–4
size, 3–4

_ _DATE_ _ predefined macro, 8–15
Date and time

header file, 9–39
Declaration

aggregate array, 4–15
C library prototype, 5–10
enumeration, 4–11
example, 4–3
format, 4–9
function, 5–6
function prototype, 5–8
general syntax, 4–2
inside block, 7–2
structure, 4–24
syntax rules, 4–3
tentative tag declaration, 4–26
type definitions, 4–37
union, 4–24

Declarator, B–12
Declaring floating-point objects, 4–11
Decrement operator

– –
prefix, 6–13

-- postfix, 6–11
prefix, 6–13
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Default argument promotions, 6–10
default label, 7–5
Default widening convention, 5–12
#define directive, 8–2
defined operator, 8–10
Definition

function, 5–3
object, 4–4

Dereferencing pointer, 6–15
Derived type list, 3–8
Designation, 4–33

in initializer list, 4–33
Designator, 4–33
Diagnostic, B–2
Diagnostics

header file, 9–2
#dictionary directive, E–1
Difference between structure and union,

4–27
difftime library function, 9–43
Digraph sequence, 1–6
Directives

See Preprocessor directives
div library function, 9–33
Division operator ( / ), 6–19
div_t type, 9–29
do statement, 7–9
Dot operator ( . ), 6–10

E
EDOM macro, 9–4
#elif preprocessing directive, 8–7, 8–9
Ellipsis

in prototype, 5–9
else clause, 7–4
#else preprocessing directive, 8–7

common C extension, D–2
#endif preprocessing directive, 8–7

common C extension, D–2
enum keyword, 4–11 to 4–12
Enumerated data type

declaration, 4–11

Enumerated type
discussed, 3–15
example, 3–15

Enumeration constant
defined, 1–20
syntax, 4–11
type, 3–15

Enumeration specifier, B–11
envp

main function argument
common C extension, D–2
VAX C extension, E–3

EOF macro, 9–18
Equal-to operator (=), 6–22
Equality operator, 6–22
ERANGE macro, 9–4
errno macro, 9–4
<errno.h> header, 9–4
Error Code

header file, 9–4
Error directive, B–16
#error preprocessing directive, 8–15
Errors

types, 1–2
Escape sequence, B–2
Evaluation order

of argument list, 5–11
Execution character set

defined, 1–3
list, 1–4

exit library function, 9–31
EXIT_FAILURE macro, 9–29
EXIT_SUCCESS macro, 9–29
exp library function, 9–11
Expression

as statement, 7–3
assignment, 6–25
binary

additive, 6–20
bitwise, 6–23
equality, 6–22
logical, 6–23
multiplicative, 6–19
relational, 6–22
shift, 6–21
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Expression (cont’d)
comma, 6–26
compound literal, 6–28
conditional, 6–24
constant, 6–27
Constructor, 6–28
evaluation order, 2–7
postfix

array reference, 6–7
decrement operator, 6–11
function call, 6–8
increment operator, 6–11
structure reference, 6–10
syntax, 6–7
union reference, 6–10

primary
constant, 6–2
defined, 6–2
identifier, 6–2
parentheses, 6–2
syntax, 6–2

relational, 6–22
unary

addressed, 6–15
arithmetic negation, 6–13
bitwise negation, 6–15
cast, 6–15
increment and decrement, 6–13
logical negation, 6–13
sizeof, 6–17
__typeof__, 6–18

extern class, 2–15
External declaration, 4–7

scope, 4–8
External definition, 4–7
External linkage, 2–11
External object definition, B–12

F
fabs library function, 9–12
fclose library function, 9–20
feof library function, 9–28

ferror library function, 9–28
fflush library function, 9–20
fgetc library function, 9–24
fgetpos library function, 9–26
fgets library function, 9–24
File

header, 9–1
_ _FILE_ _predefined macro, 8–15
File scope

defined, 2–4
example, 2–4

FILE type, 9–17
FILENAME_MAX macro, 9–18
float keyword, 4–10
Floating point

conversion to integer, B–7
Floating point type, 3–8
Floating point types

list, 3–8
Floating-point

data type
declaration, 4–10
precision, 4–10

Floating-point constant
default, 1–15
defined, 1–15
notation, 1–15
suffixes, 1–15

Floating-point object declaration, 4–11
floor library function, 9–12
fmod library function, 9–12
fopen library function, 9–20
FOPEN_MAX macro, 9–18
for statement, 7–9
__forceinline modifier, 2–21
Forward reference

defined, 2–22
example, 2–22

fpos_t type, 9–17
fprintf library function, 9–22
fputc library function, 9–24
fputs library function, 9–24
fread library function, 9–26
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free library function, 9–31
freopen library function, 9–21
frexp library function, 9–11
fscanf library function, 9–22
fseek library function, 9–26
fsetpos library function, 9–27
ftell library function, 9–27
_ _func_ _ predeclared identifier, 8–17
Function

address, 5–12
address passing, 6–9
as argument, 5–12
C library

prototype, 5–10
call

defined, 5–1
syntax, 6–8
within macros, 8–6

declaration, 5–6
definition

argument, 5–11
argument conversion, 6–8
defined, 5–3
parameter, 5–11

definition of
main_program option, E–2

identifier, 6–9
implicit declaration of, 5–8
main, 5–14
prototype, 5–8
syntax, 5–9
type, 5–2
undeclared, 6–8
variable parameter list, 5–9

Function argument
conversion, 6–35
to main, 5–14

Function definition
syntax, 5–3

Function inline expansion, B–16
Function prototype

defined, 5–8
Function prototype scope

defined, 2–5
example, 2–5

Function prototypes
scope rules, 5–10
type conversion, 5–10
widening rules, 5–10

Function scope
defined, 2–5
example, 2–5

Function type
discussed, 3–9
example, 3–9

fwrite library function, 9–26

G
getc library function, 9–24
getchar library function, 9–25
getenv library function, 9–32
gets library function, 9–25
gmtime library function, 9–41
goto statement, 7–11
Greater-than operator (>), 6–22
Greater-than or equal-to operator(>=), 6–22

H
Header file

<assert.h>, 9–2
<ctype.h>, 9–2
defined, 1–20 to 1–21, 9–1
<errno.h>, 9–4
<limits.h>, 9–5
<locale.h>, 9–5
<math.h>, 9–10
<setjmp.h>, 9–13
<signal.h>, 9–13
<stdarg.h>, 9–15
<stddef.h>, 9–16
<stdio.h>, 9–17
<stdlib.h>, 9–28
<string.h>, 9–36
<time.h>, 9–39

Hexadecimal constant, 1–13
Hosted Environment, B–2
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HUGE_VAL macro, 9–10

I
Identifier

Compaq C, B–5
defined, 1–6
linkage, B–5

significant characters, 1–7
predeclared

_ _func_ _, 8–17
rules, 1–7

if false, definition, 7–4
#if preprocessing directive, 8–7

using the defined operator, 8–10
if statement, 7–4
if true, definition, 7–4
#ifdef preprocessing directive, 8–7
#ifndef preprocessing directive, 8–7
#include directive

module form, E–1
#include preprocessing directive, 8–11
Including file

C library prototype, 5–10
Including files, 8–11
Incompatible type, 2–10
Incomplete array declaration

example, 3–10
uses, 4–16

Incomplete type
defined, 2–8
example, 2–8
forming with tags, 2–23

Increment operator
++ postfix, 6–11
prefix, 6–13
++ prefix, 6–13

Indirection operator (*), 6–15
Initialization, 4–4

array, 4–16, 4–18, 4–33
C9x Standard, 4–33
Compaq C behavior, B–12
constraints, 4–5
general, 4–5
implicit, 4–5

Initialization (cont’d)
structure, 4–30, 4–33
union, 4–32

Initializers
syntax, 4–5

Initializing a pointer, 4–15
inline modifier, 2–17
__inline modifier, 2–17
Input/Output

header file, 9–17
Integer

conversion to floating point, B–7
Integer constant

defined, 1–13
octal, B–5
rules, 1–13
suffixes, 1–14
type assignment, 1–14

Integer data type
declaration, 4–10

Integer object declaration, 4–10
Integral promotion

unsigned preserving, B–6
value preserving, B–6

Integral type, 3–5
discussed, 3–5 to 3–6

Internal declaration, 4–7
Internal linkage, 2–11
Inverse

additive, 6–13
_IOFBF macro, 9–18
_IOLBF macro, 9–18
_IONBF macro, 9–18
isalnum library function, 9–2
isalpha library function, 9–3
iscntrl library function, 9–3
isdigit library function, 9–3
isgraph library function, 9–3
islower library function, 9–3
ISO C Standard, xiii
isprint library function, 9–3
ispunct library function, 9–3
isspace library function, 9–3
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isupper library function, 9–4
isxdigit library function, 9–4
Iteration statement, 7–8 to 7–10

J
jmp_buf type, 9–13
Jump statement, 7–11 to 7–12
Jump, nonlocal

header file, 9–13

K
Keyword

break statement, 7–12
case label, 7–5
continue statement, 7–11
default label, 7–5
defined, 1–8
do statement, 7–9
else clause, 7–4
enum, 4–11 to 4–12
for statement, 7–9
goto statement, 7–11
if statement, 7–4
list, 1–9
return statement, 7–12
sizeof, 6–17
switch statement, 7–5
__typeof__, 6–18
uses, 1–9
VAX C, B–4
void, 4–14
while statement, 7–8

Keywords
__align, 2–21
__forceinline, 2–21
inline, 2–17
__inline, 2–17

L
L preceding wide character, 1–17
Label statement

case, 7–5
defined, 7–1

labs library function, 9–33
LC_ALL macro, 9–5
LC_COLLATE macro, 9–5
LC_MONETARY macro, 9–5
LC_NUMERIC macro, 9–5
LC_TIME macro, 9–5
LC_TYPE macro, 9–5
ldexp library function, 9–12
ldiv library function, 9–33
ldiv_t type, 9–29
Less-than operator (<), 6–22
Less-than or equal-to operator (<=), 6–22
Lexical error, 1–2
Lexicon of the language, 1–1
Library function, 9–1 to 9–43

abort, 9–31
abs, 9–33
acos, 9–10
asctime, 9–40
asin, 9–10
atan, 9–11
atan2, 9–11
atexit, 9–31
atof, 9–29
atoi, 9–29
atol, 9–30
bsearch, 9–32
calloc, 9–30
ceil, 9–12
clearerr, 9–28
clock, 9–42
cos, 9–11
cosh, 9–11
ctime, 9–40
difftime, 9–43
div, 9–33
exit, 9–31
exp, 9–11
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Library function (cont’d)
fabs, 9–12
fclose, 9–20
feof, 9–28
ferror, 9–28
fflush, 9–20
fgetc, 9–24
fgetpos, 9–26
fgets, 9–24
floor, 9–12
fmod, 9–12
fopen, 9–20
fprintf, 9–22
fputc, 9–24
fputs, 9–24
fread, 9–26
free, 9–31
freopen, 9–21
frexp, 9–11
fscanf, 9–22
fseek, 9–26
fsetpos, 9–27
ftell, 9–27
fwrite, 9–26
getc, 9–24
getchar, 9–25
getenv, 9–32
gets, 9–25
gmtime, 9–41
isalnum, 9–2
isalpha, 9–3
iscntrl, 9–3
isdigit, 9–3
isgraph, 9–3
islower, 9–3
isprint, 9–3
ispunct, 9–3
isspace, 9–3
isupper, 9–4
isxdigit, 9–4
labs, 9–33
ldexp, 9–12
ldiv, 9–33
localeconv, 9–7
localtime, 9–41

Library function (cont’d)
log, 9–12
log10, 9–12
longjmp, 9–13
malloc, 9–31
mblen, 9–34
mbstowcs, 9–35
mbtowc, 9–34
memchr, 9–36
memcmp, 9–37
memcpy, 9–36
memmove, 9–36
memset, 9–37
mktime, 9–43
modf, 9–12
perror, 9–28
pow, 9–12
printf, 9–22
putc, 9–25
putchar, 9–25
puts, 9–25
qsort, 9–33
raise, 9–15
rand, 9–30
realloc, 9–31
remove, 9–19
rename, 9–19
rewind, 9–27
scanf, 9–22
setbuf, 9–21
setjmp, 9–13
setlocale, 9–6
signal, 9–14
sin, 9–11
sinh, 9–11
sprintf, 9–23
sqrt, 9–12
srand, 9–30
sscanf, 9–23
strcat, 9–37
strchr, 9–38
strcmp, 9–37
strcoll, 9–38
strcpy, 9–37
strcspn, 9–38
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Library function (cont’d)
strerror, 9–39
strftime, 9–41
strlen, 9–39
strncat, 9–37
strncmp, 9–38
strncpy, 9–37
strpbrk, 9–38
strrchr, 9–38
strspn, 9–39
strstr, 9–39
strtod, 9–30
strtok, 9–39
strtol, 9–30
strtoul, 9–30
strxfrm, 9–38
system, 9–32
tan, 9–11
tanh, 9–11
time, 9–43
tmpfile, 9–19
tmpnam, 9–19
tolower, 9–4
toupper, 9–4
ungetc, 9–25
vfprintf, 9–23
vprintf, 9–23
vsprintf, 9–23
wcstombs, 9–35
wctomb, 9–35

Limit of nested #include lines, 8–11
Limits

ANSI, 1–21
defined, 1–21
header file, 9–5
numerical, 1–22
translation, 1–21

<limits.h> header, 9–5
_ _LINE_ _ predefined macro, 8–16
#line preprocessing directives, 8–12
Linkage

determination, 2–12
example, 2–12
external, 2–11
internal, 2–11

Linkage (cont’d)
none, 2–11
type, 2–11

Linkage pragma, B–17
Literal

compound, 6–28
<locale.h> header, 9–5
localeconv library function, 9–7
Localization

header file, 9–5
localtime library function, 9–41
log library function, 9–12
log10 library function, 9–12
Logical

arithmetic operator, 6–23
negation operator, 6–13

Logical false, definition, 7–4
Logical line, 1–4
Logical true, definition, 7–4
long keyword, 4–10
long float keyword, D–1
longjmp library function, 9–13
Looping statement

See Iteration statement
lvalue, 2–24
L_tmpnam macro, 9–18

M
Macro

assert, 9–2
BUFFSIZ, 9–18
CLOCKS_PER_SEC, 9–40
definition, 8–2

canceling, 8–2
function-like form, 8–4
naming parameters in, 8–4
object-like form, 8–4
# operator, 8–6
## operator, 8–7
possible side effects, 8–6

EDOM, 9–4
EOF, 9–18
ERANGE, 9–4
errno, 9–4
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Macro (cont’d)
EXIT_FAILURE, 9–29
EXIT_SUCCESS, 9–29
FILENAME_MAX, 9–18
FOPEN_MAX, 9–18
HUGE_VAL, 9–10
_IOFBF, 9–18
_IOLBF, 9–18
_IONBF, 9–18
LC_ALL, 9–5
LC_COLLATE, 9–5
LC_MONETARY, 9–5
LC_NUMERIC, 9–5
LC_TIME, 9–5
LC_TYPE, 9–5
library, 9–1
L_tmpnam, 9–18
MB_CUR_MAX, 9–29
NULL

limits.h, 9–5
stddef.h, 9–17
stdio.h, 9–17
stdlib.h, 9–29
string.h, 9–36
time.h, 9–40

offsetof, 9–17
predefined

_ _DATE_ _, 8–15
defined, 8–15
_ _FILE_ _, 8–15
_ _LINE_ _, 8–16
_ _STDC_ _, 8–16
system identification, 8–16
_ _TIME_ _, 8–16

RAND_MAX, 9–29
references, 8–5
SEEK_CUR, 9–18
SEEK_END, 9–18
SEEK_SET, 9–18
SIG_DFL, 9–14
SIG_ERR, 9–14
SIG_IGN, 9–14
stderr, 9–19
stdin, 9–19
stdout, 9–19

Macro (cont’d)
substitution, 8–2
substitution within #include directives,

8–11
TMP_MAX, 9–18
va_arg, 9–16
va_list, 9–16
va_start, 9–15

Macro names
list, B–13

Main function
passing parameter, 5–14
syntax, 5–14
with main_program option, E–2

main_program option, E–2
malloc library function, 9–31
<math.h> header, 9–10
Mathematics

header file, 9–10
mblen library function, 9–34
mbstowcs library function, 9–35
mbtowc library function, 9–34
MB_CUR_MAX macro, 9–29
Member

structure, B–7
union, B–7
variant aggregate, E–4

memchr library function, 9–36
memcmp library function, 9–37
memcpy library function, 9–36
memmove library function, 9–36
memset library function, 9–37
Minus

unary, 6–13
mktime library function, 9–43
modf library function, 9–12
Modifiable lvalue, 2–24
Modifier

storage class, 2–16
#module directive, E–1
Multibyte character

Compaq C, B–2
defined, 1–17
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Multidimensional array, 4–18
subscripts, 3–11

Multiplicative operator, B–8
Multiplicative operator (*), 6–19

N
Name space

defined, 2–25
types, 2–25

Negation
arithmetic, 6–13
logical, 6–13

Nesting of #include lines, 8–11
New style parameter declaration, 5–5
New-line character, 1–4
Nonlocal jump

header file, 9–13
Not-equal-to operator (!=), 6–22
Notational conventions, xviii
null (#) preprocessing directive, 8–15
Null character, 1–4
NULL macro

limits.h, 9–5
stddef.h, 9–17
stdio.h, 9–17
stdlib.h, 9–29
string.h, 9–36
time.h, 9–40

Null pointer
automatic initialization, 4–14
defined, 3–10
used with the equality operator, 6–26

Null statement, 7–3
Numeric escape sequence, 1–19 to 1–20
Numerical limit

defined, 1–22
Numerical limits, B–3

O
Octal constant, 1–13
Octal digits 8 and 9, B–5, D–1

offsetof macro, 9–17
Old style parameter declaration

comparison with prototype style, 5–8
example, 5–5

Old-style function declaration
combined with prototype style, 2–10

One’s complement operator ( ~ ), 6–15
Operand conversion, 6–32
Operator

assignment, 6–25 to 6–26
binary

additive, 6–20
bitwise, 6–23
equality, 6–22
logical, 6–23
multiplicative, 6–19
relational, 6–22
shift, 6–21

bracket, 6–7
categories, 6–4
comma, 6–26
conditional, 6–24
defined, 1–10
defined, 8–10
list, 6–3
precedence, 6–5
sizeof, 6–17
__typeof__, 6–18
unary

address, 6–15
arithmetic negation, 6–13
bitwise negation, 6–15
cast, 6–15
increment and decrement, 6–13
indirection, 6–15
logical negation, 6–13

OR bitwise operator ( | ), 6–23
Original declaration, 4–8

P
Parameter

function prototype, 5–8
in #define preprocessor macros, 8–4
main function, 5–15
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Parameter (cont’d)
rules governing, 5–11

Parameter passing
to main function, 5–14

Parenthesized expression, 6–2
Parsing

top-down, 4–7
Parsing error, 1–2
Period operator ( . ), 6–10
perror library function, 9–28
Pointer

declaration, 4–13
null, 4–14
to array, 4–21
unary operator, 6–15
using the increment operator (++), 6–14
void, 4–14

Pointer conversion, B–7
Pointer declaration

syntax, 4–13
Pointer initialization, 4–15
Pointer to void, 3–10
Pointer type

discussed, 3–9
referenced type, 3–9

Portability concern
main_program option, E–2

Portability concerns
char * generic-pointer notation, 4–14
length of bit field, 4–28
preprocessor implementations, 8–1
structure alignment, 4–27

Postfix decrement operator, 6–11
Postfix expression

array reference, 6–7
decrement operator, 6–11
function call, 6–8
increment operator, 6–11
structure reference, 6–10
union reference, 6–10

Postfix increment operator, 6–11
pow library function, 9–12
Pragma

directive, B–16
VAX C, B–17

#pragma preprocessing directive, 8–12
Precedence

defined, 1–10
discussed, 6–5
operator, 6–5

Predefined macro names, 8–15
Prefix decrement operator, 6–13
Prefix increment operator, 6–13
Preprocessing

discussed, 2–26
Preprocessing operator

#, 8–6
##, 8–7

Preprocessor directive
#define, 8–2
#elif, 8–7
#else, 8–7
#endif, 8–7
#error, 8–15
#if, 8–7
#ifdef, 8–7
#ifndef, 8–7
#include

defined, 8–11
macro substitution, 8–11

#line, 8–12
null (#), 8–15
#pragma, 8–12
#undef, 8–2

Primary expression
constant, 6–2
defined, 6–2
identifier, 6–2
parentheses, 6–2

Primary operator
precedence of, 6–5

printf library function, 9–22
Promotion of data type, 6–31
Prototype

defined, 5–8
for C library function, 5–10

Prototype style function declaration
combined with old-style, 2–10
defined, 5–8
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Prototype style parameter declaration, 5–5
ptrdiff type, 9–16
... punctuator, 5–9
Punctuator, 1–11 to 1–12
putc library function, 9–25
putchar library function, 9–25
puts library function, 9–25

Q
qsort library function, 9–33

R
raise library function, 9–15
rand library function, 9–30
RAND_MAX macro, 9–29
Reader’s comments, xiii
realloc library function, 9–31
register class, 2–15
register keyword

used in declaration inside block, 7–2
Relational operator, 6–22
Relaxed pointer/integer compatibility

common C, D–1
VAX C, E–1

Remainder operator (%), 6–19
remove library function, 9–19
rename library function, 9–19
__restrict data-type qualifier, 4–14
_ _restrict type qualifier, 3–21

defined, 3–24
examples, 3–26

Restricted pointer, 3–21
defined, 3–24
examples, 3–26

return keyword
statement syntax, 7–12

rewind library function, 9–27
Routine

library, 9–1
rvalue, 2–24

S
Scaling pointer, 4–21
scanf library function, 9–22
Scope, 2–3
SEEK_CUR macro, 9–18
SEEK_END macro, 9–18
SEEK_SET macro, 9–18
Selection statement, 7–4 to 7–8
Semantic error, 1–2
Sequence point, 2–7
setbuf library function, 9–21
setjmp library function, 9–13
<setjmp.h> header, 9–13
setlocale library function, 9–6
Shift operator (<< and >>), 6–21
Side effect

defined, 2–6
example, 2–7
within macros, 8–6

SIGABRT signal, 9–14
SIGFPE signal, 9–14
SIGILL signal, 9–14
Signal handling

header file, 9–13
signal library function, 9–14
<signal.h> header, 9–13
Signed integer, B–6
Significant characters

identifier, 1–7
SIGSEGV signal, 9–14
SIGTERM signal, 9–14
sig_atomic_t type, 9–14
SIG_DFL macro, 9–14
SIG_ERR macro, 9–14
SIG_IGN macro, 9–14
Similarity between structure and union,

4–26
Simple object

declaration format, 4–9
default initialization, 4–10
initialization, 4–10
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sin library function, 9–11
sinh library function, 9–11
sizeof keyword, 6–17
sizeof operator, 6–17
sizeof operator, B–8
size_t type

stddef.h, 9–16
stdio.h, 9–17
stdlib.h, 9–28
string.h, 9–36
time.h, 9–40

Source character set
defined, 1–3
storage, 3–7

Source file inclusion, B–13
sprintf library function, 9–23
sqrt library function, 9–12
srand library function, 9–30
sscanf library function, 9–23
Standard header file, 9–1
Statement

break
defined, 7–12
from case statement, 7–5

compound, or block, 7–2
conditional, 7–4 to 7–8
continue, 7–11
default, 7–5
do

defined, 7–9
iteration statement, 7–8

expression, 7–3
for

defined, 7–9
iteration statement, 7–8

goto, 7–11
if, 7–4
iteration, 7–8 to 7–10
jump, 7–11 to 7–12
label, 7–1
like, 7–8
null, 7–3
return, 7–12
selection, 7–4 to 7–8
switch, 7–5

Statement (cont’d)
while, 7–8

static class, 2–15
static keyword

used in declaration inside block, 7–2
Static storage duration, 2–13
<stdarg.h> header, 9–15
_ _STDC_ _ predefined macro, 8–16
<stddef.h> header, 9–16
stderr macro, 9–19
stdin macro, 9–19
<stdio.h> header, 9–17
<stdlib.h> header, 9–28
stdout macro, 9–19
Storage allocation

order, 4–4
to an object, 4–4

Storage class
default, 2–14
types, 2–13

Storage class specifier, B–9
Storage classes

auto, 2–14
extern, 2–15
register, 2–15
static, 2–15

Storage duration, 2–13
Storage-class modifiers, 2–16

__align, 2–21
__forceinline, 2–21
inline, 2–17
__inline, 2–17

strcat library function, 9–37
strchr library function, 9–38
strcmp library function, 9–37
strcoll library function, 9–38
strcpy library function, 9–37
strcspn library function, 9–38
strerror library function, 9–39
strftime library function, 9–41
String

defined, 1–12
String literal

Compaq C, B–5
defined, 1–12
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String literal (cont’d)
example, 1–12
modifying, 4–15

String processing
header file, 9–36

<string.h> header, 9–36
strlen library function, 9–39
strncat library function, 9–37
strncmp library function, 9–38
strncpy library function, 9–37
strpbrk library function, 9–38
strrchr library function, 9–38
strspn library function, 9–39
strstr library function, 9–39
strtod library function, 9–30
strtok library function, 9–39
strtol library function, 9–30
strtoul library function, 9–30
struct lconv type, 9–5
struct tm type, 9–40
Structure

bit field, 4–28
declaration, 4–24 to 4–26
forward referencing, 4–26
initialization, 4–30, 4–33
member

reference, 6–10
variant aggregate, E–4

Structure alignment
described, B–10
discussed, 3–12
on OpenVMS Alpha, B–10
on OpenVMS VAX, B–11
on Tru64 UNIX, B–10

Structure declaration
syntax, 4–23, 4–24

Structure member
declaration, 4–24

Structure specifier, B–9
Structure type, 3–11
strxfrm library function, 9–38
Subscripting, 6–7
Substitution

macro, 8–2
rules, 8–5

Substitution (cont’d)
within #include directives, 8–11

Suffixes
floating-point constant, 1–15
integer constant, 1–14

switch keyword
declaration inside, 7–7

switch statement, 7–5
Compaq C behavior, B–12

Syntax
main function, 5–14

Syntax error, 1–2
System identification predefined macros,

8–16
system library function, 9–32

T
Tag

declaration syntax, 4–36
discussed, 2–22
example, 2–22
tentative declaration, 4–26

tan library function, 9–11
tanh library function, 9–11
Tentative definition

defined, 4–8
discussed, 2–13
example, 2–13

Tentative tag declaration, 4–26
Ternary operator, 1–10
_ _TIME_ _ predefined macro, 8–16
Time and Date

header file, 9–39
time library function, 9–43
<time.h> header, 9–39
tmpfile library function, 9–19
tmpnam library function, 9–19
TMP_MAX macro, 9–18
Token, 1–1
Token replacement, 8–2
tolower library function, 9–4
toupper library function, 9–4
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_toupper macro
function-like form, 8–4
side effects, 8–6

Translation
of C code, 2–25
phase, 2–25

Translation limit, 1–21
Translation limits, B–2
Trigraph sequence, 1–5
Type

clock_t, 9–40
Compaq C, B–5
div_t, 9–29
FILE, 9–17
fpos_t, 9–17
incomplete, 2–8
jmp_buf, 9–13
ldiv_t, 9–29
library, 9–1
ptrdiff, 9–16
sig_atomic_t, 9–14
size_t

stddef.h, 9–16
stdio.h, 9–17
stdlib.h, 9–28
string.h, 9–36
time.h, 9–40

struct lconv, 9–5
struct tm, 9–40
va_list, 9–15
wchar_t

stddef.h, 9–16
stdlib.h, 9–28

Type casting, 6–15
Type conversion, 6–15
Type definition, 3–32 to 3–33
Type definitions, 4–37
Type name, 2–26
type qualifier

const, 3–17
_ _restrict, 3–21

defined, 3–24
examples, 3–26

_ _unaligned, 3–20
volatile, 3–18

Type qualifier, 3–16 to 3–32
Compaq C, B–11
defined, 3–16
use, 3–16

Type specifier, B–9
typedef

and structure tags, 4–37
defined, 3–32

typedef keyword
use in declaration, 4–37

__typeof__ keyword, 6–18
__typeof__ operator, 6–18

U
Unaligned data, 3–20
__unaligned data-type qualifier, 4–14
_ _unaligned type qualifier, 3–20
Unary expression

address, 6–15
arithmetic negation, 6–13
bitwise negation, 6–15
cast, 6–15
increment and decrement, 6–13
indirection, 6–15
logical negation, 6–13
sizeof, 6–17
__typeof__, 6–18

Unary minus, 6–13
Unary operator

defined, 1–10
precedence of, 6–5

#undef preprocessing directive, 8–2
ungetc library function, 9–25
Union

declaration, 4–24
initialization, 4–32
member

reference, 6–10
variant aggregate, E–4

Union declaration
syntax, 4–23, 4–24

Union specifier, B–9
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Union type
discussed, 3–12

Unnamed bit field, 4–29
Unsigned integer, B–6
Unsigned integral type, 3–6
Unsigned preservation rules

Common C mode, D–3
VAX C mode, E–3

User-defined function
See Function

Utilities
header file, 9–28

V
Vacuous tag declaration

example, 2–23
Variable

initialization, 4–10
Variable arguments

header file, 9–15
Variable-length array, 4–16, 4–22
Variable-length parameter list, 5–9
Variably modified type, 4–2
Variant record, 3–12
Variant structure

Compaq C behavior, B–9
defined, E–4

Variant union, E–4
Compaq C behavior, B–9

variant_struct, E–4
variant_union, E–4
VAX C built-in functions, E–1
VAX C extension of Compaq C, E–1
VAX C keywords, E–1
va_arg macro, 9–16
va_list macro, 9–16
va_list type, 9–15
va_start macro, 9–15
vfprintf library function, 9–23
Visibility

defined, 2–6
discussed, 2–6
example, 2–6

void keyword
pointer, 4–14

void pointer
defined, 4–14
uses, 3–10

Void type
defined, 3–14
example, 3–14
use, 3–14

volatile type qualifier
discussed, 3–19
rules, 3–19

vprintf library function, 9–23
vsprintf library function, 9–23

W
wchar_t type

stddef.h, 9–16
stdlib.h, 9–28

wcstombs library function, 9–35
wctomb library function, 9–35
while statement, 7–8
White space

character, 1–4
use, 1–1

Wide character
defined, 1–17
use, 1–3

Wide character type, 3–7
Wide-character constant

defined, 1–17
example, 1–17

Wide-character string, 1–17

X
XOR bitwise operator ( ^ ), 6–23

Z
Zero-length bit field, 4–29
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