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Zusammenfassung

Widerstandsplattenkammern (im englischen “Resistive Plate Chambers” oder ab-
gek̈urzt “RPCs”) sind Teilchendetektoren, die aus zwei parallelen planaren Elektro-
den bestehen, die einen gasgefüllten Spalt von wenigen hundert Micrometern bis zu
einigen Millimetern umschließen. Wenigstens eine der beiden Elektroden besteht aus
einem Material mit hohem Volumenwiderstand von 107 bis 1012 Ωcm. Die Vorteile
dieser Technologie sind die gute Zeitauflösung (bis zu 50 ps) bei einer guten Nach-
weiseffizienz (≈ 99% für mehrere kombinierte Z̈ahler) und der einfache technische
Aufbau. In den Hochenergiephysikexperimenten ATLAS und CMS, die derzeit am
CERN in Genf aufgebaut werden, sollen im sogenannten Lawinenmodus betriebene
RPCs als schnelle Auslösez̈ahler (Trigger RPCs) auf Fl̈achen von mehreren tausend
Quadratmetern eingesetzt werden. Im Experiment ALICE am CERN findenTiming
RPCsfür pr̈azise Flugzeitmessungen auf einer Fläche von 176 m2 Anwendung.

RPCs wurden ursprünglich im Streamermodus betrieben, welcher die Anforderun-
gen an die Ausleseelektronik und die Genauigkeit des Elektrodenabstandes verein-
facht. Um verbesserte Hochratenfestigkeit und verminderte Alterung der RPCs zu
erlangen, wurde der Betrieb im Lawinenmodus populär. Diese Entwicklung wurde
möglich durch die Einf̈uhrung neuer Gasmischungen auf der Basis von C2F4H2 mit
geringen SF6-Beimischungen. Ẅahrend Streamer schwer zu studieren sind, eröffnete
der Lawinenmodus die M̈oglichkeit detaillierter Studien der physikalischen Prozesse
in RPCs.

Trotz des intensiven Einsatzes der RPC Technologie sind einige experimentelle
Ergebnisse noch nicht genau verstanden. Insbesondere hinsichtlich der Erklärung der
guten Nachweiseffizienz der Timing RPCs mit ihrem kleinen Plattenabstand von 0.2
bis 0.3 mm kamen vielerlei Fragen auf. So steht der für die gute Nachweiseffizienz
nötige hohe Wert f̈ur die Gasverstärkung in krassem Widerspruch zu den gemessenen
niedrigen Ladungen um 1 pC. Es tut sich eine Diskrepanz auf, die sieben Größenord-
nungen erreichen kann. Deshalb wurde vorgeschlagen, die hohe Effizienz anhand von
Begleitelektronen zu erklären, die vom Prim̈arteilchen aus dem Detektorrahmen gelöst
werden. Auf der anderen Seite könnte ein sehr starkerRaumladungseffektdie Ladun-
gen zu ḧoheren Werten hin begrenzen. Der Begriff Raumladungseffekt beschreibt
den dynamischen Prozess der Verzerrung des angelegten elektrischen Feldes durch
die Ladungstr̈ager in der Lawine. Um die großen Ladungen unterdrücken zu k̈onnen,
muss der Raumladungseffekt eine gewisse Stärke haben, und das angelegte elektrische
Feld an den Positionen, an denen sich der Großteil der driftenden Elektronen in der
Lawine befindet, stark erniedrigen. Dann muss aber das Feld an anderen Positionen
durch den gleichen Effekt stark erhöht sein, was neue Fragen hervorruft. Viele Autoren
lehnen die M̈oglichkeit ab, dass sich eine Lawine unter diesen extremen Umständen
ausbreiten kann, ohne dass sie sich in einen Streamer umwandelt.
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Schließlich ist der Grund für die experimentell beobachtete Form der Ladungsspek-
tren an RPCs nicht eindeutig geklärt. Man beobachtet einen Scheitelpunkt, der zu
höheren Spannungen hin ausgeprägter wird. Die Statistik der Elektronenlawinen sagt
jedoch ein monoton zu höheren Ladungen hin abfallendes Spektrum voraus.

In der vorliegenden Arbeit werden im Detail die physikalischen Prozesse beschrie-
ben, die grundlegend für die Funktion und f̈ur das Versẗandnis von RPCs sind, be-
ginnend bei der Prim̈arionisation,über die Lawinenstatistik bis zur Signalinduktion
und zur Ausleseelektronik. Die für die Prim̈arionisation und die Lawinenpropagation
wichtigen Gasparameter werden mit den bekannten Simulationsprogrammen HEED,
MAGBOLTZ und IMONTE errechnet. Es werden Monte-Carlo Simulationsroutinen
vorgestellt, die auf den beschriebenen Prozessen basieren. Ein einfaches eindimen-
sionales Modell ohne Diffusionseffekte und ohne detaillierte Implementierung eines
Raumladungseffektes ergibt Simulationsergebnisse für Effizienz und Zeitaufl̈osung,
die sehr nahe an Messungen liegen. Dieses Modell und die Ergebnisse wurden pub-
liziert in [1]. Den Beitrag der vorliegenden Arbeit bilden die Implementierung des
Raumladungseffektes in dieses Modell und seine detaillierte Untersuchung.

Der Raumladungseffekt wird mit eingebunden, indem angenommen wird, dass
die Lawinenladungen in Scheiben untergebracht sind, welche radiale Gaußförmige
Ladungsverteilungen tragen, die von der transversalen Diffusion abhängen. F̈ur die
Berechnung des elektrischen Feldes der Raumladung wird eine analytische Lösung
für das Potential einer Punktladung im Gasspalt einer RPC verwendet. Diese wur-
den in Zusammenarbeit mit der Technischen Universität Graz [2] erarbeitet und in
[3, 4] publiziert. Schließlich werden mehrdimensionale Modelle präsentiert, die auch
die Auswirkungen des Raumladungsfeldes in transversale Richtung implementieren.
Insbesondere das 2-D Modell, welches Zylindersymmetrie der Lawinen annimmt und
den Spalt in ein zweidimensionales Netz der longitudinalen und radialen Koordinaten
einteilt, erlaubt die detaillierte und erkenntnisreiche Simulation einzelner Ladungsla-
winen.

Es wird gezeigt, dass die hohe RPC Effizienz tatsächlich durch eine hohen Dichte
von Prim̈arionisationszentren (etwa 9.5 /cm) und durch einen hohen effektiven Town-
send-Koeffizienten (etwa 113 /mm) erklärt wird. Es ergibt sich, dass das Raumladungs-
feld bei hoher Gasverstärkung die Gr̈oßenordnung des angelegten Feldes erreicht,
in longitudinaler wie in transversaler Richtung. Der Raumladungseffekt unterdrückt
tats̈achlich die großen Werte der Ladungen. Es wird gezeigt, dass die Form der simu-
lierten Ladungsspektren sehr genau denen von gemessenen Spektren gleicht, und dass
die mittlere Ladung der simulierten Spektren nahe an den gemessenen liegt. Außer-
dem wird gezeigt, dass RPCs in einem Raumladungsmodus betrieben werden, welcher
sich über einen großen Bereich angelegter Spannungen erstreckt, im Gegensatz zu
Drahtkammern.

Die Ergebnisse der vorliegenden Arbeit wurden zum Teil auf der ’RPC 2001’-
Konferenz [5] und auf der ’2002 NSS/MIC’-Konferenz [6] vorgestellt und diskutiert.
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Abstract

Resistive Plate Chambers (RPCs) are gaseous parallel plate avalanche detectors
that implement electrodes made from a material with a high volume resistivity between
107 and 1012 Ωcm. Large area RPCs with 2 mm single gaps operated in avalanche
mode provide above 98% efficiency and a time resolution of around 1 ns up to a flux
of several kHz/cm2. TheseTrigger RPCswill, as an example, equip the muon detector
system of the ATLAS experiment at CERN on an area of 3650 m2 and with 355.000
independent read out channels.Timing RPCswith a gas gap of 0.2 to 0.3 mm are
widely used in multi gap configurations and provide 99% efficiency and time resolution
down to 50 ps. While their performance is comparable to existing scintillator-based
Time-Of-Flight (TOF)technology, Timing RPCs feature a significantly, up to an order
of magnitude, lower price per channel. They will for example equip the 176 m2 TOF
barrel of the ALICE experiment at CERN with 160.000 independent read out cells.

RPCs were originally operated in streamer mode providing large signals which
simplifies readout electronics and gap uniformity requirements. However, high rate
applications and detector aging issues made the operation in avalanche mode popular.
This was also facilitated by the development of new highly quenching C2F4H2-based
gas mixtures with small contents of SF6. While the physics of streamers is difficult
to study, the avalanche mode opened the possibility for a detailed simulation of the
detector physics processes in RPCs.

Even though RPCs were introduced in the early eighties and have been (will be)
used in experiments, there are still disagreements about the explanation of several as-
pects of the RPC performance. The high efficiency of single gap RPCs would require
a large ionization density of the used gases, which according to some authors contra-
dicts measurements. Even in the case of a large ionization density the gas gain has
to be extremely large, in order to arrive at the observed RPC efficiency. This raises
other questions: A very strongspace charge effectis required to explain the observed
small avalanche charges around 1 pC. Doubts have been raised whether an avalanche
can progress under such extreme conditions without developing into a streamer. To
overcome these difficulties, other processes, like the emission of an electron from the
cathode, were suggested. Moreover, the shape of measured charge spectra of single
gap RPCs differs largely from what is expected from the statistics of the primary ion-
ization and the avalanche multiplication.

In this thesis we discuss the detector physics processes of RPCs, from the primary
ionization and the avalanche statistics to the signal induction and the read out elec-
tronics. We present Monte-Carlo simulation procedures that implement the described
processes. While the fundament of the described model and some results were already
published elsewhere [1], the subject of this thesis is the implementation of the space
charge effect. We present analytic formulas for the electrostatic potential of a point
charge in the gas gap of an RPC. These formulas were developed in collaboration with
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the University of Graz [2] and were published in [3, 4]. The simulation model pre-
sented in [1] is completed by the dynamic calculation of the space charge field using
these formulas. Since the gas parameters like drift velocity and the Townsend and at-
tachment coefficients depend on the electric field, they are calculated dynamically as
well. The functional dependence of these parameters on the field is obtained with the
simulation programs MAGBOLTZ and IMONTE. For the primary ionization parame-
ters, we use the values that are predicted by the program HEED. While the described
procedure only simulates the longitudinal avalanche development towards the anode
of the RPC, we also present more dimensional models that allow a careful study of
the transverse repulsive and attractive forces of the space charge fields, and of the
consequences for the avalanche propagation.

We shall show that the efficiencies of single gap Timing RPCs is indeed explained
by the high primary ionization density (about 9.5 /cm as predicted by HEED) and a
large effective Townsend coefficient (around 113 /mm as predicted by IMONTE). We
show that the space charge field reaches the same magnitude as the applied electric
field in avalanches at large gas gain. This strong space charge effect effectively sup-
presses large values for the avalanche charges. The shape of the simulated charge
spectra is very similar to the measurements. Also the simulated average charges are
close to the experimental results. RPCs are operated in a strong space charge regime
over a large range of applied voltage, contrary to wire chambers.

We apply only standard detector physics simulations to RPCs. The performance of
Timing and Trigger RPCs is well reproduced by our simulations. The results concern-
ing the space charge effect were presented and discussed at the ’RPC 2001’ workshop
[5] and on the ’2002 NSS/MIC’ conference [6].
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Chapter 1

Introduction

Resistive Plate Chambers (RPCs) are gaseous parallel plate avalanche detectors with
time resolutions down to 50 ps, making them attractive for trigger and Time-Of-Flight
applications, in some cases covering large areas up to a few thousand square meters.
Advantages compared to other technologies are the robustness and simplicity of con-
struction. They are also well adapted to inexpensive industrial production. RPCs were
originally operated in streamer mode providing large signals, which simplifies read
out electronics and gap uniformity requirements. However, high rate applications and
detector aging issues made the operation in avalanche mode popular. This was also
facilitated by the development of new highly quenching C2F4H2-based gas mixtures.
While the physics of streamers is difficult to study, the avalanche mode opened the
possibility for detailed simulations of the detector physics processes in RPCs.

The fundamental processes that underly the operation of RPCs are well known: a
charged particle leaves free charge carriers in the gas, which are drifted towards the
anode and multiplied by an appropriate electric field. The propagation of the growing
number of charges induces a signal on a read out electrode. The high voltage that is
applied to the parallel plate electrodes leads to a uniform electric field in the gas gap.
However, there are still disagreements about the explanation of several aspects of the
performance of RPCs [7]. Especially since the introduction of Timing RPCs with gas
gaps of a few hundred microns and very high applied field strengths (≈ 100 kV/cm)
in the last years of the 20th century, a seeming disagreement between the high effi-
ciencies of the device and the rather low observed signal charges was observed. To
explain the observed detection efficiencies, a large density of primary clusters in the
used gases is necessary, which according to some authors contradicts experimental
values [8, 9]. A large ionization density leads to a higher probability for the deposit
of electrons close to the cathode from where avalanches cross almost the whole gas
gap and can thus reach sufficient sizes to cross the threshold. Even in the case of a
large ionization density the gas gain has to be extremely large to increase the number
of avalanches that cross the threshold and thus explain the observed efficiencies. This
raises other questions: Assuming exponential growth of the avalanches, the average

1
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Figure 1.1: A schematic picture of an avalanche and the electric field deformations
caused by the avalanche charge carriers. At the tip and the tail of the charge distribution
the fieldsE1 andE3 are higher than the applied electric fieldE0. In the center of the
charge distribution the fieldE2 is lower thanE0. As a consequence, the value of the
gas parameters like drift velocity and Townsend coefficient may vary with the position
in the gas gap.

avalanche charge would be up to seven orders of magnitude larger than the measured
values. A very ’strong’space charge effectis required to explain the small observed
charges of around 1 pC [10] and doubts have been raised whether an avalanche can
progress under such extreme conditions without developing into a streamer [9]. The
space charge effect is shown schematically in Fig. 1.1. Some authors propose that
other mechanisms like the extraction of surface electrons by the incident particle from
the detector frame contribute to the detection efficiency of the device [8].

Another disagreement concerns the shape of the charge spectra. While the statistics
of avalanche multiplication predicts a shape following a power law, measurements
show a peak that is becoming more pronounced with higher voltages. Many authors
applied the so-called Polya distribution to the statistics of avalanche fluctuations in
RPCs. This model assumes that the probability for the multiplication of electrons
depends on the current size of the avalanche, which includes some kind of space charge
effect in an incorrect way.

In this thesis we discuss in detail the detector physics processes that are relevant for
the operation of RPCs. We present Monte-Carlo simulation procedures that implement
the described processes, from the primary ionization and the avalanche statistics to the
induced signals and the front end electronics. A simple one dimensional simulation
model without diffusion and space charge effects and results obtained with that model
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were published in [1]. The subject of this thesis is the implementation of the space
charge effect into this model.

In this introduction we give a short overview on modern high energy physics exper-
iments and the different tasks the detector subsystems have to perform (section 1.1).
Then we will summarize very briefly the fundamentals of the interactions of particles
with matter (section 1.2) and the history of the development of particle detectors in
general and the Resistive Plate Chamber in particular (section 1.3). Finally we present
the two different types of RPCs that are commonly used today: the Trigger RPC (sec-
tion 1.4) and the Timing RPC (section 1.5), and how they are implemented in present
and future high energy physics experiments.

In chapter 2 the fundamental detector physics of RPCs are described in detail and
in chapter 3 we describe four different simulation models based on those physical
effects. In chapters 5, 6 and 7 we finally present the results that were obtained with the
different models and for different detector geometries.

1.1 Particle Physics and Experiments

Modern high energy physics experiments with accelerators generally use a beam of
charged particles. This beam is either focused on a fixed target or collides with another
beam of opposite direction. The experiments built around the interaction point(s) are
complex systems made of many layers of different particle detectors, each with a spe-
cific task. Each of the detectors produces electrical signals that contain information
about the path of a particle, the energy it deposited, or the time at which it passed
through. All the gathered information must be pieced together, ultimately to reveal the
particles that were created by the high energy collision and that might have lifetimes
too short to ever show a visible track.

The first fundamental particle to be discovered was the electron. In 1897 J.J. Thom-
son performed a series of experiments to prove conclusively that the mysterious cath-
ode rays, discovered some years before, are indeed streams of negatively charged par-
ticles with a mass approximately two thousand times less than the mass of a hydrogen
atom. Another building brick of matter, the proton, was discovered around 1911 by
E. Rutherford and E. Marsden when they scattered alpha particles from atomic nuclei.
Rutherford concluded that the protons, first known as ’H particles’, were the carriers
of the positive charge in the nucleus. If they were the only constituents, a nucleus with
twice the charge of another should also have twice the mass. This is not so. Nuclei
have at least double the mass expected from the number of protons suggested by the
total charge. Rutherford speculated in 1920 that there are electrically neutral particles
within nuclei: the neutrons. While at that time most physicists accepted the idea that
there were protons andelectronsin the nucleus, the neutron was finally discovered in
1932 by J. Chadwick when he bomarded beryllium with alpha particles from a polo-
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particle constituents Mass [MeV] Lifetime τ [s] cτ

Electron/Positron e± 0.511 ∞ ∞
(Anti)Muon µ± 105.7 2.2×10−6 659 m
(Anti)Tauon τ± 1777 2.9×10−13 87µm
Electron-Neutrino νe < 3×10−6 ∗ ∞ ∞
Muon-Neutrino νµ <0.19∗ ∞ ∞
Tau-Neutrino ντ <18.2∗ ∞ ∞
Photon γ 0 ∞ ∞
Charged Pions π± ud, du 140 2.6×10−8 7.8 m
Charged kaons K± us, su 494 1.2×10−8 3.7 m
Neutral kaons K0L, ds, sd 497 5.1×10−8, 15.5 m,

K0
S 8.9×10−11 2.7 cm

D-Mesons D± cd, dc 1869 1.0×10−12 315µm
D0 cu, uc 1864 4.1×10−13 123µm
D±s cs, sc 1969 4.9×10−13 147µm

B-Mesons B± ub, bu 5279 1.7×10−12 502µm
B0 bd, db 5279 1.5×10−12 462µm
B0
s sb, bs 5370 1.5×10−12 438µm

B±c cb, bc ∼6400 ∼5.0×10−13 ∼150µm
Proton p uud 938.3 >1025 y ∞
Neutron n udd 939.6 885.7 s 108 km
Lambda Λ uds 1116 2.6×10−10 7.9 cm

Λ+
c udc 2285 2.0×10−13 60µm

Λb udb 5624 1.2×10−12 368µm
Sigma Σ+ uus 1189 8.0×10−11 2.4 cm

Σ− dds 1198 1.5×10−10 4.4 cm
Xi Ξ0 uss 1315 2.9×10−10 8.7 cm

Ξ− dss 1321 1.6×10−10 4.9 cm
Ξ+
c usc 2466 4.4×10−13 132µm

Ξ0
c dsc 2472 ∼1.0×10−13 ∼29µm

Omega Ω− sss 1673 8.2×10−11 2.5 cm
Ω0
c ssc 2698 6.0×10−14 19µm

Table 1.1: All known particles with a mean lifetime larger than∼10−13 s [11]. We
find the three charged leptons, the neutrinos, the photon, ten mesons and 13 baryons.
The corresponding antiparticles of the baryons and of the neutrinos are not listed. The
lifetimes of particles and their antiparticles are equal. For the hadrons the quark con-
stituents are shown:u = up-quark,d = down-quark,c = charm-quark ands = strange-
quark.

*) There is increasing evidence from neutrino-oscillation experiments that neutrinos have a finite rest

mass.



1.1. PARTICLE PHYSICS AND EXPERIMENTS 5

nium source. He allowed the neutral particles emerging from the beryllium to collide
with a variety of gases. By observing the differing amounts by which the atomic nuclei
in the different gases recoiled, he could calculate that the neutrons had more or less the
same mass as the proton.

The carrier of the electromagnetic force, the photon, was discovered by A. Comp-
ton in 1923, when he performed scattering experiments with X-rays and a carbon
block. His results could only be explained if one assumed collisions between light-
particles, the photons, with both definite energy and a definite momentum, and atomic
electrons.

Two more particles were discovered in the cosmic rays in the 1930s: first evidence
of a positron was obtained in a cloud chamber photograph in 1932 by C. Anderson;
the muon was discovered in 1937 by C. Anderson and S. Neddermeyer, with a cloud
chamber that was triggered by a Geiger counter. By 1952 cloud chambers exposed to
cosmic rays had revealed yet more new particles: the first examples of ’V-particles’
were observed in cloud chamber photographs triggered by Geiger counters between
sheets of lead by G. Rochester and C. Butler in 1947. Those particles had about half
the mass of the proton and later became known as the charged and neutral kaons.
Another neutral V-particle with a mass larger than the proton is called the lambda.
Together, the kaons and the lambda became known as the ’strange’ particles because
their behaviour was unexpected. Another strange particle, the negative xi or cascade
particle, was discovered shortly after the lambda (R. Armenteros et al., 1952).

In the late 1940s, the development of special photographic emulsions, which could
easily be carried aloft by baloons, brought the first images of high altitude cosmic rays.
This led to the discovery of the charged Pions by C. Powell (1947). Yet another strange
particle, the sigma plus, was discovered using the emusion technique (G. Tomasini et
al., 1953).

The year 1952 was the beginning of a new era in particle physics. It saw the
invention of a new type of detector: the bubble chamber; and it witnessed the first of
a new breed of accelerator: the synchrotron. The first particle to be discoverd at an
accelerator, the neutral pion, completed the pion family of three (R. Bjorkland et al.,
1949). From now on many more particles were discovered at accelerators, starting
with the sigma minus (W. Fowler et al., 1953), the antiproton (W. Segrè et al., 1955)
and the antineutron (B. Cork et al., 1956).

The invention of the multiwire proportional chamber (G. Charpak, 1968 [12]) and
the availability of transistors made the construction of fast and precise electronic parti-
cle detectors possible. Electronic counter experiments led to the discovery of hundreds
of more particles. Table 1.1 shows all known particles with a mean lifetime sufficiently
large to travel more than about 10µm (at GeV energies) before they decay [11]. If the
mean lifetime is smaller than that, the particle can not be directly seen in a detector.

In Table 1.1 we find 30 particles. The three neutrinos interact only weakly and
are in general not seen in a detector. Twelve of the remaining 27 particles stray no
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more than 0.5 mm from the collision point before they decay. In the case of a colliding
beam experiment they do not even have time to escape from the beam pipe. They can
only be detected by extrapolating the very precisely measured tracks of the more stable
decay products to the secondary vertex (displaced vertex), where they decayed, close
to the collision point1. From the remaining 15 particles the following eight (plus the
corresponding antiparticles) are by far the most frequent ones:

electrons, muons, photons, charged pions,
charged kaons, neutral kaons, protons and neutrons.

This leads us to a very basic insight:

The task of modern high energy physics detector systems is to identify eight dif-
ferent particles (and the corresponding antiparticles) that are crossing the device and
to measure their momenta and/or energy. The same task is repeatedly implemented in
similar ways in all high energy physics experiments.

Fig. 1.2 shows the basic setup of many modern high energy physics experiments.
The reason that detectors are divided into many components is that each component
tests for a special set of particle properties. These components are stacked such that all
particles will go through the different layers sequentially. We summarize the different
tasks of the detector subsystems:

Tracking Chambers: Directions, momenta, and signs of charged particles have to be
measured. Finely subdivided tracking detectors are used to reconstruct charged
particle trajectories. A magnetic field causes the trajectories to bend in circular
paths: the radius of each circle determines the momentum, and the ’bending
direction’ the sign of charge.

Electromagnetic Calorimeter: The energy carried by electrons and photons is mea-
sured by the electromagnetic calorimeter. It is generally subdivided into seg-
ments that absorb the energy of incident electrons and photons, and produce
signals proportional to that energy.

Hadronic Calorimeter: The energy carried by hadrons (protons, pions, neutrons,
etc.) is measured by the hadronic calorimeter. It detects hadronic showers in a
similar way as the electromagnetic calorimeter detects electromagnetic showers.
The hadronic calorimeter is always downstream (outside) of the electromagnetic
calorimeter, due to the much larger interaction length of hadrons.

1The identification of such a displaced vertex can be used for the tagging of events (τ -, D- or B-
tagging) or even for triggering like in the LHCb experiment at CERN [13, 14].
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Figure 1.2: The different main components of a typical detector. The charged particles
(electrons, muons, protons, charged kaons (K±) and charged pions) are detected both
in the tracking chamber and the electromagnetic calorimeter. The neutral particles
(neutrons, photons and neutral kaons (K0)), leave no trail in the tracking chamber.
Photons are detected by the electromagnetic calorimeter, while neutrons and K0s are
evidenced by the energy they deposit in the hadron calorimeter. Each particle type
has its own signature in the detector. For example, if a particle is detected only in the
electromagnetic calorimeter, it is fairly certain that it is a photon.

Muon System: High energy muons are the only charged particles that penetrate large
amounts of matter. In doing so they suffer only small deflections from their
original direction of motion, and lose little of their energy. Muons are generally
detected in tracking detectors downstream (outside) of the calorimeters.

Often more detector systems are added to provide more information on the different
particles:

Particle Identification (PID): The system generally has to provide information for
the identification of the different charged and neutral particles. Charged parti-
cles can be identified by combining the momentum information from the track-
ing detectors and the independently measured velocity (Time-Of-Flight, TOF),
energy lossdE/dx, C̆erenkov radiation or transition radiation.
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Displaced Vertex: Often it is important to identify charged particles that originate
at points a short distance from the collision point rather than at the collision
point itself (B-, D- orτ -tagging). This is achieved with high spatial resolution
detectors placed around the collision point.

Neutrinos: The presence of the not directly detectable neutrinos can be infered through
momentum conservation.

A particle will not be evident until it either interacts with the detector in a measur-
able fashion, or decays into detectable particles. Despite their differences the detector
types that were just described all rely on the same basic principles. Particle detectors
make visible the effects that the particles have on their surroundings. In the next sec-
tion we will give a brief summary of the different ways in which particles interact with
matter.

1.2 Interactions of Particles with Matter

In the last section we mentioned that a particle detector has to be able to reveal the
presence of eight particles (and their corresponding antiparticles): electrons, muons,
protons, neutrons, photons, charged pions, charged kaons and neutral kaons. These
particles leave characteristic trails as they lose energy when they travel through a ma-
terial, be it a gas, a liquid or a solid. This energy loss can be of different forms:

• Electrically charged particles lose energy by ’colliding’ with atomic electrons
of the material (excitation, ionization) and by the emission ofbremsstrahlung
when they scatter off the nuclei.

• Strongly interacting particles can in addition lose energy through hadronic inter-
actions (inelastic nuclear collisions, nuclear excitation, splitting).

• Photons lose energy byCompton scatteringwith atomic electrons or they disap-
pear completely in the processes ofPhoto Electric Effectandpair production.

In this section the basic interaction mechanisms of particles with matter are sum-
marized briefly. The energy loss of charged particles due to ionization and excitation
is fundamental to most particle detectors – and the RPC, that is the topic of this thesis
– and is therefore described in more detail.
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1.2.1 Energy Loss due to Ionization and Excitation

We consider a relativistic charged particle scattering on atomic electrons, e.g.

µ+ + atom→ µ+ + atom+ + e− .

If the distance of closest approach is large compared to the size of the atom (a
distant collision), the atom will react ’as a whole’ to the variable electromagnetic field
of the charged particle. The result can be excitation or ionization of the atom. If
the distance of closest approach is of the order of the atomic dimensions, (aclose
collision) the interaction involves the passing particle and one of the atomic electrons.
As a consequence, the electron is ejected from the atom with considerable energy
(knock-on electrons). We define [15]

distant collisions: Any collision resulting in the ejection of an electron of energy
smaller than a predetermined valueν.

close collisions:Any collision resulting in the ejection of an electron of energy larger
thanν. If ν is sufficiently large (and the corresponding impact parameter suf-
ficiently small) we can treat all close collisions by considering the atomic elec-
trons as free particles.

A limiting energyν of 10 to 100 keV simultaneously satisfies the two conditions
specified above for practically all cases of importance in the field of high energy phe-
nomena.

The Differential Collision Cross Section

We note theatomicdifferential cross section that a particle with energyE loses an
energy betweenE ′ andE ′+dE ′ in a collision with an atom

dσ

dE ′


col
. (1.1)

Then

ρ
NA

A

dσ

dE ′


col

(1.2)

is the average number of collisions with an energy loss betweenE ′ andE ′ + dE ′

per unit length in a material with densityρ [g/cm3] and atomic numberA [g/mol]. NA

[1/mol] is Avogadro’s number. This leads to the average energy loss per lengthdx
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−dE
dx


col

= ρ
NA

A

Emax∫
Emin

E ′
dσ

dE ′


col
dE ′ = ρ

NA

A
kcol . (1.3)

In literature one often finds the thicknessdxmeasured in g/cm2 and the energy loss
−dE

dx


col

given in MeV cm2/g. We will note−1
ρ
dE
dx


col

instead, which leavesdx with
the unit length. Letkcol(<ν) represent the energy loss resulting from distant collisions
andkcol(>ν) the energy loss resulting from close collisions, then the total energy loss is
given by the sum of the two

−1

ρ

dE

dx


col

=
NA

A

(
kcol(<ν) + kcol(>ν)

)
. (1.4)

Distant Collisions

For the calculation of the energy loss due to distant collisionskcol(<ν) it is important to
take into account the binding of the electrons to the atoms. The average ionization en-
ergyI [MeV] of the atoms should appear in the formula. Bethe obtained the following
result with the help of Born’s approximation [16, 17]

kcol(<ν) =
C

β2

[
ln

2me c
2 β2 γ2 ν

I2
− β2

]
. (1.5)

Here we have
C - a constant defined byC = 2 π Z z2 r2

e me c
2 [MeV cm2] and connected

to the Particle Data Group’s constantK [11] byC = z2 Z K/2NA,

Z - the atomic charge number of the material,

z - the charge of the incident particle in unit charges,

re - the classical electron radiusre = e2/4πε0mec
2,

me - the electron mass,

e - the electron charge,

ε0 - the dielectric constant of the vacuum,

c - the speed of light,

β - the velocity of the particle in units ofc and

γ - is given by1/
√

1− β2 as usual.

Eq. 1.5 is valid for particles of any kind, with positive or negative charge and with
velocity large compared to the velocity of the atomic electrons.
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Close Collisions

For close collisions we start with an investigation of the maximum transferable energy.
As mentioned previously, a close collision of the particle with an atomic electron is not
necessarily different from a collision between a charged particle and a free electron.
The application of the principles of conservation of energy and momentum leads to
the following relation for the maximum kinetic energy, that can be imparted to a free
electron in a collision by a particle of massm and momentump [11]

Emax =
2me p

2

m2 + 2γ mem+m2
e

. (1.6)

For very relativistic particles (Ekin ≈ E, p c ≈ E) Eq. 1.6 becomes

Emax ≈
E2

m2 c2

2me
+ E

. (1.7)

For example, in a muon-electron collision the maximum transferable energy is
Emax ≈ E2/(E+11), when the energy of the muonE is measured in GeV. A 200 GeV
muon can be practically stopped by a head-on collision with an electron, because in this
extreme relativistic case almost the total energy (≈95%) in transferred to the electron.

The energy loss due to close collisionskcol(>ν) is calculated by integration (ν �
Emax)

kcol(>ν) =

Emax∫
ν

E ′
dσ

dE ′


col
dE ′ . (1.8)

The different formulas for the differential collision cross sections for particles with
or without spin are given in Appendix A. For particles with Spin 0, massm larger than
the mass of electrons and energy small compared toEc = m2c2/me (Eq. A.5) we get

kcol(>ν) =
C

β2

[
ln
Emax
ν
− β2

]
. (1.9)

Total Energy Loss

The total energy loss forheavy particlesis calculated using Eqs. 1.4, 1.5 and 1.9 as
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−1

ρ

dE

dx


col

=
C

β2

NA

A

[
ln

2me c
2 β2 γ2 Emax
I2

− 2 β2

]
. (1.10)

As expected, this expression is independent of the arbitrary value ofν. Emax may
be substituted from Eq. 1.6.

For electrons and positrons Eq. 1.10 must be modified somewhat for two reasons.
One is the small mass of the incident electron/positron; the assumption that the incident
particle remains undeflected during the collision process is therefore invalid. The other
reason is that for electrons the collisions are between identical particles and we must
take into account their indistinguishability. The maximum energy transfer allowed
becomesEmax =Ekin/2, whereEkin is the incident electrons kinetic energy. The total
energy loss forelectronsandpositrons is calculated from Eqs. 1.4, 1.5, 1.6, 1.8, A.1
and A.2. Withβ ≈ 1 one obtains [15]

−1

ρ

dE

dx


col

= C
NA

A

[
ln
π2 γ3(mec

2)2

I2
− a
]
. (1.11)

wherea= 2.9 for electrons anda= 3.6 for positrons.

The Density Effect

For relativistic particles, the value of the transverse electric field increases with the en-
ergy. As a consequence, the distant collision contribution to the total energy loss due to
ionization and excitation increases asln(βγ) [11]. Since materials become polarized,
the electric field of the particle is partly screened. This introduces the density effect
correctionδ. At very high energiesδ becomes

δ → 2 ln(~ωp/I) + 2 ln(βγ)− 1 . (1.12)

Here~ωp is the plasma energy of the medium that is defined by

~ωp =
√

4πNer3
e

mec
2

α
, (1.13)

with the electron densityNe and the fine structure constantα ≈ 1/137. Eq. 1.10
becomes
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Figure 1.3: The energy loss−1
ρ
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due to ionization and due to bremsstrahlung for
positive muons in copper as a function ofβγ = pµ/mµc over nine orders of magnitude
in momentum (twelve orders of magnitude in kinetic energy) [11]. For the energy loss
due to ionization and excitation the curves with and without density effect correction
are shown. The critical energyEµC , at which the energy loss due to ionization equals
the energy loss due to bremsstrahlung is indicated. The solid curve indicates the total
energy loss which is the sum of the two.
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− 2 β2 − δ
]
. (1.14)

This is theBethe-Blochequation for the energy loss due to ionization and excitation
for particles heavier than electrons. Fig. 1.3 shows the energy loss due to ionization
and excitation of muons in copper versus the muon momentum. The density effect
correction becomes important for muon momentapµ & 200 MeV/c.

Statistical Fluctuations of the Energy Loss due to Ionization and Excitation

The quantity (−dE
dx


col

) δx is the average energy loss due to Ionization and Excitation
in a layer of the medium with thicknessδx. The real energy loss will fluctuate around
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this average value from event to event. The energy loss distribution is called theLan-
daudistribution [18] and is skewed towards high values (theLandau tail). Only for a
thick layer, where the energy loss exceeds one half of the original particle energy, the
distribution becomes roughly Gaussian [11].

1.2.2 Other Interaction Mechanisms of Radiation with Matter

The energy loss due to ionization and excitation is not the only interaction process
of radiation with matter. Charged particles can also lose energy by radiation (brems-
strahlung). The energy loss connected with the processes oftransition radiationand
C̆erenkov radiationare negligible, nevertheless they are important processes for iden-
tification of charged particles. Moreover, we distinguish three processes in which pho-
tons interact with matter: thePhoto Electric Effect, theCompton Effectand thePair
Production.

Radiation Loss by Charged Particles

When the distance of closest approach of a fast charged particle becomes smaller than
the atomic radius, the deflection of its trajectory in the electric field of the nucleus
becomes the most important effect. Letdσ(Θ)

dΩ


scat

be the differential atomic cross
section that a particle of momentump and velocityv = βc undergoes a collision
which deflects its trajectory into the solid angledΩ at angleΘ to its original direction
of motion. If one neglects both the finite dimension of the nucleus and the shielding
of its field by the atomic electrons, one obtains the well-knownRutherford scattering
formula[19, 20]

dσ(Θ)

dΩ


scat

=
z2Z2r2

e

4

(
mec

βp

)2
1

sin4(Θ/2)
. (1.15)

Then the termNA ρ
A

dσ(Θ)
dΩ


scat

gives the average number of collisions per length in
a medium of densityρ with scattering of the particle intodΩ. The multiple Coulomb
scattering distribution is roughly Gaussian for small angles but at larger angles it be-
haves like Rutherford scattering, having larger tails than does a Gaussian distribution
[11, 21, 22].

In some cases a photon of energy comparable with that of the deflected particle is
emitted during the scattering process, e.g.

e− + nucleus→ e− + γ + nucleus′ .
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Radiation phenomena occur at distances of the order of the atomic radius so that
the screening of the electric field of the nucleus by the atomic electrons has to be
taken into account [23]. However, the field acting on the particle during the deflection
process can be considered as the Coulomb field of a point chargeZe at the center of
the nucleus [15]. The mean energy loss of an electron due to bremstrahlung is [11]

−1

ρ

dE

dx


rad

=
E

X0

. (1.16)

The characteristic amount of matter traversed is called the radiation lengthX0,
measured in g/cm2. x = X0/ρ is the mean length of electron trajectory through a
medium of densityρ, over which the high energy electron loses all but1/e of its energy
by bremsstrahlung. Approximate formulas forX0 are given in [19]. The energy loss
by radiation depends strongly on the absorbing material. For each material we can
define a critical energyEc at which the radiation loss equals the ionization loss. For
electrons we find

Ec =
610MeV

Z + 1.24
for solids and Ec =

710MeV

Z + 0.92
for gases. (1.17)

Using Eqs. 1.17, the critical energy for copper (Z = 29) is 20 MeV and for helium
(Z = 2) it is 243 MeV. Bremstrahlung dominates the energy loss above this energy;
ionization dominates at lower energies.

At sufficiently high energies, radiative processes become more important than ion-
ization for all charged particles. The mean energy loss due to bremstrahlung of a
charged particle of massm and chargeze (where−e is the charge of the electron)
is found from Eq. 1.16 by scaling withD = (me/m)2, whereme is the electron
mass. The critical energy scales with1/D. For muons in copper the two energy loss
mechanisms are compared in Fig. 1.3. The critical energy is around 800 GeV.

C̆erenkov Radiation

If the velocity of a particle is larger than the velocity of light in the medium (v > nc,
n = the refractive index of the material), it emitsC̆erenkov radiation at a characteristic
angleΘc given by cos Θc = 1/nβ [11]. The number of emitted photons with a
wavelengthλ is

d2N

dEdx


cer

=
2παz2

λ2

(
1− 1

β2n2(λ)

)
. (1.18)
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The energy loss connected with this process is negligible but it is used in the de-
tection and identification of particles (electron/pion separation, pion/proton separation
and other).C̆erenkov counters utilize one or more of the properties ofC̆erenkov ra-
diation: the existence of a threshold forC̆erenkov radiation, the dependence ofΘc on
the velocityv = βc of the particle and/or the dependence of the number of emitted
photons on the velocity of the particle.

Transition Radiation

Characteristic transition radiation is used for identifying fast electrons in Transition
Radiation Detectors (TRDs; for example, see [24]). Consider a particle of chargeze
crossing a boundary between vacuum and a material with a plasma frequency~ωp
given by Eq. 1.13. For typical radiator materials (Styrene) it is about 20 eV. The
radiated energy is

Etr = α z2γ~
ωp
3
. (1.19)

The typical emission angle is1/γ. Several layers of material lead to several bound-
aries which increases the radiated energy. The radiated energy increases withγ. Since
electrons are in general the fastest particles observed in an experiment (due to their low
mass), TRDs can provide electron/pion separation in the momentum range 0.5 GeV/c
. p. 100 GeV/c [24].

Photon Interactions with Matter

We distinguish three processes in which photons interact with matter:

Photo Electric Effect: The interaction of the photon with the atom as a whole leads
to thePhoto Electric Effect. The photon is absorbed and an electron is emitted
from the atom, e.g.

γ + atom→ atom+ + e− .

The cross section falls at high energies roughly asZ5/~ω [19], whereZ is the
atomic charge number of the absorber material and~ω is the energy of the pho-
ton. The Photo Electric Effect is important up to energies of around 100 keV
(10 MeV) for materials like carbon withZ = 6 (lead withZ = 82).

Compton Scattering: The interaction of the photon with a free electron leads to the
Compton Effect. The photon transfers a part of its energy and momentum to the
electron initially at rest, e.g.



1.2. INTERACTIONS OF PARTICLES WITH MATTER 17

γ + e→ γ′ + e′ .

The cross section is proportional toZ/~ω [19]. The Compton effect is impor-
tant for photon energies from about 100 eV to about 1 GeV (10 GeV) in carbon
(lead).

Pair Production: The interaction of the photon with the Coulomb field of the nucleus
leads to the phenomenon ofPair Production, whereby the photon disappears and
an electron and a positron come into existence simultaneously, e.g.

γ + nucleus→ e+ + e− + nucleus′ .

The Feynman diagram is similar to that of bremsstrahlung, e.g.

e− + nucleus→ e− + γ + nucleus′ .

The cross sections of the two processes are therefore closely related2. The cross
section for pair production is proportional toZ2. At high energies it becomes
independent of the energy of the photon and screening of the electric field of
the nucleus by the atomic electrons has to be taken into account. Then the cross
section becomes [19]

σpair ≈
7

9

A

NA

1

X0

. (1.20)

At energies above around 100 MeV (10 MeV) for carbon (lead) this effect dom-
inates.

Hadron Interactions with Matter

The strong interaction plays an important role in the detection of hadrons (p, p, n, n,
π±, K±, K0), e.g.

p + nucleus→ π+ + π− + π0 + ... + nucleus′ .

2When a high energy electron or photon is incident on a thick absorber, it initiates anelectromagnetic
cascadeor shower, as pair production and bremsstrahlung generate more electrons and photons with
lower energy. The electron energies eventually fall below the critical energy. Then they dissipate their
energy by ionization and excitation rather than by the generation of more shower particles. These effects
are fundamental to the operation of electromagnetic calorimeters.
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When the secondary charged pions hit other nuclei, a hadronic cascade develops.
Hadronic cascades also have an electromagnetic component fromπ0 → γ + γ. The
total cross section for nucleons has an elastic and inelastic part. The multiplicity grows
logarithmically with the energy [19] and the particles are produced in a narrow cone
around the forward direction. Hadronic cascades are fundamental to the operation of
hadronic calorimeters. Part of the energy of the incident hadron is spent to break up
nuclear bonds. This fraction of the energy is invisible in hadron calorimeters. Further
energy is lost by escaping particles like neutrinos and muons as a result of hadron
decays (π±→ µ± + ν). Since the fraction of lost binding energy and escaping particles
fluctuates considerably, the energy resolution of hadron calorimeters is systematically
inferior to electromagnetic calorimeters.

1.2.3 Energy Loss and Particle Detection with RPCs

The topic of this thesis are Resistive Plate Chambers (RPCs), which are gaseous ava-
lanche detectors. When charged particles traverse the gas gap of an RPC, they lose a
fraction of their kinetic energy by excitation and ionization of atoms or gas molecules.
The energy loss per unit of path length for particles heavier than electrons is given by
the Bethe-Bloch equation (Eq. 1.14). If an atom in the gas is ionized by the inelastic
collision of the traversing particle, free charge carriers are deposited close to the po-
sition of the encounter. If the atom is not ionized but brought to an excited state, it
promptly loses the excitation energy by the emission of a photon or an Auger electron.
The photons will be absorbed by Photo Electric Effect as long as their energies are
larger than the minimum ionization potential, or they escape. The energy escaping in
the form of photons is not detected by a gaseous particle detector like the RPC.

Electrons and highly relativistic charged particles other than electrons also lose
energy by bremsstrahlung. As was mentioned previously, this process becomes the
main energy loss mechanism, if the energy of the particle is above the critical energy
Ec. However, most of the lost energy disappears in the form of the radiated photons
and the RPC does not respond to that energy loss.

This leaves us with the energy loss due to ionization and excitation being the im-
portant fundamental mechanism underlying the operation of RPCs. The energy loss
due to ionization and excitation is shown for different materials in Fig. 1.4.Primary
clustersof free charge carriers (electron-ion pairs) are deposited along the trajectory
of the particle. In the gas gap of the RPC they are collected and multiplied by a strong
uniform electric field and the propagation of the growing number of charges induces a
signal on the read out electrodes. The primary ionization is characterized by the aver-
age number of clusters per unit length and by the cluster size distribution. In this thesis
we use the simulation program HEED [25] to calculate these parameters.
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Figure 1.4: The energy loss due to ionization and excitation in liquid hydrogen,
gaseous helium, carbon, aluminum, iron, tin and lead [11]. Radiative effects are not
included.

1.3 Large Area Particle Detectors

In this section we discuss very briefly the evolution of particle detectors in general and
of gaseous parallel plate detectors like the RPC, which is the topic of this thesis, in
particular.

The evolution of particle detectors started with the discovery of X-rays and radioac-
tivity in the 1890s. H. Bequerel discovered that the radiation released by uranium salt
was capable of blackening photosensitive paper. Also later detectors in nuclear physics
based on optical evidencing methods: A scintillating screen was used to detect scat-
tered alpha particles with the eye at the beginning of the 20th century by E. Rutherford
and E. Marsden. Later developments used to reconstruct the tracks of charged parti-
cles were emulsion techniques and the spark-, cloud-, streamer- and bubble chambers
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in which the particle tracks were photographed. Nevertheless, the technology of parti-
cle detectors has with time evolved from these optical methods to electrical methods.
Scintillation counters coupled to photo-multipliers are a successful example. Starting
in the late nineteen-sixties high voltage operated gaseous detectors such as wire or
drift chambers [12] have successfully replaced the scintillation counter in experiments
requiring a high spatial resolution. Conversely the scintillator is still a very commonly
utilized technique to obtain high time resolution in current apparatus for sub nuclear
research.

1.3.1 Time Resolution

The wire based gaseous detectors are indeed not competitive with the scintillator as
far as time resolution is concerned. The reason lies in the fact that the distance of the
closest primary cluster to the wire is exponentially distributed. Due to the1/r field the
amplification is limited to the region around the wire and all electrons need to drift into
this region before amplification and the signal generation set in. This introduces a time
jitter and limits the time resolution of wire based detectors to a few nanoseconds. A
better time resolution is achievable if a strong uniform electric field is used instead of
that of a charged wire. Here the avalanche amplification sets in instantly for all primary
clusters. The intrinsic detector time resolution is then dominated by the avalanche
statistics.

1.3.2 Spark Counter

The first gas detector taking advantage of the improved time resolution in strong uni-
form electric fields was the Keuffel Spark Counter, a gaseous avalanche detector with
parallel plate geometry, that was introduced in 1948 [26, 27]. It indeed offered a time
resolution (around 1 ns) by far better than any of the Geiger-Müller Counters that were
commonly used at that time (around 100 ns) [28]. This development opened the pos-
sibility for the construction of accurate timing systems to measure the velocity of fast
charged particles.

Spark Counters generally consist of two planar metal electrodes with a high voltage
applied to them. The gap between the plates is filled with a gas. The passage of a
charged particle leaves an trail of free charge carriers (primary ionization) in the gas
which triggers avalanches of charge carriers in the electric field. At a certain size of
the avalanches they transform into astreamer. A streamer is defined as a state where
photons contribute to the spread of free charge carriers. At a later stage a conducting
plasma filament connecting the two electrodes is formed. Through this channel the
electrodes are discharged; a spark is created. The rapidly growing anode current is
transformed by a resistor into a fast voltage signal and this signal can be taken as a
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time flag for the arrival of the charged particle. The spark mode of operation leads to
large signals that need no further amplification, avoiding electronic time jitter.

A standard spark counter has an area in the order of a few cm2 because as the area
increases, the discharge energy in a spark becomes large enough to damage the surface
of the counter electrodes. The counting rate of this type of detector is limited by a dead
time of typically some milliseconds that is needed to recharge the electrodes.

To overcome these problems, a new type of spark counter introduced resistive plate
electrodes and special gas mixtures for photon absorption in 1971 [29, 30]. The resis-
tivity of around 109 Ωcm of the electrodes leads to a limitation of the discharge to the
local area around the primary avalanche and because the high voltage drops only lo-
cally, the remaining counter area is still sensitive to particles. The energy in the sparks
is much smaller than in the case of metallic electrodes and larger electrode surfaces
can be used. The Pestov Spark Counter with a 0.1 mm gap reaches time resolutions
down to 25 ps [31]. However, the very thin gap (0.1 mm) combined with the high val-
ues of the electric field (500 kV/cm) demand a very good surface smoothness of the
electrodes. Moreover, the detector has to be operated at a large overpressure of 12 bar.
This ensures a large density of primary ionization in the thin gap to account for a good
detection efficiency.

1.3.3 Parallel Plate Avalanche Chambers

A Parallel Plate Avalanche Chamber (PPAC) is a single gap gaseous detector very
similar to the Spark Counter. However, they are operated in avalanche mode; streamers
and discharges are unwanted side effects in this type of detector. It normally consists
of two planar electrodes made of metal, or metalized ceramic or plastic, kept apart at a
fixed distance of 0.5 to 2 mm by precise spacers. Its advantages include a fast response
and an increased rate capability of up to 10 MHz/cm2 [32]. The time resolution is
100 to 250 ps [33, 34, 35]. Depending on the gas filling, a gain of 103 to 104 can be
reached with a very low discharge probability of 10−5 for minimum ionizing particles.
The PPAC signals are small (about 100 fC on average [33]) which gives a low signal-
to-noise ratio. To account for a good detection efficiency, the electronics has to be
very low-noise and very sensitive, which collides with the fast rise time needed for
timing purposes. The possibility of using this technology for large scale applications
is questionable.
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1.3.4 Resistive Plate Chambers

The Resistive Plate Chamber (RPC) was developed in 1981 by R. Santonico and R.
Cardarelli [36, 37]. As the spark counter and the PPAC, the RPC consists of two
parallel plate electrodes. At least one of the electrodes is made of a material with high
volume resistivity. A chargeQ0 that enters the resistive electrode surface ’decomposes’
with time t following an exponential

Q(t) = Q0 e
−t/τ with τ = ρε0εr , (1.21)

whereρ is the volume resistivity of the material,ε0 is the dielectric constant andεr
is the relative permittivity of the resistive material. The volume resistivity is connected
to the conductivityσ by ρ = 1/σ [Ωcm]. Typical glass resistive plates have a volume
resistivity of ρ ≈ 1012 Ωcm, leading to a ’relaxation time’τ ≈ 1 s. The volume
resistivity of Bakelite is of the orderρ ≈ 1010 Ωcm, which gives a ’relaxation time’
τ ≈ 10 ms. The charges in the resistive electrodes cause the high voltage and thus the
electric field in the gas gap to drop locally around the initial avalanche or discharge.
Here the detector has a blind spot for a time of the order of the relaxation timeτ , but
the remaining counter area is still sensitive to particles.

Fig. 1.5 shows a schematic image of an example configuration of an RPC [36].
The gas gap is sandwiched between the two resistive electrode plates. These plates
are painted with a graphite coating of surface resistivity 200 to 300 kΩ/�, which is
used to distribute the high voltage on the electrodes. The shown configuration utilizes
read out strips running along the whole length of the chamber on both sides of the gap,
but perpendicular, allowing read out of thex- andy-coordinate of the position of a
traversing particle. The strips are separated from the graphite coating by an insulating
layer.

RPCs may be operated in avalanche mode or in streamer mode (discharge mode).
In avalanche mode the release of the primary charge by the incoming ionizing radiation
is followed by the propagation and multiplication of the electrons corresponding to a
Townsend avalanche. This is shown schematically in Fig. 1.6. At a large gas gain a
change occurs in the avalanche dynamics: Then the avalanche charge carriers influence
the electric field in the gas gap and hence their own propagation and multiplication (the
space charge effect). If the gas gain is further increased, photons can start to contribute
to the propagation of the avalanche and streamers appear [38, 39, 40]. At a later stage, a
conductive channel can be formed between the two electrodes, through which the local
electrode surfaces are discharged. A weak spark may be created. While in avalanche
mode RPCs streamers are an unwanted side effect, streamer mode RPCs make use of
the large current pulses induced by the streamers which simplifies the read out of the
device. Fig. 1.7 shows schematic images of the streamer development in the gas gap.
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Figure 1.5: Schematic image of an RPC geometry as in [36, 37].

+ + + + + + + + + + + + + +

Eo

+ + + + + + + + + + + + + +

+

a) b)

+ + + + + + - + - - + + + +

++ +
+

+ + + + + - + - - + + + + +

- - - - - - + + - + - - - - - -  c) d)- - - - - - - - - - - - - - - - - 

-+

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Figure 1.6: A schematic image of the development of an avalanche in an RPC and
the electric field deformations caused by the avalanche charges at large gain. E0 is
the applied electric field. a) Some gas atoms are ionized by the passage of a charged
particle. An avalanche is started. b) The avalanche size is sufficiently large to influence
the electric field in the gas gap. c) The electrons reach the anode. The ions drift much
slower. d) The ions reach the cathode. The charges in the resistive layers influence the
field in a small area around the position where the avalanche developed.
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Figure 1.7: A schematic image of the development of a streamer in an RPC. a) An
avalanche is developing as in Fig. 1.6. b) The avalanche charges lead to a high field
detoriation in the gas gap. Moreover, photons start to contribute to the avalanche
development and cause a rapid spread of the avalanche: A streamer evolves. c) A
weak spark may be created. The local electrode area is discharged. d) The electric
field is strongly decreased around the spot of the avalanche. The detector has a blind
spot.

Streamer Mode RPCs

Single and double gap RPCs operated in streamer mode have so far found application
in high energy physics experiments like L3 at CERN [41], BABAR at SLAC [42]
and BELLE at KEK [43]. Future applications will include the ARGO experiment at
the YangBaJing high altitude cosmic ray laboratory [44] and the OPERA [45] and
MONOLITH [46] experiments at LNGS. The muon arm of the ALICE experiment at
CERN [47, 48] will also be equipped with streamer mode RPCs.

As the streamer signals are quite large (between 50 pC [49] and a few nC ([50]),
no preamplification is needed and the signals can be discriminated directly. Thus the
read out of streamer mode RPCs is quite simple [51, 52]. Double gap chambers oper-
ated at electric fields of 40 kV/cm in streamer mode and with 2 mm wide gaps reach
efficiencies of 99% and a time resolution around 1 ns. However, the rate capability is
limited to a few hundred Hz/cm2.
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Avalanche Mode RPCs

The counting rate capability of RPCs is significantly improved if the occurrence of
streamers is suppressed and the detector is operated in avalanche mode [53]. This
can be achieved by the addition of small contents of SF6 to the gas mixture [39].
RPCs operated in avalanche mode will be used for the muon trigger systems of the
ATLAS [54] and CMS [55] experiments at CERN. Multi gap Timing RPCs [56, 57]
are implemented in the HARP experiment at CERN [58] and will equip the 176 m2

TOF barell of the ALICE experiment [33].

Because the average pulse charges are a factor ten lower than in streamer mode,
the avalanche mode allows to operate this device at a larger particle rate up to a few
kHz/cm2 [49], but it also makes it necessary to introduce low noise electronics. In this
thesis we will focus on avalanche mode RPCs. There exist two different designs of
RPCs: theTrigger RPCand theTiming RPC. Their performance is described in more
detail in the following sections.

1.4 Trigger RPCs and their Applications

The Large Hadron Collider (LHC) [60], currently being built at CERN in Geneva,
Switzerland, will provide particle physics with the first laboratory tool to access the
energy frontier above 1 TeV. Protons will be accelerated and stored at 7 TeV in two
separate beam pipes, colliding with an unprecedented luminosity of 1034 cm−2s−1 at
40 MHz. In each pipe 2808 counter rotating bunches of approximately 75 mm length
and a radius of about 16µm contain around 1011 protons each. The superconducting
LHC dipoles occupy about 2/3 of the LHC tunnel circumference and provide a dipole
field of 8.4 T strength. An image of the LHC and the positions of the four LHC exper-
iments ATLAS [61], CMS [62], ALICE [63] and LHCb [13] is shown in Fig. 1.8.

High momentum final state muons are amongst the most promising signatures of
physics at proton-proton collisions at the LHC. To exploit this potential, the currently
built high energy physics experiments ATLAS and CMS will comprise large area muon
systems [54, 55] dedicated to detecting the muons. As an example Figs. 1.9 and 1.10
show the ATLAS detector system, that will be taking data starting in 2007 at the LHC.

Resistive Plate Chambers with 2 mm gap size operated in avalanche mode are used
in the ATLAS muon system. The RPCs are implemented on an area of 3650 m2 and
with 355.000 independent read out channels to provide information on the presence
and arrival time of muons; they are used fortriggering on muons. The simultaneous
presence of four muons could reveal the decay of the sought after Higgs particleH
that might be created in the proton-proton collisions at the LHC. In the high Higgs
mass rangemH > 130 GeV the so-called ‘gold-plated’ channelH → Z + Z →
µ+ +µ−+µ+ +µ− has relatively small background. The LHC bunch crossing interval
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Figure 1.8: A view of the Large Hadron Collider (LHC) and the four LHC experiments
[59]. The LHC will be housed in the old LEP tunnel that has 26.659 m circumference.
The two general purpose experiments, ATLAS and CMS, are diametrically opposite
in Pits 1 and 5, respectively. The heavy ion experiment ALICE will be in Pit 2. The
LHCb experiment is dedicated to the study of CP violation and other rare phenomena
in the decay of Beauty particles and is situated in Pit 8.

of 25 ns sets the scale for the required time resolution of the detectors. To be able to
reliably tell for each muon from which collision it originates and to limit random co-
incidences from background hits, the trigger detectors have to reach a time resolution
around 1 ns, which can easily be achieved with RPCs. The tracks of the muons are
measured by other detectors in the ATLAS muon system, because here a high position
resolution is required. One utilizes drift tubes and cathode strip chambers. Together
with the toroidal magnet they form the muon spectrometer which makes possible the
measurement of the muon momenta.

We will refer to the type of RPC used for triggering in the muon detector sys-
tems as theTrigger RPCfrom now on. A schematic image of a single gap Trigger
RPC is shown in Fig. 1.11. A commonly used gas mixture is C2F4H2/ i-C4H10/ SF6

(96.7%, 3%, 0.3%). The operating voltage of 10 kV results in an electric field of
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Figure 1.9: View of the ATLAS detector in its underground hall [54]. The muon
spectrometer consists of the toroid magnet and the muon chambers in- and outside of
the magnet, surrounding the whole detector system. Some muon chambers and parts
of the barrel toroid are removed to show the inner structure of the detector.

around 50 kV/cm in the gas gap(s). The resistive electrodes are made of 2 mm thick
Bakelite plates3. Bakelite has a volume resistivity of about 9×109 Ωcm and a relative
permittivity εr = 10. Operated in avalanche mode, double gap Trigger RPCs provide
99% efficiency and a time resolution of around 1 ns up to a particle flux of several
kHz/cm2.

1.5 Timing RPCs and their Applications

Resistive Plate Chambers with gas gaps of 0.2 to 0.3 mm are widely used in multi
gap configurations [56] for Time-Of-Flight (TOF) purposes [64]. While the perfor-
mance of multi gap RPCs is comparable to existing scintillator based TOF technology,
they feature a significantly lower price per channel. We discuss the implementation
of the RPC technology in the TOF system of a high energy physics experiment using

3Bakelite is a phenol-formaldehyde polymer.
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Figure 1.10: Transverse view of the ATLAS muon spectrometer [54]. The position of
the Trigger RPCs is indicated.
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Figure 1.11: Crossection of a single gap Trigger RPC [54, 55].
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Figure 1.12: A view of the ALICE detector and the TOF subdetector system [33].

the example of the ALICE experiment at CERN (see Fig. 1.12). In the high parti-
cle multiplicities of central lead-lead collisions at the Large Hadron Collider, particle
identification (PID) is an important design feature. A Time Projection Chamber (TPC)
[65] is used as the main tracking system but also provides particle identification by
measuring the ionization density which is given by the characteristic energy loss due
to ionizationdE/dx. The upper momentum limit for this kind of particle identifica-
tion in ALICE is 0.5 GeV/c. Two detector systems are dedicated exclusively to PID:
the TOF array is optimized for momenta below 2.5 GeV/c [33, 66] and surrounds the
TPC; another smaller system (HMPID [67]) is specialized in higher momenta. With
the help of the TOF system particles can be identified by their velocityv = l/t = βc
(weret is the Time-Of-Flight andl the track length) and the independently measured
momentump as

m0 =
p

γβc
= p

√
t2

l2
− 1

c2
, γ =

1√
1− β2

. (1.22)

It turns out that the mass resolution∂m0/m0 is driven much more by the errors
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Figure 1.13: The particle separation with a Time-of-Flight detector with a system res-
olution of 80 to 150 ps, located atR = 3.70 m from the vertex, for particles emitted at
an angle perpendicular to the beam axis [33].

PCB with cathode pickup pads 

external glass plates
(0.55 mm thick)

internal glass plates
(0.4 mm thick)

5 gas gaps 
of 250 micron

Mylar film
(250 micron thick)

PCB with anode pickup pads

PCB with cathode pickup pads 

Figure 1.14: A schematic image of the multigap Timing RPCs used in the TOF system
of the ALICE experiment [33, 66].
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on the Time-Of-Flight and track length measurements than on the momentum deter-
mination [33]. The technique used for the detectors in the ALICE TOF system should
reach an intrinsic time resolution better than around 90 ps. Including other sources of
timing errors, an overall resolution of 150 ps is expected. The nominal performance
of a TOF array with a system resolution from 80 to 150 ps, located atR = 3.70 m
from the vertex, is shown in Fig. 1.13 for particles emitted at 90 degrees to the beam
axis. An overall time resolution of 150 ps guarantees a separation of kaons from pions
within three standard deviations up to a momentum of around 1.7 GeV/c. The choice
of technology for the ALICE TOF are multi gap RPCs made from glass resistive plates
with gap sizes of 0.25 mm and operated in avalanche mode [33, 66] (see Fig. 1.14).
The electric field in the gas gaps is around 100 kV/cm and the gas mixture is C2F4H2/
i-C4H10/ SF6 (90%, 5%, 5%). The ALICE TOF system consists of RPCs on an area of
176 m2 with 160.000 individual read out cells of3× 3 cm2.

In a similar way RPCs are implemented in the HARP TOF detector system around a
TPC [68]. From now on we refer to this type of Resistive Plate Chamber as theTiming
RPC. In general, the multi gap Timing RPC technology reaches 99% efficiency and
time resolutions down to 50 ps [64, 68, 69, 70].

1.6 Summary

Present and future high energy physics experiments are complex systems that are built
of many layers of particle detectors. The task of the detector system as a whole is
to identify and to measure the momenta and/or energies of eight different particles:
electrons, muons, photons, charged pions, charged kaons, neutral kaons, protons and
neutrons. Each particle type leaves its own signature in the detector. For the sub detec-
tor systems different technologies are used, but they all rely on the same fundamental
physics: the interaction of radiation with matter. For the operation of Resistive Plate
Chambers (RPCs), that are the topic of this thesis, the primary ionization in the gas
gap due to collisions of the charged particle with the gas atoms is the important mech-
anism. The free charge carriers that are deposited in the gas gap trigger avalanches
of electrons in the externally applied electric field. The propagation of the growing
number of electrons induces a current on external strip electrodes.

RPCs are gaseous parallel plate avalanche detectors with electrodes that are made
of a material with high volume resistivity. This ensures that possible discharges are
localized and do not affect the entire detector. RPCs are widely used as large area
particle detectors in certain subsystems of present and future experiments, where a
good time resolution is needed.

One example for the implementation of RPCs in high energy physics experiments
is the muon system of the ATLAS experiment at the Large Hadron Collider (LHC)
at CERN. Here RPCs are implemented on 3650 m2 with 355.000 read out channels
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as trigger detectors that provide information on the presence of muons. Single gap
Trigger RPCswith 2 mm gas gaps, Bakelite resistive plates and an applied electric field
strength of 50 kV/cm are used and provide above 98% efficiency and around 1 ns time
resolution. The good time resolution is needed to provide bunch crossing identification
for the 40 MHz proton-proton collision rate at the LHC.

Another example is the ALICE experiment that will also operate at the LHC. It will
investigate lead-lead collisions that result in high multiplicities of secondary particles,
thus the challenge here is the particle identification. One technology that will be used
is to measure the Time-Of-Flightt over a distancel and to combine it with a separate
measurement of the momentump, so that the particle can be identified by its rest mass
m0 = p t/l. Multi gap Timing RPCs with 0.25 mm gap width and glass resistive
plates will be used in the ALICE Time-Of-Flight system on an area of 176 m2 with
160.000 individual read out cells. The applied high voltage leads to an electric field of
around 100 kV/cm in the gas gaps. The detectors reach efficiencies of 99% and time
resolutions of better than 90 ps.



Chapter 2

Detector Physics of RPCs

The topics of this chapter are the basic detector physics and the working principles of
Resistive Plate Chambers (RPCs). Attempts at detailed discussions of this topic have
been made before [71, 8, 72, 73, 9]. The model suggested in [71] describes the ba-
sic processes taking place in RPCs operated in avalanche mode and reproduces some
available experimental data. It explains quite well most results but however uses a
model for the statistical fluctuation (the Polya Distribution) that is not applicable to
RPCs, since it neglects the effect of attachment and it also assumes an unphysical pa-
rameter that lacks any clear interpretation. Moreover, a measured mean free path for
ionizing collisions is used [74], that is contradicted by other measurements [75] and
calculations with the commonly used simulation tool HEED [25]. In [8] this model
is extended by a saturation effect that is implemented in a crude way by cutting off
the avalanche growth at a certain size. In [72, 73] a simple model is introduced, in
which the saturated growth is explained by a constant-coefficient, non-linear differen-
tial equation, connected to the logistic function, which was originally introduced to
describe the evolution of a biological population in a limited resources environment.
In [9] a space charge effect is included by introducing a functional dependence of the
effective Townsend coefficientαeff , that describes the average avalanche multiplica-
tion (n(z) = eαeff z), on the avalanche size. The author also assumes the mean free
path for ionizing collisions from [74].

A much more accurate approach involves the dynamic calculation of the electric
field contributed by the avalanche charges. We follow this approach and describe the
detector physics of the RPC using only well-defined fundamental physics parameters.
We use analytic formulas for the potential of a point charge in a three layer geometry
like the RPC. With the calculated values for the electric field of the space charge, we
further calculate the actual values of the parameters that define the avalanche propa-
gation: the drift velocity, the Townsend and attachment coefficients and the diffusion
coefficients. This approach ensures an understanding and description of the evolution
of avalanches in a much more elementary way. For the mentioned gas parameters and
for the mean free path we use the values that are predicted by the simulation programs

33



34 CHAPTER 2. DETECTOR PHYSICS OF RPCS

z

y

x

r

φ z=
g

ca
thode

anode

Figure 2.1: In our studies we will mainly use cylindrical coordinatesz, r andφ, where
the z-axis is perpendicular to the cathode and anode, that are situated atz = 0 and
z = g.

MAGBOLTZ [76], IMONTE [77] and HEED [25].

We start with a discussion of primary ionization processes (section 2.1), followed
by diffusion, drift and the multiplication of electrons under the influence of an electric
field (section 2.2). In section 2.3 we investigate the electrostatics of a three layer geom-
etry like an RPC. There we present the analytic formulas that can be used to calculate
the electric field contributions of the space charge. The signal generation process and
the weighting field formalism are the topic of section 2.4 and finally we shortly discuss
the phenomenon of streamers in section 2.5. Based on the knowledge summarized in
this chapter we shall present Monte-Carlo simulation models for avalanches in RPCs
in chapter 3.

2.1 Gas Ionization by Fast Charged Particles

In the following sections we discuss the average distances between primary clusters,
the effect on the detection efficiency of RPCs and the distribution of the number of
released electrons per cluster.
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2.1.1 Distance between Primary Clusters

We assume that the probability of an ionizing collision does not depend on the previous
collision, which is correct if the energy loss is negligible compared to the particle
energy. In that case the distance between the ionizing collisions (the distance between
primary clusters) is exponentially distributed like

P (z) =
1

λ
exp

(
−z
λ

)
. (2.1)

If σp(β) [cm2] is the ionization cross section in a gas with densityρ, then the mean
free pathλ is given by

λ =
A

ρNA

1

σp(β)
, (2.2)

whereA is the atomic mass number of the gas [g/mol] andNA is Avogadro’s
number [1/mol]. The ionization cross section of a particle with chargez in unit charges
and velocityv = βc, wherec is the speed of light, for different gases can be written as
[75, 15]

σp(β) = 4π

(
~

mc

)2

z2 (M2 x1 + C x2) , (2.3)

where4π (~/mc)2=1.874×10−20 cm2, M2 andC are constants characteristic to
the gas and

x1 =
1

β2
ln(β2γ2)− 1 , x2 =

1

β2
, γ =

1√
1− β2

. (2.4)

As mentioned previously, the average distance between the clustersλ can be ob-
tained using the simulation program HEED [25]. HEED is a Monte-Carlo model based
on the photo-absorption ionization model by W.W.M. Allison and J.H. Cobb [78].
HEED data for two typical RPC gas mixtures and for pure isobutane and pure methane
are shown in Fig. 2.2. The comparison of measurements for isobutane and methane
shows good agreement of simulated and measured data. The measurements are from
[75], where we findM2 = 14.19 andC = 141.9 for isobutane andM2 = 4.23 (3.69)
andC = 41.85 (43.88) for methane, obtained with two different experimental meth-
ods.
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Figure 2.2: The average number of ionizing collisions (clusters) per mm (n = 1/λ) as
a function ofγ − 1 for different gases as predicted by HEED [25].T = 296.15 K and
p = 1013 mbar. The solid lines are measurements taken from [75].

2.1.2 Maximum Detection Efficiency

Since the distance between the ionizing collisions is exponentially distributed, the
number of clusters on a distanceg follows a Poissondistribution with an average of
n = g/λ. The probability to haven clusters is given by

P (n) =
1

n!

(g
λ

)n
e−

g
λ . (2.5)

The average number of clusters is very different for different gas mixtures. In Table
2.1 we list values ofn = g/λ for g = 1 mm for a few common gases.

We assume that all primary clusters in the gas gap are detected, which can only
theoretically be achieved by either an infinite gas gain or a threshold of zero applied to
the signals. With Eq. 2.5 we calculate the maximum detection efficiencyεmax to be

εmax = 1− e−n , (2.6)
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Gas He Ar Xe i-C4H10

n [clusters/mm] 0.42 2.3 4.4 8.4

Table 2.1: Simulated values for the average number of ionizing collisions per mm in
four different gases [79]. We assume a minimum ionizing particle.

Gas g [mm] εmax [%]
He 0.3 12

2.0 57
i-C4H10 0.3 92

2.0 100

Table 2.2: The maximum detection efficiency for two different typical gap sizes and
two different gases.

whereP (0) = e−n is the probability to find no primary cluster betweenz = 0 and
z = g. In Table 2.2 we compare gaps of different width for a detector filled with two
different gases. We find that the maximum detection efficiency depends strongly on
the gap widthg and on the gas.

2.1.3 Cluster Size Distribution

The number of emitted electrons per cluster depends on the amount of energy ex-
changed at the encounter, which can fluctuate considerably. The distribution is called
thecluster size distribution. A method for the calculation of cluster size distributions
in argon, based on detailed elastic and inelastic cross sections for low energy elec-
trons, was developed in [80]. We use HEED to calculate the cluster size distribution
for the gas mixtures typically used in RPCs. The simulated data for 7 GeV pions and
the Timing RPC gas mixtures and for 120 GeV muons and a Trigger RPC gas mixture
is shown in Fig. 2.3.

2.2 Electron Drift and Multiplication

In this section we discuss the propagation and multiplication of electrons under the
influence of an electric field in a gas.
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Figure 2.3: Cluster size distributions for two typical RPC gas mixtures and for pure
isobutane as calculated with HEED. The incident particle is a 7 GeV pion for isobutane
and for the 10% SF6 mixture and a 120 GeV muon for the 0.3% SF6 mixture. The
temperature of the gas isT = 296.15 K and the pressurep = 1013 mbar. Cutting at
500 electrons the average number of electrons per cluster is 1.9 for isobutane, 2.6 for
the 10% SF6 mixture and 2.8 for the 0.3% SF6 mixture.

2.2.1 Thermal Motion and Diffusion

The diffusion of an electron cloud in a gas is caused by random collisions with the gas
atoms due to the thermal motion. A free electron in a gas will assume an energy fol-
lowing a Maxwell-Boltzmann distribution around the mean〈E〉 = 3/2 kT ≈ 40 meV,
wherek is the Boltzmann constant andT the temperature in Kelvin. In case of absence
of an external electric field, the diffusion is isotropic and can be described by a Gaus-
sian distribution. A cloud of electrons that is point-like at position~r0 at timet = 0 will
assume the following density distribution after some timet:

ϕisotr(~r, t) =
1

(
√

2π σ(t))3
exp

(
−(~r − ~r0)2

2σ(t)2

)
. (2.7)

The sigma of the Gaussian is increasing with time likeσ =
√

2D t whereD
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Figure 2.4: The drift velocity calculated with MAGBOLTZ [76] for C2F4H2/i-
C4H10/SF6 (96.7 3 0.3%) and (85%, 5%, 10%) and for pure isobutane. The tem-
perature of the gas isT = 296.15 K and the pressurep = 1013 mbar. The circles show
measurements from [81] for two different mixtures, the square shows a measurement
from [82] for C2F4H2/i-C4H10/SF6 (96.9%, 3%, 0.1%).

[cm2/ns] is a diffusion coefficient.

2.2.2 Electron Motion due to an Electric Field

If an electric field is present the diffusion motion is superposed by a constant drift mo-
tion due to the electric field. In absence of a magnetic field the drift velocity vector is
always in the direction of the electric field lines. On the microscopic level an electron
gains the kinetic energyT = e0 | ~E| δz on a drift distanceδz between two collisions
with gas molecules. Heree0 is unit charge and| ~E| is the electric field strength sensed
by the electron. In the next encounter some kinetic energy is lost through recoil or
excitation and the electron is slowed down. Then it is again accelerated by the electric
field and again collides, and so on. On the macroscopic level, averaging over a large
number of collisions, one measures an average velocityvD. The drift velocity is a
function ofE/p, whereE is the electric field sensed by the electrons andp is the gas
pressure. This functionality can be calculated with the Monte-Carlo simulation pro-
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gram MAGBOLTZ [76]. A plot for typical RPC gas mixtures and for pure isobutane
is shown in Fig. 2.4.

In an electric field the diffusion becomes anisotropic; we have to distinguish longi-
tudinal and transverse diffusion. We assume rotational symmetry and use cylindrical
coordinates. Then Eq. 2.7 becomes

ϕisotr(r, z, t) =
1√

2π σLσ2
T

exp

(
−(z − z0)2

2σ2
L

− (r − r0)2

2σ2
T

)
. (2.8)

z0 andr0 indicate the position of the center of mass of the distribution. Note that
here aφ-integration was carried out, leading to an additional factor of2π. We introduce
two new diffusion coefficientsDT andDL [

√
cm ]. They describe the dependence of

the width of the Gaussian on the drifted distancel. Assuming a constant drift velocity

vD = l/t we write σL,T =
√

2DL,T t =
√

2DL,T l/vD = DL,T

√
l and obtain two

separate equations for the longitudinal and transverse density distributions:

ϕL(z, l) =
1√

2πl DL

exp

(
−(z − z0)2

2D2
L l

)
, (2.9a)

ϕT (r, l) =
1

D2
T l

exp

(
−(r − r0)2

2D2
T l

)
. (2.9b)

The diffusion coefficients and their dependence on the electric field strength can
be obtained by calculation with MAGBOLTZ. The MAGBOLTZ data for a commonly
used RPC gas mixture and for pure isobutane is shown in Fig. 2.5.

2.2.3 Electron Multiplication

An image of actual electron avalanches taken in a cloud chamber equipped with a par-
allel plate counter is shown in Fig. 2.6. Each electron starts an avalanche which grows
until it hits the anode. For each electron there is a certain probability to multiply and
a probability to get attached to a gas molecule. This is taken into account by intro-
ducing the Townsend coefficientα and the attachment coefficientη. If the avalanche
containsn electrons at positionz, the probability that it will containn + 1 at z + δz
is given bynα δz. Following the same arguments the probability that one electron
gets attached (forming a negative ion) over the distanceδz is given byn η δz. For the
average number of electronsn we therefore have the relation

dn

dz
= (α− η)n. (2.10)
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Figure 2.5: Longitudinal and transverse diffusion coefficients calculated with MAG-
BOLTZ for C2F4H2/ i-C4H10/ SF6 (85%, 5%, 10%) and pure isobutane. The data for
the mixture with 0.3% SF6 is very similar to the mixture with 10% SF6 and is not
plotted. The temperature isT = 296.15 K and the pressurep = 1013 mbar. Measure-
ments are available only for much lower field strengths and do not distinguish between
longitudinal and transverse diffusion [83, 84].

The solution forn(0) = 1 is the exponential growth law

n(z) = exp((α− η)z). (2.11)

For non-constant Townsend and attachment coefficients (α = α(z) andη = η(z))
Eq. 2.11 becomes

n(z) = exp

(∫ z

0

(α(ξ)− η(ξ))dξ

)
. (2.12)

2.2.4 Avalanche Statistics

Avalanche multiplication is a stochastic process. For the statistical fluctuation different
models have been suggested. Many authors use the Polya distribution which is derived
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Figure 2.6: A cloud chamber photograph of electron avalanches in a parallel plate
counter [38].

from the probabilityp to findn+ 1 electrons atz + dz as

p = nβ

(
b− 1− b

n

)
dz . (2.13)

The parametersβ andb are chosen such that the calculated results match the exper-
imental results. Indeed the Eq. 2.13 leads to avalanche charge distributions that show a
peak as do measurements [71]. The distribution Eq. 2.13 assumes that the probability
to create an electron depends on the current size of the avalanche. This however misses
a clear physical interpretation and describes some kind of saturation effect which we
include in a different way, as we shall show later. The only justification for the use
of the Polya distribution is that it parametrizes the measured curves in a nice way. In
addition, this model neglects attachment.

We will instead follow a model by W. Legler [85] that describes the avalanche
multiplication for electro negative gases at high fields and at large gas gain. For a
detailed discussion of this model, see [1]. For the time being we assume that the
Townsend and attachment coefficientsα andη are constant. Then the probability for
an avalanche started with a single electron to haven electrons at distancez is
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Figure 2.7: The charge distributions for avalanches starting with a single electron [1].
The effective Townsend coefficientα− η is the same for both curves.

P (n = 0, z) = k
n(z)− 1

n(z)− k
(2.14a)

P (n > 0, z) = n(z)

(
1− k

n(z)− k

)2(
n(z)− 1

n(z)− k

)n−1

. (2.14b)

Here we have

n(z) = e(α−η)z and k =
η

α
. (2.15)

The varianceσ2(z) of the distribution is given by

σ2(z) =

(
1 + k

1− k

)
n(z)(n(z)− 1) . (2.16)

The average electron number depends on the effective Townsend coefficientα− η.
The variance and the distribution itself however also depend onk = η/α explicitly.
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Fig. 2.7 shows the above distribution for the same effective Townsend coefficient but
differentα andη.

In caseα = η or α = 0, the distribution from Eqs. 2.14 becomes undefined and
we have to use different expressions. In caseα = η the probability for an avalanche
started with a single electron to haven electrons at distancez is

P (n = 0, z) =
αz

1 + αz
(2.17a)

P (n > 0, z) =
1

(1 + αz)2

(
αz

1 + αz

)n−1

(2.17b)

and the variance becomes

σ2(z) = 2αz . (2.18)

In caseα = 0 the probabilities are

P (n = 0, z) = 1− exp(−ηz) (2.19a)

P (n = 1, z) = exp(−ηz) (2.19b)

and the probability to findn > 1 electrons is zero. The variance becomes

σ2(z) = exp(−2ηz)(exp(ηz)− 1) . (2.20)

To generate a random number according to Eqs. 2.14, one draws a random uniform
numbers from the interval(0, 1) and calculates

n = 0 ; s < k
n(z)− 1

n(z)− k
(2.21a)

n = 1 + trunc

 1

ln
(
n(z)−1
n(z)−k

) ln

(
(n(z)− k) (s− 1)

(k − 1) (n(z))

) ; s > k
n(z)− 1

n(z)− k
(2.21b)

’trunc’ means truncation of the decimals. In casen(z) is very large, the numerical
evaluation of the logarithm in the denominator of Eq. 2.21b can become problematic
and it is better to use the series expansionln(1− x) = −

(
x+ 1

2
x2 + 1

3
x3 + ...

)
.
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To generate a random number according to Eqs. 2.17, one draws a random uniform
numbers from the interval(0, 1) and calculates

n = 0 ; s <
αz

1 + αz
(2.22a)

n = 1 + trunc

[
1

ln
(

αz
1+αz

) ln ((1− s)(1 + αz))

]
; s >

αz

1 + αz
(2.22b)

To generate a random number according to Eqs. 2.19, one draws a random uniform
numbers from the interval(0, 1) and calculates

n = 0 ; s > exp(−ηz) (2.23a)

n = 1 ; s < exp(−ηz) (2.23b)

In generalα andη are functions ofE/pwhereE is the electric field strength sensed
by the electrons andp is the pressure in the gas. This functionality can be calculated
with the program IMONTE [77]. For typically used gas mixtures plots are shown in
Fig. 2.8. In the case of only a few charges present in the detector, the electric field
E0 = U0/d between the two electrodes is uniform. The growth of the charge carriers in
an avalanche is then described by Eq. 2.11. If the number of charges in the avalanche
reaches large values, they influence the electric field in the gap and thus the values of
α andη. This is thespace charge effect. An approximate value of the space charge
field can be deduced by assuming that the charge lies in a sphere of radiusrD. Then
the fieldEr of this charged sphere at its surface is

Er =
e0 n

4πε0r2
D

, (2.24)

wheree0 is the unit charge andε0 is the dielectric constant of the vacuum. With
n = 106 andrD = 0.1 mm Eq. 2.24 givesEr = 150 V/mm, which is about 3% ofE0

in Trigger RPCs and about 1.5% ofE0 in Timing RPCs. In typical RPC gas mixtures
this field distortion can already produce a change of the effective Townsend coefficient
of up to 10%. As a consequence, we can use Eqs. 2.21, 2.22, 2.23 only locally, where
we assume thatα andη are constant.
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Figure 2.8: Townsend and attachment coefficients for different gas mixtures calculated
with IMONTE [77]. a) for the Timing RPC gas mixture and for pure isobutane, b) for
the Trigger RPC gas mixture. The temperature of the gas isT = 296.15 K and the
pressurep = 1013 mbar.
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Figure 2.9: The three layer geometry similar to that of resistive plate chambers. The
layers have different dielectric constants and different thicknesses. There is a point
charge in layer 2 at (x = x′, y = y′, z = z′).

2.3 Electrostatics of Three Layer Geometries

In this section we present an analytic solution for the potential of a point charge in a
three layer geometry like an RPCs [4]. It is an essential indegredient if we want to cal-
culate the electric field that is sensed by an electron in an avalanche at large gain in the
gas gap of an RPC. The RPC is treated as an infinite plane condenser comprising three
homogeneous isolating parallel dielectric layers. A detailed discussion of the deriva-
tion of the solutions can be found in [3]. There also the solution for the potential of a
point charge in an infinite plane condenser with one homogeneous isolating dielectric
layer is presented. It can be used for calculations of space charge fields in parallel plate
chambers with metallic electrodes, like the Parallel Plate Avalanche Chamber (PPAC).

The resistive plates of RPCs have volume resistivities of about 109 to 1012 Ωcm.
In section 1.3.4 we mentioned that this resistivity results inrelaxation timesτ that are
needed for the charges entering the resistive layers to decompose. We found values for
τ between 10 ms for the bakelite resistive layer and up to 1 s for a glass resistive layer.
The timescale of an avalanche on the other hand, if we only consider the electrons,
is a few nanoseconds, which is a difference of six orders of magnitude. For such fast
processes, the resistive electrode material can be treated as an insulator.

2.3.1 Potential of a Point Charge for the Three Layer Problem

Fig. 2.9 shows the geometry investigated in this section. The point charge is at position
(x′, y′, z′). Layer 2 – in the case of an RPC the gas gap – is at0 ≤ z ≤ g. It
has a dielectric constantε2, while layers 1 and 3 have dielectric constantsε1 andε3
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respectively. Theεi represent the full dielectric constants, i.e. they areε0 times the
relative permittivity of the medium, whereε0 is the dielectric constant of the vacuum.
We assume that theεi are constant. We will use cylindrical coordinates and write the
distance between the point charge (at~r ′) and the point of observation (at~r) as

R2 = |~r − ~r ′|2 = (x− x′)2 + (y − y′)2 + (z − z′)2

= r2 − 2rr′ cos(φ− φ′) + r
′2 + (z − z′)2

= P 2 + (z − z′)2 .

(2.25)

An integral representation of the potential in layer 2 (0 < z < g) for a point charge
sitting in layer 2 is given by [4]

Φ(r, φ, z, r′, φ′, z′) =
Q

4πε2

[
1√

P 2 + (z − z′)2
− (ε1 − ε2)

(ε1 + ε2)
√
P 2 + (z + z′)2

− (ε3 − ε2)

(ε3 + ε2)
√
P 2 + (2g − z − z′)2

+
1

(ε1 + ε2)(ε2 + ε3)

∫ ∞
0

dκ J0(κP )
R(κ, z, z′)

D(κ)

]
,

0 ≤ z ≤ g ;

(2.26)

whereJ0 is the Bessel function of the first kind and of order zero. The denominator
D(κ) in the integral is given by

D(κ) = (ε1 + ε2)(ε2 + ε3)
(
1− e−2κ (p+q)

)
− (ε1 − ε2)(ε2 + ε3)

(
e−2κ p − e−2κ q

)
− (ε1 + ε2)(ε2 − ε3)

(
e−2κ (p−g) − e−2κ (q+g)

)
+ (ε1 − ε2)(ε2 − ε3)

(
e−2κg − e−2κ (p+q−g))

(2.27)

and the numerator is
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R(κ; z, z′) =

(ε1 + ε2)2(ε2 + ε3)2
[
eκ(−2p−2q+z−z′) + eκ(−2p−2q−z+z′)

]
−

(ε1 + ε2)2 (ε2 − ε3)2 eκ(−4g−2q+z+z′) −
4ε1 ε2(ε2 + ε3)2 eκ(−2q−z−z′) − (ε1 − ε2)2 (ε2 + ε3)2 eκ(−2p−z−z′) −(
ε1

2 − ε2
2
)

(ε2 − ε3)2 eκ(−4g+z+z′) +(
ε1

2 − ε2
2
)

(ε2 + ε3)2
[
−eκ(−2p−2q−z−z′) + eκ(−2p+z−z′) + eκ(−2p−z+z′)

]
−

4
(
ε1

2 − ε2
2
)
ε2 ε3 e

κ(−2p−2q+z+z′) − 4 (ε1 + ε2)2ε2 ε3 e
κ(−2p+z+z′) +

(ε1 − ε2)2 (ε2
2 − ε3

2
)
eκ(−2g−z−z′) + 4 ε1 ε2

(
ε2

2 − ε3
2
)
eκ(2g−2p−2q−z−z′) +

(ε1 + ε2)2 (ε2
2 − ε3

2
)[

−eκ(−2g−2q+z−z′) − eκ(−2g−2q−z+z′) + eκ(−2g−2p−2q+z+z′)
]

+(
ε1

2 − ε2
2
) (
ε2

2 − ε3
2
)[

eκ(−2g−2q−z−z′) − eκ(−2g+z−z′) − eκ(−2g−z+z′) + eκ(−2g−2p+z+z′)
]
.

(2.28)

Eq. 2.26 consists of four terms. A plot of all four terms can be found in Fig. 2.12.
The first term is the potential of a free point charge at (r′, φ′, z′), while the second
and third terms are the potentials of two mirror charges situated at (r′, φ′, 2g−z′) and
(r′, φ′,−z′). The fourth term is a correction term. The integral behaves very nicely in
terms of fast convergence (see Fig. 2.11). From Fig. 2.12 it is also obvious that the
two terms that belong to the potential of a free point charge and the mirror charge that
is closer to the point of observation dominate the result. The influence of the relative
permittivity of layers 1 and 3 (in the case of the RPC the two resistive layers) on the
potential is shown in Fig. 2.13. We see that only forεr → 1 the influence is large.

Eq. 2.26 is only applicable for calculating the potential in the central layer, if the
point charge is also situated in the central layer. In [3] all 9 different analytic solutions
for the potential in layers 1, 2 or 3 for a point charge sitting in layers 1, 2 or 3 are given.

2.3.2 Electric Field of a Point Charge for the Three Layer Problem

The expressions for the electric fields are found from the potential (Eq. 2.26) by deriva-
tion.
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Figure 2.14: Thez-component of the electric field of a point charge at positionz=0.5,
r=0 in the planeφ=φ′=0 in a 2 mm gap RPC.

Er(r, φ, z, r
′, φ′, z′) = −∂Φ

∂r
(r, φ, z, r′, φ′, z′) , (2.29a)

Eφ(r, φ, z, r′, φ′, z′) = −1

r

∂Φ

∂φ
(r, φ, z, r′, φ′, z′) , (2.29b)

Ez(r, φ, z, r
′, φ′, z′) = −∂Φ

∂z
(r, φ, z, r′, φ′, z′) . (2.29c)

Fig. 2.14 shows thez-component of the electric field of a point charge in an RPC,
following Eq. 2.29c. A comparison of the electric field of a point charge in the gas
gap of an RPC to the electric field of a free point charge is shown in Fig. 2.15. We
find that especially close to the resistive layers the field differs by up to 80% from the
field of the free point charge. Fig. 2.12 shows that close to the resistive layers the
respective close mirror charge becomes important while the far mirror charge term and
the integral term have only a small influence. This is shown more clearly in Fig. 2.16
where the full solution for thez-components of the electric field following Eq. (2.29c)
is compared to the field of a free point charge and of one mirror charge in the near
resistive layer. For fast computations Eq. 2.26 can be approximated by omitting the
second and third terms. In that case the three components of the electric field are
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Er(r, φ, z, r
′, φ′, z′) ≈ Q

4πε2

[
r − r′ cos(φ− φ′)
(P 2 + (z − z′)2)

3
2

+
(ε2 − ε3)

(ε2 + ε3)

r − r′ cos(φ− φ′)
(P 2 + (2g − z − z′)2)

3
2

]
,

(2.30)

Eφ(r, φ, z, r′, φ′, z′) ≈ Q

4πε2

[
r′ sin(φ− φ′)

(P 2 + (z − z′)2)
3
2

+
(ε2 − ε3)

(ε2 + ε3)

r′ sin(φ− φ′)
(P 2 + (2g − z − z′)2)

3
2

]
,

(2.31)

Ez(r, φ, z, r
′, φ′, z′) ≈ Q

4πε2

[
z − z′

(P 2 + (z − z′)2)
3
2

− (ε2 − ε3)

(ε2 + ε3)

2g − z − z′

(P 2 + (2g − z − z′)2)
3
2

]
.

(2.32)

2.4 Signal Induction Process

The movement of the charges in the detector induces a current signal on the read out
electrodes. Because of their small drift velocity, the current signal induced by the
drifting ions is much smaller than the current induced by the electrons. The induced
current signal ofN(t) charge carriers in a cluster that is moving with the velocity
~vD(t) = ~̇x(t) at timet is given by [86, 87]

i(t) = ~Ew(~x(t)) · ~vD(t) e0 N(t) , (2.33)

wheree0 is the unit charge and~Ew is the electric field in the gas gap if we put one
RPC read out strip on 1 V and ground all other electrodes. The value~Ew is called the
weighting field. It should not be confused with the actual electric field. A schematic
plot of the weighting field and the signal induction process is given in Fig. 2.17. For
nCl clusters moving in the gas gap of an RPC, the induced current signal is the sum
over all clusters

i(t) =

nCl∑
j=1

~Ew(~xj(t)) · ~vDj(t) e0 Nj(t) . (2.34)
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Figure 2.17: A schematic plot of the weighting field in a strip detector and the signal
induction process in two examples. The induced current is calculated using the scalar
product of the weighting field vector and the velocity vector(s) of the moving charge(s).

2.4.1 Weighting Field in the Gas Gap of an RPC

In this section we give analytic formulas for the weighting field of a strip electrode
in the three layer geometry shown in Fig. 2.18. The read out strip has widthw and
infinite length.

We want to calculate the induced signal on a certain read out strip. Then the weight-
ing potentialΦ1(x, z) is the potential in the central layer of the described geometry, if
this strip is put on 1 V and all other electrodes are grounded. It is given by [4]

Φ1(x, z) = ε1
2

π

∫ ∞
0

dκ cos(κ x) sin
(
κ
w

2

)1

κ
F1(κ, z) . (2.35)

With this we calculate the components of the weighting field vertical to the resistive
layers (Ez) and parallel to the resistive layers (Ex).
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Figure 2.18: The three layer geometry investigated. The width of the readout strip is
w.

Ex(x, z) = − ε1
2

π

∫ ∞
0

dκ sin(κ x) sin
(
κ
w

2

)
F1(κ, z) , (2.36a)

Ez(x, z) = ε1
2

π

∫ ∞
0

dκ cos(κ x) sin
(
κ
w

2

)
F2(κ, z) (2.36b)

with

F1(κ, z) = 2
D(κ)

[
(ε2 + ε3)

(
e−κ(q+z) − e−κ(2p+q−z))

+ (ε2 − ε3)
(
e−κ(2g+q−z) − e−κ(2p+q−2g+z)

) ] (2.37)

and

F2(κ, z) = − 2
D(κ)

[
(ε2 + ε3)

(
e−κ(q+z) + e−κ(2p+q−z))

− (ε2 − ε3)
(
e−κ(q+2g−z) + e−κ(2p+q−2g+z)

) ]
.

(2.38)

D(κ) was defined in Eq. 2.27. The two components of the weighting field are plot-
ted for a 0.3 mm gap and a 32 mm read out strip in Fig 2.19. Since the electrons in the
gas gap of an RPC generally move parallel to thez-axis and since Eq. 2.33 contains the
scalar product of the velocity and the weighting field vector, the componentEz(x, z)
is the important one for the calculation of the induced current. Moreover,Ex(x, z) is
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Figure 2.19: A plot of thez-component (a) and thex-component (b) of the weighting
field following Eqs 2.36 for three different positions in the gap. The gap size isg =
0.3 mm, the strip width isw = 32 mm. ε1 = ε3 = 8 ε0, ε2 = ε0, q = 2 mm,p = g+ q.
The plots for the threez-positions are almost indistinguishable.

zero over the largest area of the strip. In Fig. 2.19 we find that the values ofEz(x, z)
are approximately equal for differentz-positions in the gap. In the limit of a very wide
strip the field Eq. (2.36b) in the center of the strip (x = 0) approaches

Ez =
ε1ε3

ε2ε3 q + ε1ε2 p+ (ε1ε3 − ε1ε2) g
. (2.39)

independent ofz. For the typical single gap RPC geometry with two resistive
electrodes of thicknessq = p−g and dielectric constantsε1 = ε3 = ε0εr (for example,
see Fig. 1.11) Eq. 2.39 becomes
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Ez =
εr

2q + gεr
. (2.40)

Hereεr is the relative permittivity of the resistive layers. It does not includeε0!
We find typical values for the weighting fields for single gap Timing RPCs ofEz =
1.25 /mm. For a single gap Trigger RPC withq = g = 2 mm we findEz = 0.417 /mm.

2.4.2 Induced Charge

The induced chargeQind can be calculated as the integral of Eq. 2.34:

Qind =

∫ T

0

dt

ncl∑
j=1

~Ez(~xj(t)) · ~vj(t) eNj(t) (2.41)

whereT is the total signal time.

2.5 Streamers

In this section we summarize briefly the phenomenon of streamers. An avalanche can
transform into a streamer at a high gas gain when photons start to contribute to its
propagation [38]. The propagation velocity of streamers was measured to be signifi-
cantly higher than the drift velocity of the normal avalanche [38]. At a later stage the
streamer can further evolve into a glow discharge, a filamentary discharge and a spark
[88]. However, the later discharge stages require a considerable current to flow in the
gap, which is suppressed by the high resistivity of the RPC electrodes.

[38] and optical methods [89, 90] suggest that there are two different generation
mechanisms for streamers:

1. A relatively slow mechanism, which needs a number of consecutive avalanches
to take place in the gap. This can either be due to a high rate of primary particles
or due to successors of a primary avalanche produced by photo electric effect.
Unabsorbed UV-photons emitted by a preceding avalanche can knock electrons
from the cathode surface up to a few mm in radial direction from that avalan-
che. These electrons generate succeeding avalanches which at a later stage can
transform into a streamer. Experimentally one observes precursors correspond-
ing to the primary avalanche and then, with some delay, a current pulse with up
to 100 ns delay [91], corresponding to the propagation of the streamer (See Fig
2.20).
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Figure 2.20: A measured voltage pulse in an RPC [40]. The first pulse corresponds to
an avalanche (theprecursor signal) and is followed by a streamer signal.

2. A rapid mechanism which converts directly the first avalanche into a streamer
(Kanalaufbau).

There exist naturally variations of these two mechanisms, which can be understood
as transitions between the two. Experimentally one often observes that streamer sig-
nals are preceded by a smaller pulse corresponding to an avalanche (theprecursor
signal), as in Fig. 2.20. At low voltages this behaviour is not detected, but if the volt-
age is increased, the streamer pulses occur with a time delay getting smaller towards
higher voltages. Finally the precursor and streamer signals merge at a certain voltage
[92].

In streamer-mode RPCs the appearance of streamers is desired, because the large
streamer pulses need no amplification which simplifies the read out. In avalanche-
mode RPCs streamers are an undesired side-effect that worsens the detectors rate ca-
pability, because the amount of released charge in a streamer eventually enters the
resistive electrodes and is much larger than in the case of a usual avalanche. More-
over, streamers produce a high read out strip multiplicity due to the low discrimination
threshold that is required by the avalanche mode. The addition of SF6 in the 1% range
suppresses strongly the appearance of streamers [39].

Due to the photonic origin of the phenomenon of streamers, the avalanche-to-
streamer transition can not be studied with the detector physics described so far in
this chapter. It requires to include gas self-photo-ionization in the model and it re-
quires the knowledge of various photon emission and absorption cross sections for all
gas constituents and for the detector materials. This kind of approach goes beyond



60 CHAPTER 2. DETECTOR PHYSICS OF RPCS

the scope of this thesis. However, streamer breakdown in parallel plate detectors was
reproduced by a quantitative model where short distance gas self-photo-ionization is
included [93]. In that model, the photo-ionization in the backward region of increased
electric field strength, as it is visible for example in Fig. 1.1, leads to a propagation
of the ionization region in the cathode direction. Apart from this so calledcathode
streamer, the model also reproduces theanode streamer, where the field distortion in
the forward region of the avalanches leads to an ionization wave in the anode direction.
The occurrence of a precursor signal is also reproduced. The time interval between the
precursor and the streamer decreases, as observed in experiment.

2.6 Summary

The important parameters to describe the generation and evolution of avalanches in
RPCs are

• the average distance between primary clustersλ,

• the probability distribution for the number of electrons per cluster,

• the Townsend coefficientα(E/p),

• the attachment coefficientη(E/p),

• the drift velocityvD(E/p) of electrons in the gas,

• the transverse and longitudinal diffusion coefficientsDT (E/p) andDL(E/p),

• the potential of a point charge in a three layer geometry like the RPC and

• the value of thez-component of the weighting field in the central layer of this
geometry.

The values ofλ and the cluster size distribution can be calculated with the program
HEED. The Townsend and attachment coefficients, the drift velocity and the diffusion
coefficients are functions of the electric field strengthE and the gas pressurep. These
functionalities are obtained by the programs MAGBOLTZ and IMONTE.

The fundamental physical effect that leads to the deposit of free charge carriers
in the gas gap of an RPC is the primary ionization of the gas atoms by the incident
particle. The distance between the primary clusters is exponentially distributed around
the mean valueλ. The number of clusters in a gap of widthg is Poisson distributed
around a mean ofn = g/λ. The maximum efficiency of an RPC is given byεmax =
1− exp(−n), whereexp(−n) is the probability to find no cluster in the gas gap.εmax
is depending strongly on the used gas and the gap widthg. The number of electrons
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per cluster follows a distribution that has a mean of a few electrons but a long tail to
large electron numbers.

In a uniform electric field the propagation of an electron cloud can be described
by a diffusion motion and a superposed constant drift motion. The diffusion follows
a Gaussian distribution with a standard deviation that is depending on the diffusion
coefficients and that is increasing with time. The longitudinal and transverse diffusion
coefficients are in general not equal.

For the avalanche fluctuations we follow a model by W. Legler that describes the
statistics of electron avalanches in electro negative gases at high electric fields and at
large gas gain. The distribution depends on the values ofα andη explicitly. Sinceα
andη depend on the electric field and since this field can be influenced by the charge
carriers of the avalanche (the space charge), we give analytic formulas for the potential
of a point charge in an infinite plane condenser with three homogeneous layers. We
find that this potential can be approximated well by the potential of a free charge and
that of one mirror charge that is situated in the nearer electrode. This solution can be
used to calculate the space charge field.

The induced currenti(t) of N(t) unit charges moving with velocity~vD(t) at timet
is calculated using the weighting field formalism:i(t) = ~Ew ·~vD(t) e0 N(t), where~Ew
is the weighting field ande0 is the unit charge. Analytic formulas for the weighting
field of a strip electrode in an RPC have been given.

The phenomenon of streamers can not be explained by our model, because we do
not include any photonic effects.
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Chapter 3

Monte Carlo Avalanche Simulation

The Monte-Carlo simulation of the physical processes in particle detectors is an im-
portant tool for understanding the behaviour of the detectors in the particle physics ex-
periments, in which they are or will be implemented. In order to optimize the detector
physics parameters like gas mixture, gas pressure, gas gain and electronics parame-
ters like preamplifier peaking time, noise, threshold settings etc., generally a detailed
simulation of the detector response is carried out. For the simulation of wire and drift
chambers one often utilizes the simulation tool GARFIELD [94]. For the simulation of
RPCs no such tool exists. As a consequence, many experimental results have not been
properly studied. Even though the geometry of the device is much simpler than that
of a wire based detector, there are still disagreements about the explanation of several
aspects of the performance of RPCs [7]. Thus the need for a detailed Monte-Carlo
simulation of avalanches in RPCs arose. In this chapter we present four Monte-Carlo
avalanche simulation programs that base the knowledge gathered in chapter 2. They
are written in C/C++ and make use of the ROOT [95] data analysis framework.

The 1-D model: The first program is a one dimensional (1-D) simulation of the lon-
gitudinal avalanche development along thez-axis, which is divided into several
steps. This model is described in detail in [1]. Saturation of the number of ava-
lanche charges is implemented in a crude way by cutting the avalanche growth
at a certain size. Diffusion is not implemented. The read out electronics are
included and the program is used for fast and detailed studies of time resolutions
and efficiencies of RPCs. It is described in section 3.1.

The 1.5-D model: The program described in [1] was extended by an implementation
of the space charge effect. Thez-component of the electric field of the space
charge is calculated dynamically and added to the applied field. With that the
gas parameters like Townsend and attachment coefficient at each position and at
each time step are calculated. The model is called “1.5-D” since the propagation
of the avalanche charges is simulated only in one direction but the charge carriers

63



64 CHAPTER 3. MONTE CARLO AVALANCHE SIMULATION

at each position are assumed to be contained inside radial charge distributions
with a width closely connected to the transverse diffusion coefficient. It is used
for detailed studies of avalanche saturation, charge spectra, intrinsic charge-time
correlations and the influence of the space charge effect on the time resolution.
It is described in detail in section 3.2.

The 2-D model: The third program is a two dimensional avalanche simulation (2-D)
where also the transverse spread of the avalanche due to the electric field contri-
butions by the avalanche charges is taken into account. Cylindrical symmetry of
the avalanche is assumed and the gas gap is divided into a two dimensional grid
of the radial and longitudinal coordinatesr andz. The program allows the very
detailed simulation of single avalanches but it is time consuming. It is described
in detail in section 3.3.

The 3-D model: A three dimensional avalanche simulation (3-D) is presented in sec-
tion 3.4. Here the gas gap is divided into a grid of the coordinatesx, y andz.
We shall see that for the precise study of avalanches the segmentation has to be
very fine which makes the program extremely time-consuming.

3.1 The 1-D Model

To calculate the final avalanche charge of a random avalanche in an RPC, the proba-
bility distributions from Eqs. 2.14, 2.17, 2.19 can be used. This is done by drawing
random numbers according to Eqs. 2.21, 2.22, 2.23. In practice one is more interested
in the signal development, i.e. the induced current at each time. As an example we will
now follow the avalanche development for a single initial electron starting at one edge
of the gas gap. We divide the gas gap intoN steps of sizeδz. The average multiplica-
tion of a single electron over this distance is given byn(z) = exp((α−η)δz). Starting
with one electron atz = 0, we findn1 electrons atz = δz, wheren1 is from Eqs.
2.21, 2.22, 2.23. Each of these electrons will again multiply the same way. To find
the numbern2 of electrons atz = 2δz we loop over then1 electrons, draw a number
from Eqs. 2.21, 2.22, 2.23 for each electron and sum them up. This procedure can
be repeated through the whole gap, but it is very time consuming. If the number of
electronsni at a given positioni δz is sufficiently large (& 150), we can use the central
limit theorem and calculate the new number of electrons by drawing a random number
from a Gaussian distribution with meanµ and sigmaσµ, that are given by

µ = ni n(z) and σµ =
√
ni σ(z) ,

whereσ(z) is from Eqs. 2.16, 2.18, 2.20. This makes the simulation procedure
very fast. Fig. 3.1 shows examples of individual avalanches starting from a single
electron. The very beginning of the avalanche decides on the final avalanche size.
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Figure 3.1: Avalanches started by a single electron atz = 0 for α = 13 /mm, η =
3.5 /mm [1]. We see that the very beginning of the avalanche decides on the final
avalanche size. Once the number of electrons is sufficiently large, the avalanche grows
like exp((α− η)z)

The 1-D model is described in detail in [1]. Its basic structure is the following:

1. The gas gap (thez-axis) is divided intoN steps of sizeδz = g/N corresponding
to time steps ofδt = δz/v0, wherev0 = vD(E0/p) is the electron drift velocity
from Fig. 2.4 at the applied electric field strengthE0 and at the pressurep.

2. We assume that all particle tracks are perpendicular to the electrode plates of the
detector.

3. The primary clusters are distributed onto the steps, with distances following an
exponential distribution with a mean taken from Fig. 2.2. The first cluster is
put at a distance from the cathode, that is obtained by drawing a random num-
ber from an exponential distribution with a mean equal to the mean free path.
The second cluster is put at a distance from the first cluster, that is calculated
accordingly. This procedure is repeated until the anode is reached.

4. Primary electrons are put to each cluster, following the cluster size distribution
from Fig. 2.3.
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5. The drift velocityv0 = vD(E0/p), the Townsend coefficientα(E0/p) and the
attachment coefficientη(E0/p) for the applied electric fieldE0 and the pressure
p are taken from Figs. 2.4 and 2.8.

6. The avalanches for each single electron are simulated using Eqs. 2.21, 2.22, 2.23
and the procedure that is outlined at the beginning of this section. This provides
N(t), the total number of electrons at timet.

7. If N(t) exceeds a certain total number of electronsNsat, the avalanche growth is
stopped and theNsat electrons are propagated towards the anode. This procedure
simulates the space charge effect.

8. At each time step, the current induced by the drifting electrons is calculated. The
Nj(t) electrons that are propagated from stepj to stepj + 1 induce the current
i(t) = Ewv0eNj(t) (see Eq. 2.33). The induced currents of the electrons at the
different steps are summed up.

9. Steps 6 to 8 are repeated until all electrons have left the gas gap.

10. The obtained current signal is convoluted with the amplifier delta responsef(t)
[1]

h(s) =
n−nenn! τ

(1 + sτ)n+1
→ f(t) = L[h(s)] = n−nen

(
t

τ

)n
e−

t
τ , (3.1)

wheretp = nτ is the peaking time andn corresponds to the number of stages.
Noise is included by adding a value drawn from a Gaussian distribution to the
signal in each time bin with a standard deviation giving the correct Equivalent
Noise Charge (ENC) at the output.

3.2 The 1.5-D Model

In this section we extend the 1-D simulation model described in section 3.1 by includ-
ing diffusion and space charge effects. The basic structure of the simulation is the
following:

1. The gas gap (thez-axis) is divided intoN steps of sizeδz = g/N corresponding
to time steps ofδt = δz/v0, wherev0 = vD(E0/p) is the electron drift velocity
from Fig. 2.4 at the applied electric fieldE0.

2. We assume that all particle tracks are perpendicular to the electrode plates of the
detector.
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3. The primary clusters are distributed onto the steps, with distances following an
exponential distribution with a mean taken from Fig. 2.2. The procedure is the
same as in the 1-D model.

4. Primary electrons are put to each cluster, following the cluster size distribution
from Fig. 2.3.

5. The electric fieldE(z) at all steps where electrons are situated is calculated.
Here we also include transverse diffusion. The procedure is described in detail
in sections 3.2.2 and 3.2.3.

6. The drift velocityvD(E(z)/p), the Townsend coefficientα(E(z)/p) and the at-
tachment coefficientη(E(z)/p) are calculated at each step where electrons are
found.

7. The avalanches for each single electron are simulated using Eqs. 2.21, 2.22, 2.23
and the procedure outlined in section 3.1. We also include longitudinal diffusion
and the charges are redistributed onto the steps following the procedure that is
described in section 3.2.1.

8. At each time step, the current and charge induced by the drifting electrons are
calculated according to Eqs. 2.34 and 2.41. The procedure is described in more
detail in section 3.2.7.

9. Steps 5 to 8 are repeated until all electrons have left the gas gap.

3.2.1 Longitudinal Diffusion

In section 2.2.2 we discussed longitudinal diffusion. If an electron cloud drifts from
positionz to positionz+δz, there is a certain probability for each electron to diffuse to
a position different fromz+δz. Since we assume that the diffusion is strictly Gaussian,
the probability distribution is given by Eq. 2.9a. Thus the newz-coordinate for each
electron can be calculated by drawing a random number from a Gaussian distribution
with a meanz+δz and a standard deviationσ = DL

√
δz. Fig. 3.2 shows two example

simulated avalanches with longitudinal diffusion.

The longitudinal diffusion has an influence on the average avalanche growth. As
an example we consider an avalanche started by two electrons and assume that the
avalanches grow exponentially. Then the average number of electrons grows like
n(z) = 2eαz. We compare this to the average number of electrons of two avalan-
ches that travelled the distancesz+ δz andz− δz: n(z, δz) = eα(z+δz) + eα(z−δz). The
ratio of the two is:

eα(z+δz) + eα(z−δz)

2eαz
=
eαδz + e−αδz

2
= cosh(αδz) .
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Figure 3.2: Snapshots of simulated avalanches with longitudinal diffusion. A 0.3 mm
gas gap is divided in 100 steps. The right image has a logarithmic scale.

The functioncosh has a minimum atδz = 0 where its value is 1. This shows that
longitudinal diffusion generally increases the avalanche charge.

3.2.2 Transverse Diffusion

The distribution of charges in an avalanche grows transversely due to diffusion as the
avalanche propagates (section 2.2.2). Considering an avalanche propagating along the
z-axis in the gas gap, we assume that

• the avalanche has rotational symmetry,

• the transverse charge distribution is given only by transverse diffusion and

• the diffusion is Gaussian.

Then the normalized radial charge distribution on a disc perpendicular to thez-axis
is given by Eq. 2.9b

ϕT (r, l(z′)) =
1

D2
T l(z

′)
exp

(
− (r − r0)2

2D2
T l(z

′)

)
. (3.2)
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Herel(z′) is the distance drifted by the electrons from the position of the generation
of the primary cluster to the position of the disc atz′. Since the distribution is centered
around thez-axis, we chooser0 = 0.

3.2.3 Space Charge Effect

An analytic solution for the potentialΦ(r, φ, z, r′, φ′, z′) of a point charge in an infinite
plane condenser comprising three homogeneous layers is given by Eq. 2.26. Here
(r, φ, z) is the point of observation and(r′, φ′, z′) the position of the point charge. We
use this solution to calculate the electric field of the charges in the gas gap (of the
space charge) at each position and time. Since the simulation is performed only along
the z-axis, it is sufficient to use the potential only at(r = 0, φ = 0, z) and we write
Φ(r = 0, φ = 0, z, r′, φ′, z′) = Φ(z, r′, φ′, z′). Thez-component of the electric field of
the point charge is found by derivation, similar to Eq. 2.29c, as

Ez(z, r
′, φ′, z′) = −∂Φ

∂z
(z, r′, φ′, z′) . (3.3)

The avalanche charge is assumed to be contained in a disc perpendicular to thez-
axis. The radial charge distributionϕT (r, l(z′)) at eachz-position is given by Eq. 3.2.
Then the electric fieldEz(r = 0, φ = 0, z, l, z′) = Ez(z, l, z

′) of a disc containing the
unit charge at positionz is calculated as the integral over Eqs. 3.2 and 3.3 as

Ez(z, l, z
′) = −

∫ ∞
0

ϕT (r, l(z′))
∂Φ(z, r′, φ′, z′)

∂z
r′ dr′ . (3.4)

Theφ′-integration has already been carried out earlier, when we assumed rotational
symmetry inϕT (r, l(z′)) (section 2.2.2). The positions of the charge distribution and
the point of observation are shown schematically in Fig. 3.3. While the electric field
of a point charge following Eq. 3.3 diverges at(r → r′, φ → φ′, z → z′), the field
following Eq. 3.4 is well defined everywhere. This is shown in Fig. 3.4, where the
potential of a unit point charge (given by Eq. 2.26) is compared to the potentials of the
Gaussian charge distribution and of a uniform charge distribution.

The fieldEz(z) of all the charge in the gap (the field of the space charge) is calcu-
lated by integration (summation) over all the discs.

Ez(z) =

∫ g

0

q(z′)Ez(z, l, z
′) dz′ (3.5a)

≈
N∑
m=0

qmEz(z, lm, z
′
m) . (3.5b)
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Figure 3.3: The geometry for the 1.5-D simulation. The point of observation is(r =
0, φ = 0, z) and the disc with the Gaussian radial charge distribution is positioned at
z′.
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Figure 3.4: A comparison of the potentials of a point charge (Eq. 2.26) and two
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0.3 mm gap. The first charge distribution is uniform with radiusR = 6µm, the second
is Gaussian with the standard deviationσ = R. Moreover we usedε1 = ε3 = 8 ε0,
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Figure 3.5: The average signal chargeQtot, which is the charge of the positive ions
in the gas gap at the end of the avalanche development, and the induced chargeQind

(see Eq. 2.41) for different numbers of steps. We used a 0.3 mm gap timing RPC with
HV=2.7 kV and average avalanches. For a number of steps larger than 200 we find a
fluctuation of 2.2% and 0.3% r.m.s. forQind andQtot.

In Eq. 3.5b we moved from the continuous to a discrete system. Hereqm is the
charge in the stepm, which drifted the distancelm from the position of the formation
of the primary cluster to the current positionz′m. We can now calculate the field of the
space charge in the gas gap at all positions. Above a certain step number the calculation
is only very slightly depending on the chosen step size, which is shown in Fig. 3.5.
In the program an adequate number of values ofEz(z, l, z

′) for differentz, l andz′ is
memorized in a three dimensional table for computational efficiency reasons and the
values for are obtained during the simulation by interpolation.

At this point we would like to mention that the transverse dispersion of the avalan-
che is simulated only with regard to diffusion. We assume that the transverse diffusion
coefficientDT is constant while in realityDT depends on the electric field. In Fig.
3.6 we show a comparison of thez-components of the electric fields of two transverse
Gaussian charge distributions with different standard deviationsσ. Theσ differs by
20%, leading to a derivation in the value of the electric field of up to 30%. Moreover,
the repulsion of the charges of same sign will also contribute to the transverse disper-
sion, especially in the final stage of the avalanche, where a strong space charge effect
is present. This means that the radial charge distribution will not be Gaussian at that
stage. Since these effects are not included in the simulation, the radial charge density
might be overestimated which can further lead to an overestimation of the longitudi-
nal space charge effect. A detailed discussion to this topic is found in a later chapter
(section 7.1).
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Figure 3.6: A comparison of thez-component of the electric field of two transverse
Gaussian charge distributions with different standard deviationsσ. The charges are at
z = 0.25 mm in a 0.3 mm gap . Theσ of one Gaussian is 20% higher than the other,
leading to a reduction of the electric field of up to 30% close to the charges.

3.2.4 Electrons in the Anode Resistive Layer

Electrons that reach the anode will leave the gas gap and enter the anode. If it is
made of a conducting material, the charges disappear instantly. If the anode is made
of a resistive material, a ’relaxation time’τ is needed for the charges to drain off (See
section 1.3.4).τ is several orders of magnitude larger than the signal time which leads
to an accumulation of electrons at the surface of the resistive anode. These charges can
have a strong influence on the field in the gas gap, especially on the field close to the
anode, so they have to be included in the simulation. For the potential we use Eq. 3.4 at
z′ = g: Ez(z, l, z

′ = g). The charge is again distributed in a transverse Gaussian with
the standard deviationσ as before depending on the transverse diffusion coefficient
and the distancel that the cluster of electrons has drifted from the point of its creation
to the anode.

3.2.5 Field Dependence of the Electron Multiplication

As was mentioned frequently, the dependence of the multiplication coefficientsα(E/p)
andη(E/p) on the electric fieldE leads to saturation of the avalanche growth as soon
as the size of the avalanche is sufficiently large so that the charge carriers disturb the
applied external field. The growth is then not exponential, it becomes approximately
linear. Fig. 3.7b shows three example avalanches that were started by single electrons
at the cathode of a 0.3 mm gap and that propagate under the influence of the space
charge effect. We see that even though the initial growth of the avalanches differs a
lot, the induced current at the final stage becomes similar.
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Figure 3.7: A comparison of the current induced by three avalanches that started with
one electron atz = 0. A 0.3 mm gap is divided in 100 steps, corresponding to time
steps of around 14 ps. a) We chose a low value for the applied electric field. Thus the
gain is quite low. The space charge effect is switched off in the simulation. b) The
space charge effect is switched on. The gain is larger than in a). We observe a clear
saturation effect.
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Fig. 3.8 shows an example of an avalanche entering the space charge regime.

(a) In the first figure 0.58 ns have passed since the passage of the ionizing particle.
One electron cluster has already reached the anode. The field in front of the an-
ode is lowered by the electrons in the resistive anode surface and by the positive
ions in front of it. At the tip and the tail of the remaining cluster the electric field
is increased by≈15%. At the center of the electron cloud the field is about 25%
lower (compare to Fig. 1.1).

(b) In the second image at 0.77 ns the field in the center of the electron cloud is
lowered to an extent that pushes the effective Townsend coefficient to negative
values. This leads to strong attachment of electrons, generating many negative
ions.

3.2.6 Field Dependence of the Drift Velocity

The repulsive or attractive electric fields of the avalanche charge carriers lead to a
longitudinal spread of the electron distribution of an avalanche. The fundamental pa-
rameter describing this effect is the drift velocity, which depends on the gas pressure
and the electric field:vD(E/p). To implement the longitudinal space charge effect in
the simulation we calculate at each stepm, where we find electrons, the drift velocity
vD(Em/p), whereEm is the electric field at the stepm and compare this drift velocity
to the drift velocityv0 = vD(E0/p) at the applied electric fieldE0. As an example let
us consider 100 electrons at stepm and a calculated drift velocity of 1.5v0. Then we
put 50 electrons to stepm + 1 and 50 to stepm + 2. Accordingly, if we calculate a
drift velocity of 0.9v0, we put 90 electrons to stepm + 1 and 10 electrons stay at step
m. In the program this is implemented by calculating

ζ =
vD(Em/p)

v0

and p(ζ) = ζ − trunc(ζ) ,

where ’trunc’ means truncation of the decimals. The probability for an electron at
stepm to drift to stepm + trunc(ζ) is 1 − p(ζ) while the probability to drift to step
m + 1 + trunc(ζ) is p(ζ). If n electrons have to be distributed onto the two steps, we
put trunc(p(ζ)n) electrons to stepm + 1 + trunc(ζ) andn − trunc(p(ζ)n) electrons
to stepm+ trunc(ζ).

Fig. 3.9 shows two example simulated avalanches without longitudinal diffusion.
Each electron cluster was generated in one step, the position of the formation of the
primary cluster. At a later stage the electrons are distributed over more steps. The
electrons at the tip of the electron distributions have a larger drift velocity, which is
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Figure 3.8: Snapshots of a simulated avalanche. A 0.3 mm gas gap is divided in 500
steps. The ion and electron distributions and the electric fieldEz(z) (Eq. 3.5b) are
shown, corresponding to the left and right axes, respectively. We used the following
values, which correspond to the geometry of a Timing RPC with a gap ofg = 0.3 mm
width: ε1 = ε3 = 8ε0, ε2 = ε0, P = 0, z′ = 0.25, q = 2 andp = 2.3. The high voltage
is 3 kV, leading to an applied electric field of 10 kV/mm.



76 CHAPTER 3. MONTE CARLO AVALANCHE SIMULATION

step
0 40 80 120 160 200

ch
ar

ge
s/

st
ep

10-1

1

10

102

103

104

105

106

step
0 40 80 120 160 200

ch
ar

ge
s/

st
ep

1
2
3
4
5
6
7
8
9

10
4x10

electrons
pos. ions

electrons
pos. ions

0

Figure 3.9: Snapshots of simulated avalanches without longitudinal diffusion. A
0.3 mm gas gap is divided into 200 steps. The right image has a logarithmic scale.
The clusters are spread over a few steps due to the repulsive and attractive forces of
the space charge.

due to the repulsive field generated by all the electrons behind. Other electrons, e.g. in
the center of the electron clouds, have a lower drift velocity, due to the attractive force
of the ions in their back and the repulsion by the electrons in front (compare to Fig.
1.1).

3.2.7 Induced Current Signal and Induced Charge

While the electrons are propagated through the gas, the currents induced by their mo-
tion are calculated to obtain the induced signal. AssumingNj(t) electrons are being
propagated from stepj with the calculated velocityvj(Ej/p). Then the induced cur-
rent is calculated using Eqs. 2.33 and 2.39 asij = Ez vj(Ej/p) e0 Nj(t). HereEz is
thez-component of the weighting field ande0 is the unit charge. The induced currents
of the electrons at the different steps are summed up, giving the total induced current
at the given time step. At the same time we calculate the induced charge. At each step
j the induced chargeqj is connected to the induced currentij by

qj = δt ij =
δz

vj(Ej/p)
ij = Ez e0 Nj(t) δz , (3.6)
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whereδt is the time step of the simulation andδz is the step size. The induced
charge at all time steps is summed up until all electrons have reached the anode and
the signal development is finished. The induced current of the moving ions is not taken
into account, since it is much smaller due to their small drift velocity.

3.3 The 2-D Model

We use cylindrical coordinatesr, z andφ and assume rotational symmetry of the ava-
lanche around the z-axis. We simulate only avalanches started by one electron starting
from a given position in the gas gap. The simulation routine has the following basic
structure:

1. A cylindric volume of the gas gap is divided into a two dimensional grid of the
r andz-coordinates. If thez-coordinate is divided intoNz steps of sizeδz =
g/Nz, the corresponding time steps of the simulation areδt = δz/vD(E0, p),
wherevD(E0, p) is the electron drift velocity from Fig. 2.4 at the applied electric
field E0. Ther-coordinate is divided intoNr steps of an appropriately chosen
sizeδr. The charge that is situated in the grid point(r′, z′) is actually a charge
ring of sizeδr andδz centered at thez-axis (see Fig. 3.10).

2. One electron is put inside the volume.

3. A two dimensional electric field vector (Ez,Er) at each bin is calculated, if there
is an electron in that bin.

4. The Townsend and attachment coefficients, the drift velocity and the diffusion
coefficients at each bin are calculated.

5. The avalanches for each single electron are simulated using Eqs. 2.21, 2.22, 2.23
and the procedure outlined in section 3.1. Each electron is redistributed onto the
bins. Here also longitudinal and transverse diffusion are included.

6. Steps 3 - 5 are repeated until all electrons leave the gas gap.

We assume a detector geometry as in [69, 96, 97], where only one electrode is
made of a resistive material and the other one is made of aluminum. We assume that
the conductive electrode is the anode and that the cathode is made of 3 mm thick glass.
Due to the conductivity of the anode, the electrons entering the anode plate disappear
instantly. They do not contribute to the electric field in the gas gap.
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Figure 3.10: Geometry for calculating the electric field of a charge ring.

3.3.1 Calculation of the Electric Field Vector

In this section we give analytic formulas for the electric field of a charged planar ring
of radiusr′ at z′. We use the electric field solutions of a point charge in cylindrical
coordinates1 and chooseφ = 0 (See Fig. 3.10).

Er(r, z, r
′, z′) ≈ Q

4πε2

2π∫
0

r − r′ cos(φ′)

(P 2 + (z − z′)2)
3
2

dφ′ ; (3.7a)

Eφ(r, z, r′, z′) ≈ Q

4πε2

2π∫
0

−r′ sin(φ′)

(P 2 + (z − z′)2)
3
2

dφ′ ; (3.7b)

Ez(r, z, r
′, z′) ≈ Q

4πε2

2π∫
0

z − z′

(P 2 + (z − z′)2)
3
2

dφ′ . (3.7c)

The valueP depends onr, r′ andφ′ and is defined in Eq. 2.25. The solutions to
Eqs. 3.7 are

1The Eqs. 2.30 to 2.32 give the electric field of a free charge and one mirror charge. We use the first
of the two terms in each of those equations.
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Er(r, z, r
′, z′) ≈ Q

4πε2

2

r a2 b

[
c2 E

(
−4rr′

b2

)
+ a2 K

(
−4rr′

b2

)]
, (3.8a)

Eφ(r, z, r′, z′) = 0 , (3.8b)

Ez(r, z, r
′, z′) ≈ Q

4πε2

4(z − z′)
a2b

E

(
−4rr′

b2

)
. (3.8c)

where

a2 = (r + r′)2 + (z − z′)2 , (3.9a)

b2 = (r − r′)2 + (z − z′)2 , (3.9b)

c2 = r2 − (r′)2 − (z − z′)2 (3.9c)

and

K(x) =

π
2∫

0

1√
1− x sin2(ξ)

dξ , E(x) =

π
2∫

0

√
1− x sin2(ξ) dξ . (3.10)

K(x) andE(x) are the elliptic integrals of the first kind and of the second kind
[98]. The argument of these functions is always negative. A plot is shown in Fig. 3.11.
The functions are strictly monotonic. We can use values ofK(x) andE(x) stored
in tables and interpolate, which is much faster than a numerical integration. For very
small arguments we use the series expansion ofK(x) andE(x)

K(x) = π

(
1

2
+

x

8
+

9x2

128
+

25x3

512

)
+ higher order terms, (3.11a)

E(x) = π

(
1

2
− x

8
− 3x2

128
− 5x3

512

)
+ higher order terms. (3.11b)

Following our discussion in section 2.3.2, we add the field of one mirror charge
that is situated atz = 2g − z′, which is in our case inside the anode. The electric field
of the mirror charge is obtained by simply substitutingz′ with 2g− z′ in Eqs. 3.8a and
3.8c. The sum of the field of the charge ring at (z′, r′) and the mirror charge ring at
(2g − z′, r′) gives the field of the charge that is situated at the grid point (z′, r′). The
field at (r = r′, z = z′) is not included in the calculation of the space charge field due
to the divergence of Eqs. 3.8a and 3.8c at this point.
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Figure 3.11: Plots of the elliptic integrals of the first kindK(x) (a) and of the second
kindE(x) (b).

3.3.2 Propagation of the Charges

Knowing the electric field strength at each grid point, the charges can be propagated.
With the absolute value of the electric fieldE = | ~E(r, z)| =

√
E2
r (r, z) + E2

z (r, z) at
the grid point (r, z), we obtain the values of

• the Townsend coefficientα(E/p) and attachment coefficientη(E/p) from Fig.
2.8,

• the drift velocityvD(E/p) from Fig. 2.4 and

• the longitudinal and transverse diffusion coefficientsDL(E/p) andDT (E/p)
from Fig. 2.5.

As the next step, the electrons in each grid point are multiplied. We are using Eqs.
2.21, 2.22, 2.23 and the procedure outlined in section 3.1. The electrons are moved to a
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Figure 3.12: The coordinate system and the electric field vector in the two dimensional
system.

new grid point that lies in the direction of the drift velocity vector~vD, which is parallel
to the vector of the electric field~E. We also include diffusion here, keeping in mind
that longitudinal diffusion is always in the direction of~E, which is not necessarily
parallel to thez-axis. Accordingly, transverse diffusion is perpendicular to~E. In a
coordinate system withx′, y′, z′ and with thez′-axis parallel to~E, the propagation and
diffusion are calculated the following:

• The newx′-coordinate is calculated by drawing a random number from a Gaus-
sian distribution with meanµ = 0 and sigmaσ = DT

√
δl = DT

√
|vD| δt. Here

δl is the drifted distance andδt is the time step of the simulation.

• The newy′-coordinate is calculated accordingly.

• The newz′-coordinate is calculated by drawing a random number from a Gaus-
sian distribution with meanδl and sigmaσ = DL

√
δl.

Since the electric field has in the main coordinate system the directionθ (See Fig.
3.12), the propagation has to be rotated. Forθ we find the relations

cos(θ) =
Ez
|E|

and sin(θ) =
Er
|E|

.
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Since the problem has cylindrical symmetry we can chosex = x′. The rotation is
then performed by

 x
y
z

 =

 1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 x′

y′

z′

 (3.12)

With the new coordinatesr =
√
x2 + y2 andz the electrons are redistributed onto

the bins. For large numbers of electrons this procedure becomes very time consuming.
In that case the electrons are propagated in groups.

3.4 The 3-D Model

The three dimensional simulation has the following basic structure:

1. A cubic volume of the gas gap is divided into a three dimensional grid. We
use Cartesian coordinatesx, y andz (the z-axis is again perpendicular to the
electrode plates). If thez-coordinate is divided intoN steps of sizeδz = g/N ,
the corresponding time steps of the simulation areδt = δz/vD(E0, p), where
vD(E0, p) is the electron drift velocity from Fig. 2.4 at the applied electric field
E0.

2. One electron is put into a bin inside the volume.

3. The three dimensional electric field vector at each bin is calculated, if there is an
electron in that bin.

4. The Townsend and attachment coefficients, the drift velocity and the diffusion
coefficients at each bin are calculated.

5. The avalanches for each single electron are simulated using Eqs. 2.21, 2.22, 2.23
and the procedure outlined in section 3.1. Each electron is redistributed onto the
bins. Here also longitudinal and transverse diffusion are included.

6. Steps 3 - 5 are repeated until all electrons left the gas gap.

The procedure is very similar to the 2-D simulation described in section 3.3. If the
number of electrons in a bin exceeds a certain size, they are moved in groups. First the
electric field vector(Ex, Ey, Ez) and its normE at each bin, where electrons are situ-
ated, is calculated. To calculate the electric field of the space charge we use the poten-
tial solutions of free charges and of the mirror charges in the anode (Eqs. 2.30 to 2.32).
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The charge in the bin where the field is calculated is not included, due to the divergence
of the field at this point. With the calculated fieldE = | ~E(x, y, z)| =

√
E2
x + E2

y + E2
z

we calculateα(E/p), η(E/p), DT (E/p), DL(E/p) andvD(E/p). The drift velocity
vector~vD and the longitudinal diffusion are parallel to~E, the transverse diffusion is
perpendicular to~E. With this information we obtain a propagation vector (x′, y′, z′) in
the coordinate system given byEx, Ey, Ez:

• The newx′-coordinate is calculated by drawing a random number from a Gaus-
sian distribution with meanµ = 0 and sigmaσ = DT

√
δl = DT

√
|vD| δt. Here

δl is the drifted distance andδt is the time step of the simulation.

• The newy′-coordinate is calculated accordingly.

• The newz′-coordinate is calculated by drawing a random number from a Gaus-
sian distribution with meanδl and sigmaσ = DL

√
δl.

For the values of the rotation parametersφ andθ we find the relations

tan(φ) =
Ex
Ez

and tan(θ) =
Ey√

E2
x + E2

y

.

The propagation vector (x′, y′, z′) is rotated in three dimensions to give the prop-
agation vector in the correct coordinate system (x, y, z). The rotation is performed
by

 x
y
z

 =

 cos(φ) 0 sin(φ)
− sin(φ) sin(θ) cos(θ) cos(φ) sin(θ)
− sin(φ) cos(θ) − sin(θ) cos(φ) cos(θ)

 x′

y′

z′

 . (3.13)

3.4.1 Convergence of the 3-D Model

While the accuracy of the 1-D, 1.5-D and the 2-D models was verified by increasing
the number of steps and comparing the results, this approach is not practicable in the
case of the 3-D model. Assuming a division of the three axes into 200 steps and that
charges are situated in all bins, we must already do(2003)2 = 6.4 × 1013 iterations
to calculate the field of all charges at all positions. Even if the field is only calculated
at bins where charges are actually situated, the time needed to simulate an avalanche
grows beyond reasonable values with this model. Thus, in this section we investigate
the convergence behaviour expected from the 3-D model.

Generally the fields of point and line charges diverge if one approaches the charges.
The fields of two- or three dimensional charge distributions do not diverge. Therefore
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we expect that the calculated space charge field will not diverge if we go to smaller
step sizes. To investigate the convergence behaviour we take the electric field of some
three dimensional charge distributionρ(~r ′), given by

~E(~r) =
1

4πε0

∫
V

ρ(~r ′)
(~r − ~r′)
|~r − ~r ′|3

d3r′ . (3.14)

As an example, we assume a constant charge distributionρ(~r ′) = 1. The absolute
value of the electric field of this charge distribution is given by

| ~E(~r)| =
1

4πε0

∫
V

1

|~r − ~r ′|2
d3r′ . (3.15)

We limit the volume to a cube with side lengthL and calculate the field at the
surface at~r = 0. The total fieldE = | ~E(~r = 0)| is

E =
1

4πε0

L∫
x′=0

L∫
y=0

L∫
z=0

1

(x′)2 + (y′)2 + (z′)2
dz′dy′dx′ (3.16a)

≈ 1

4πε0∆2

N∑
i=1

N∑
j=1

N∑
k=1

Qijk

i2 + j2 + k2
, ∆ = L/N . (3.16b)

In Eq. 3.16b we introduced a discrete system where thex-, y- and z-axes are
divided intoN steps each.Qijk is the charge in the cubicle at(x′, y′, z′). Since at
the bin i = j = k = 0 the field will certainly diverge, we do not include it in the
calculation. If we go to smaller step sizes the charge per cubicle then decreases linearly
with the volume:Qijk ∼ ∆3. With L = 1 we get

E =
1

4πε0

1∫
x′=0

1∫
y=0

1∫
z=0

1

(x′)2 + (y′)2 + (z′)2
dz′dy′dx′ (3.17a)

≈ ∆

4πε0

N∑
i=1

N∑
j=1

N∑
k=1

1

i2 + j2 + k2
, ∆ = 1/N . (3.17b)

ForN = 100 (1000) the discrete sum deviates by 7% (1%) from the exact value.
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Figure 3.13: A projection on thexy plane of the electron density in an avalanche
simulated with the 3-D model a) We used 120 steps to divide thex-, y- andz-axis.
Thex- andy-axis measure from 0 to 50µm. b) A similar plot for a division twice
as dense in thex- andy-direction.
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3.4.2 Drawbacks of the 3-D Model

Fig. 3.13 shows a projection on thexy plane of the electron density in avalanches
simulated with the 3-D model. We see that with the division in 120 steps in thex-
andy-plane the diffusion parallel to thex- andy-axes seems to be favored, which is
of course not observed in reality. A reduction of the bin sizes leads to an improvement
of the situation (Fig. 3.13b). However, as we just mentioned, computational efficiency
limits the possible increase of step numbers.

A close look at Fig. 3.13 tells us that the avalanche charge distributions are to a
very good approximation rotationally symmetric. As a consequence, we can certainly
assume a radial symmetry of the avalanches and use the 2-D model, which does not
have the same drawbacks.

3.5 Summary

Different simulation programs for avalanches in RPCs were described. They base on
the detector physics described in chapter 2.

In all pograms we implement the model by W. Legler for the statistics of electrons
multiplication in high electric fields and at large gas gain. The gas parameters that
define the primary ionization and the avalanche propagation are calculated with the
programs HEED, MAGBOLTZ and IMONTE. In the 1-D model a saturation due to
space charge effects is simulated by simply cutting the avalanche growth at a certain
size. The program can be used for fast but detailed studies of time resolutions and effi-
ciencies. The second model is named “1.5-D model” because here the actual avalanche
propagation is simulated only in one dimension (longitudinally) but the transverse dif-
fusion is also taken into account in the calculation of the electric field of the space
charge. The 2-D model allows a very detailed simulation of both the longitudinal and
the transverse avalanche development. Finally we also presented a 3-D model which
turns out to be too time consuming to be used efficiently. However, since we observe
a clear rotational symmetry in the avalanches, we may use the 2-D model.



Chapter 4

Geometries and Typical Operating
Parameters

In this chapter we present geometries and typical operating parameters of the RPCs
we investigate in the later chapters. In our studies we will focus on the following RPC
geometries:

1. The discussions of Timing RPCs in this thesis will focus on the devices that are
built and tested by P. Fonte et al. (Fig. 4.1). They use gas gaps of 0.3 mm and
resistive glass plates with 2 mm or 3 mm thickness, a volume resistivity of about
2×1012 Ωcm and a relative permittivityεr of 8. The gas is C2F4H2/ i-C4H10/
SF6 (85%, 5%, 10%). An operating voltage of 6 kV (3 kV) for a double gap
(single gap) results in an electric field of 100 kV/cm in the gas gaps.

2. We study Timing RPCs that use a similar design with the exception of smaller
gap widths of 0.1 mm and 0.2 mm.

3. We investigate Timing RPCs with gap sizes of 0.3 mm filled with pure isobutane.

4. Finally we investigate Trigger RPCs (Fig. 1.11) made of a 2 mm gas gap filled
with C2F4H2/ i-C4H10/ SF6 (96.7%, 3%, 0.3%) and two 2 mm thick bakelite
resistive plates with a volume resistivity around 1010 Ωcm and a relative permit-
tivity εr of 10.

Some of the important detector and gas parameters are given in Tables 4.1 and 4.2.
For the Timing RPC shown in Fig. 4.1b and the Trigger RPCs the weighting field in
the gas gap is given by Eq. 2.40. For the single gap Timing RPCs in Fig. 4.1a, where
only one electrode is made from resistive material and the other electrode is made from
metal, the weighting field is given by [1]

87
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Figure 4.1: A schematic image of Timing RPCs in one and four gap configurations as
in [69, 96, 97].

Ez =
εr

q + gεr
. (4.1)

Finally for double gaps sharing the same read out strip like in Fig. 4.1c, the weight-
ing field is

Ez =
εr

q + 2gεr
. (4.2)

The 1-D model described in section 3.1 does not include the dynamic calculation of
the space charge fields is used to obtain time resolution and efficiency results. Here the
drift velocity (vD) and the Townsend and attachment coefficientsα(E/p) andη(E/p)
are set constant. We use the values at the applied electric field strength and take them
from Figs. 2.4 and 2.8. The cluster size distributions for the primary ionization are
taken from Fig. 2.3. The number of electrons at which the avalanches are saturating
isNsat = 1.6× 107 for the Timing RPC andNsat = 5× 107 electrons for the Trigger
RPC.

The 1.5-D model also includes diffusion and space charge effects. It is described in
section 3.2 and is used study in more detail the space charge effect and to collect charge
spectra. We use the dependencies of the drift velocity (vD(E/p)) and of the Townsend
and attachment coefficients (α(E/p) andη(E/p)) on the electric field strength from
Figs. 2.4and 2.8). The diffusion coefficients (DL(E/p) andDT (E/p)) are set constant.
We use the values at the applied electric field strength (E0 = 5 kV/mm for the Trigger
RPC andE0 = 10 kV/mm for the Timing RPC).
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RPC gas q [mm] g [mm] εr EW [/mm] λ [mm] nav Qt [pC]

Timing 85/5/10 2 0.3 8 1.25 0.11 2.6 0.02
Timing 85/5/10 2 0.1 8 1.67 0.11 2.6 0.02
Timing 85/5/10 2 0.2 8 1.43 0.11 2.6 0.02
Timing i-C4H10 2 0.3 8 1.25 0.11 1.9 0.02
Trigger 96.7/3/0.3 2 2 10 0.417 0.104 2.8 0.1

Table 4.1: Simulation parameters for the diffent RPCs.q is the thickness of the re-
sistive layers,g is the gap size,εr is the relative permittivity of the resistive material,
EW is value of thez-component of the weighting field,λ is the mean free path for the
primary ionization,nav is the average number of electrons per cluster andQt is the
charge threshold. We assume the geometry shown in Figs. 4.1b and 1.11 and calculate
the weighting field from Eq. 2.40. For the geometries in Figs. 4.1a and 4.1cEW will
have different values (Eqs. 4.1 and 4.2). As ionizing particles we assume 120 GeV
muons for the Trigger RPC and 7 GeV pions for the Timing RPCs.

RPC gas HV [kV] α [1/mm] η [1/mm] DL [
√

mm] DT [
√

mm]

Timing 85/5/10 3.0 123 10.5 0.033 0.027
Timing 85/5/10 1.6 278 5.5 0.033 0.027
Timing 85/5/10 2.1 135 10 0.033 0.027
Timing i-C4H10 2.8 87 0 0.028 0.023
Trigger 96.7/3/0.3 10.0 13.3 3.5 0.027 0.032

Table 4.2: Simulation parameters for different RPCs. We list typical values for the
high voltage, for the Townsend and attachment coefficientsα(E/p) andη(E/p) and
for the diffusion coefficientsDL(E/p) andDT (E/p).

Expected values

Analytic formulas for efficiency, time resolution and average charges of single gap
RPCs are derived in [1]. We list the formulas here and give typical expected values in
Table 4.3. The intrinsic time resolution of the detector (no electronics) is given by

σt =
1.28

(α− η)vD
. (4.3)

In the derivation of Eq. 4.3 it is assumed that no space charge effects are present,
which means that(α − η) andvD are constant at all times. We find the interesting
result that the time resolution does not depend on the threshold, which is also observed
in measurements [97]. For the efficiency of single gap RPCs we find
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RPC gas g [mm] HV [kV] ε [%] σt [ps] 〈Qtot〉 [pC] 〈Qind〉 [pC]

Timing 85/5/10 0.3 3.0 76 54 1.8×107 1.9×105

Timing 85/5/10 0.1 1.6 31 16 1.1×104 64
Timing 85/5/10 0.2 2.1 48 47 2.6×103 27
Timing i-C4H10 0.3 2.8 74 117 7.6×103 110
Trigger 96.7/3/0.3 2 10 90 950 200 6

Table 4.3: Expected values for the efficiency (ε), time resolution (σt), the mean to-
tal signal charge (〈Qtot〉) and the mean induced charge (〈Qind〉) for different detector
types.g is the gap width.

ε = 1− e−(1− η
α

) g
λ

[
1 +

α− η
Ewe0

Qt

] 1
αλ

, (4.4)

wheree0 is the unit charge andQt is the charge threshold. The efficiency depends
explicitly onα andη and not only on the effective Townsend coefficient. Forα →∞
orQt → 0 the maximum detection efficiency becomes1− exp(−d/λ), as in Eq. 2.6.
exp(−d/λ) is the probability to find no cluster in the gas gap. For larger gap sizes
the formula underestimates the efficiency since it does not take into account the case
where individual clusters stay below the threshold, while the sum of them crosses the
threshold.

The total signal chargeQtot is the charge of all positive ionsN+ in the gap at
the end of the signal development when all electrons have either left the gap or got
attached. The expected average total signal charge〈Qtot〉 is thus given by the average
number of positive ions〈N+〉 as

〈Qtot〉 = e 〈N+〉 =
e navα

α− η

[
1

λ(α− η)

(
e(α−η)g − 1

)
− g

λ

]
≈ e navα

λ(α− η)2
e(α−η)g for e(α−η)g � 1 .

(4.5)

The induced charge (or fast charge)Qind is the charge that is induced on the read
out strip by the propagation of the electrons in the gas gap of the RPC. The average
induced charge〈Qind〉 is proportional to the number of ions and is calculated as

〈Qind〉 =
EW
α
〈Qtot〉 ≈

EWnav e

λ(α− η)2
e(α−η)g . (4.6)
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The values shown in Table 4.3 are reasonable with the exception of the average
charges. Especially in the case of the 0.3 mm gap Timing RPC a total signal charge of
1.8×107 pC is in vast contradiction with the measured values of around 5 pC.

Finally we also want to investigate the shape of the charge spectra we expect with
the given avalanche statistics, using the example of a single gap Timing RPC. We as-
sume that we have one electron in the gas gap. Its position is exponentially distributed
and given by Eq. 2.1

P1(z) =
1

λ
exp

(
−z
λ

)
. (4.7)

Moreover, we assume that the attachment coefficient is zero and that the Townsend
coefficient is constant, which is the same as neglecting the presence of a space charge
effect. For random avalanches the avalanche multiplication over the distanceg − z
follows Eqs. 2.14, which in our case become

P2(n = 0, g − z) = 0 (4.8a)

P2(n > 0, g − z) =
1

n(g − z)

(
1− 1

n(g − z)

)n−1

. (4.8b)

For a distanceg− z, wheren is sufficiently large, we can approximate Eq. 4.8b by

P2(n, g − z) =
1

n(g − z)
exp

(
− n

n(g − z)

)
. (4.9)

Both the starting positionz of the avalanche and the avalanche charge at a distance
g−z are exponentially distributed. The probability to findn electrons atg in a random
avalanche that started at the random positionz with Townsend coefficientα is

P (n, g, α) =

g∫
0

P1(z) P2(n, g − z) dz (4.10a)

=
1

λ

g∫
0

exp

(
−z
λ
− α (g − z)− n

exp(α(g − z))

)
dz . (4.10b)

Eq. 4.10b can only be evaluated numerically. Fig. 4 shows plots for typical Tim-
ing RPC values. Fig. 4b shows that the function is linear on a double-logarithmic plot,
which indicates that the spectrum follows a power law for the given specific parame-
ters.
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Figure 4.2: a) A plot of Eq. 4.10b forg = 0.3 mm,λ = 0.1 mm andα = 113 /mm. b)
The same plot as in a) on a double-logarithmic scale.



Chapter 5

Results Obtained with the 1-D Model

In this chapter we present results on the simulation of Resistive Plate Chambers that
were obtained with the one dimensional simulation model (1-D model) described in
section 3.1. The results presented here were published in [1].

5.1 Efficiency and Time Resolution

Fig. 5.1 shows the efficiency and time resolution of single and quad gap Timing RPCs
versus voltage. The single gap Timing RPC was simulated for the geometry from
Fig. 4.1b with the gas C2F4H2/ i-C4H10/ SF6 (85%, 5%, 10%) at 970 mbar. We use
a weighting field of 1.25 /mm. With 7 GeV pions we find 9.13 clusters per mm (Fig.
2.2). The threshold is 20 fC. The amplifier peaking time is 200 ps, the noise 1 fC and
the Townsend and attachment coefficient and drift velocity are chosen at the applied
electric field from Figs. 2.4 and 2.8. The simulation results shown in Fig. 5.1a repro-
duce quite well the measured data from [99]. We obtain efficiencies of around 75%
and a time resolution around 50 ps. The formulas for the time resolution and efficiency
from Eqs. 4.3 and 4.4 are also overlayed. The values are close to the results from the
Monte-Carlo simulations.

The simulation for the quad gap RPC was done for the geometry from Fig. 4.1c.
Here we use similar parameters as for the single gap Timing RPC except for the
weighting field from Eq. 4.2, giving 1.026 /mm, and an amplifier peaking time of
3 ns. The simulation results are shown in Fig. 5.1b. Again we find good agreement of
simulated efficiencies and time resolution with the measurements from [99].

Simulated efficiencies and time resolution for a single gap Trigger RPC as in Fig.
1.11 are shown in Fig. 5.2. The gas mixture is C2F4H2/ i-C4H10/ SF6 (96.7%, 3%,
0.3%). Forεr = 10 the weighting field from Eq. 2.40 gives 0.417 /mm. A 120 GeV
muon leaves 9.64 clusters per mm. We assume a preamplifier peaking time of 1.3 ns.
The induced charge is divided by two, accounting for the termination of the RPC strips
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Figure 5.1: The simulated efficiencies and time resolution [1] of single gap (a) and
quad gap (b) Timing RPCs as in Fig. 4.1b and 4.1c for the parameters mentioned in
the text, temperatureT = 296.15 K and pressurep = 970 mbar. The open symbols are
measurements from [99]. For the single gap RPC the formulas for the time resolution
and efficiency from Eqs. 4.3 and 4.4 are overlayed.
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Figure 5.3: A measured charge-to-time correlation for a quad gap RPC together with
a correction curve [97].
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Figure 5.4: A charge to time correlation simulated with the simple 1-D model de-
scribed in section 3.1 for a quad gap RPC at 5200 V [1].
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and a 100 fC threshold is applied. The measurements from [100] are quite well repro-
duced by the simulation.

5.2 Charge-to-Time Correlation

The correlation of the threshold crossing time of the signals in Timing RPCs to the
induced charge is commonly used to improve the time resolution of the device. As an
example we show a measurement from [97] for the quad gap Timing RPC from 4.1c
(Fig. 5.3). The fit to the data, which is used as the correction curve, is also shown.
Fig. 5.4 shows the simulated charge-to-time correlation for a similar quad gap RPC.
We used the same parameters as given in section 5.1. The agreement between the
simulation and the measurement is quite acceptable.

The charge-to-time correlation is caused by fundamental detector effects as well as
the amplifier electronics. The finite rise time of the amplifier introduces an additional
time jitter through the pulse height fluctuations of the signal. The intrinsic detector
charge-to-time correlation is the topic in section 6.4.

5.3 Summary

The Monte-Carlo-Simulation of efficiencies and time resolution of single and quad
gap Timing RPCs and single gap Trigger RPCs gives results that are close to mea-
surements. The high efficiency of single gap Timing RPCs with 0.3 mm gas gaps is
explained by the large ionization density of around 9.5 clusters per mm and the large
effective Townsend coefficient of around 113 /mm.
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Chapter 6

Results Obtained with the 1.5-D Model

In this chapter we present results on the simulation of Resistive Plate Chambers that
were obtained with the 1.5-D model described in section 3.2. We start with an inves-
tigation of the influence of the space charge effect on the signal rise time (6.1). In
section 6.2 we present simulated charge spectra and compare them to measurements.
In section 6.3 we investigate the operational mode of RPCs, using the example of the
Timing RPC. We shall see that it is strongly influenced by space charge effects. In
section 6.4 we present detector-intrinsic charge-to-time correlations and in section 6.5
we show results on simulated avalanches in Timing RPCs filled with pure isobutane.
Finally we discuss streamers in section 6.6.

6.1 Signal Rise Time

At the threshold level of 10 to 100 fC the avalanche in an RPC generally consists of
more than 106 electrons. It turns out that at that level the space charge effect does
already have an influence on the avalanche growth and hence the signal rise time.
Figs. 6.1b and Fig. 6.2b show the intrinsic time resolutions for single gap Timing
RPCs at 3 kV and for single gap Trigger RPCs at 10 kV. For the Timing RPC and
for the Trigger RPC we show the distributions for two cases: In the first case we
included the space charge effect in the simulation, in the second we did not include
it. We find that the mean is shifted slightly but the root mean squared (r.m.s.) is
amost unaffected. It seems that even though the space charge effect affects the signal
rise time, its influence on the time resolution is negligible. To illustrate this result,
we investigate single avalanches in Fig. 6.3, where the induced charge versus time is
plotted for ten avalanches that were started by single electrons. As we have mentioned
in section 3.1, the very beginning of the avalanche determines its final size. This means
that the fluctuation in the threshold crossing time, which determines the time resolution
of an RPC, is caused by the avalanche fluctuations at a level where the avalanche is
still small. An avalanche that is initially growing more rapidly reaches the threshold
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and pressurep = 970 mbar. a) A Comparison of simulated average signals at an
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distribution is shifted slightly by the space charge effect.
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Figure 6.3: a) Some simulated avalanches in Timing RPCs. All avalanches were
started by one electron in the same step. The fluctuation in the induced charge is
large in the beginning when there are just a few electrons. At all later stages the ava-
lanches grow similarly. b) A blow up of the indicated region above the threshold level
of 10 fC. All 10 curves are shifted along the time axis so that they match at a threshold
of 20 fC. We find that the shapes of the curves match very nicely.

sooner than an avalanche that undergoes a slow initial growth. Once the avalanche has
reached a sufficient size (&10 fC), it grows exponentially likee(α−η)z, if we neglect
a space charge effect. Thus the avalanche growth is similar for different avalanches,
once they have reached that size. The space charge effect introduces a deviation in
the signal rise from an exponential (saturation), which explains the shift of the mean
times. However, this deviation is similar for all signals so that the time resolution is
not affected. If we overlay the different curves from Fig. 6.3a at the threshold level,
which is done in Fig. 6.3b, we find that they are almost indistinguishable.

Finally we want to compare the signal rise times to measurements. An induced
current signal would rise likeexp(f0t), wheref0 = (α−η)vD, if no space charge effect
is present. In [101] the authors show that sending this signal through a general linear
network, the output signal shows the same exponential rise andf0 can be measured by
setting two thresholdsQ1 andQ2 to the signal. From the two threshold crossing times
t1 andt2 one findsf0 by

ln(Q2/Q1) = f0 (t2 − t1) . (6.1)

This relation holds only if the input signal is exponential at the threshold crossing
times. Fig. 6.4 shows measured [102] and simulated values off0 for different voltages
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Figure 6.4: The value off0 = (α−η)vD. We show simulated values (the solid circles)
for Q1 = 40 fC andQ2 = 80 fC and measurements (open circles) from [102].

in single gap Timing RPCs. The simulation is quite close to the measurement from.
The deviation of the measured and the simulated value of the expected valuef0 = (α−
η)vD = 23.5 GHz is the consequence of the non-exponential growth of the avalanches
at the threshold level due to the space charge effect, as it was plotted in Figs. 6.1 and
Fig. 6.2.

6.2 Charge Spectra

In this section we present spectra of the induced and the total signal charge:

The induced charge or fast chargeQind is the charge that is induced on the read out
strip by the moving electrons.

The total signal chargeQtot is the charge of all positive ions in the gap at the end of
the signal when all electrons have either left the gap or got attached.

We chose 500 steps for the 1.5-D simulation of avalanches and accumulated charge
spectra of the induced chargeQind and of the signal chargeQtot for Timing and for
Trigger RPCs. The average charges obtained with the Monte-Carlo simulation without
a space charge effect are:
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Figure 6.5: A simulated Timing RPC charge spectrum without space charge effect at
3 kV, temperatureT = 296.15 K and pressurep = 970 mbar.

Timing RPC: Qind ≈ 5× 107 pC , Qtot ≈ 5× 109 pC , (6.2a)

Trigger RPC: Qind ≈ 7.9× 103 pC , Qtot ≈ 2.6× 105 . (6.2b)

The values are even larger than the ones obtained with the analytic formulas (Eqs.
4.5 and 4.6). This is due to the fact that in the simulations we also included diffusion.
As was shown in section 3.2.1, longitudinal diffusion generally increases the avalan-
che charge. In experiment one measures values that are several orders of magnitudes
smaller [69, 96, 97, 39]:

Timing RPC: Qind ≈ 0.3 pC , Qtot ≈ 5 pC , (6.3a)

Trigger RPC: Qind ≈ 2 pC , Qtot ≈ 40 pC . (6.3b)

We observe a discrepancy of up to nine orders of magnitude! Only a very strong
space charge effect would explain the measured small avalanche charges. A simulated
charge spectrum without space charge effect is shown in Fig. 6.5. It has a monoton-
ically decreasing shape as expected from the avalanche statistics (Eq. 2.14, see also
Fig. 4). However, measurements show a shape that is very different (For example, see
[39, 96]).
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6.2.1 Timing RPCs with 0.3 mm Gaps

A typical simulated avalanche in a 0.3 mm single gap Timing RPC at a high voltage of
3 kV is shown in Fig. 6.6.

(a) In the first image att = 0 ns the passage of a 7 GeV pion generates three primary
clusters: one consisting of one electron-ion pair, two with two electron-ion pairs
each. The electrons are then drifting towards the anode atz = 0.3 mm.

(b) The electrons in the cluster closest to the anode have left the gap att = 0.17 ns.

(c) The two remaining electron cluster grow further.

(d) The second electron cluster has left the gap att = 0.42 ns. We observe how the
space charge begins to influence the electric field (compare to Fig. 1.1). The
field is increased a little at the tip and at the tail of the last electron cloud in the
gas gap while at its center it is about 15% lower. We find regions with increased
multiplication but also regions with slower multiplication in the center where
most of the electrons in that cluster are situated. Because of the resistivity of
the anode layer all charges that reach the anode ’stick’ to the electrode surface.
Their presence influences the electric field in front of the anode.

(e) The closer the cluster approaches the anode, the higher the field at its tip gets. At
t = 0.76 ns the maximum space charge field has a value that exceeds the applied
electric field (at the tip of the avalanche) while in the center of the electron cloud
the field is halved. Here we find strong attachment of electrons and a large
amount of negative ions is formed.

(f) Due to the many electrons that have entered the resistive anode surface the field
drops dramatically. From now on there is strong attachment of the remaining
electrons in the gas gap and the drift velocity is small. The amount of negative
ions in front of the anode grows rapidly.

(g) At t = 1.42 ns all electrons have either left the gap or got attached. The field in
front of the anode is lowered to only 40% of the applied electric field.

(h) In the last image we show the induced current signal.

We calculated charge spectra of the induced and the total signal charge at different
high voltages. In Fig. 6.7 we show spectra of the induced charge in a 0.3 mm single
gap Timing RPC as in Fig. 4.1b at high voltages of 2.3 kV, 2.5 kV, 2.8 kV and 3.0 kV.
We find values for the average charges that are quite close to the measurements. Here
we also overlayed spectra where we assumed a conductive anode. In the case of the
conductive anode, the signal charge is higher, since the charges that reach the anode
disappear instantly and are therefore not contributing to the total field in the gas gap.
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Figure 6.6: A simulated avalanche in a Timing RPC. We show snapshots of the charge
configuration in a 0.3 mm gas gap (500 steps). The distributions of electrons, positive
and negative ions are shown and correspond to the axes on the left. Thez-components
of the electric field across the gap is also plotted and correspond to the axes on the
right. The last image is the induced current signal.
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The difference in the average charges is in between 15% and 25%. The difference is
much smaller than one might expect from the large amount of charge that contributes
to the generation of the space charge field in the one case and that does not contribute
in the other. In experiment a difference is not observed [103].

In Fig. 6.8 we show simulated and measured spectra of the total signal charge in a
0.3 mm single gap Timing RPC as in Fig. 4.1b at high voltages of 2.3 kV, 2.5 kV and
2.8 kV. We added 100 fC noise to the values obtained with the simulation. The mean
of the simulated spectra is a factor two larger than the measured one. But as compared
with the discrepancy of nine orders of magnitude that we observed if a space charge
is neglected (6.2) we can consider the simulation to be close to the measured values.
Also the shape of the spectra is very similar to the measured data.

An uncertainty concerning the value of the Townsend and attachment coefficients
α(E/p) andη(E/p) at large electric field strengths is a possible reason for the small
deviation of the average values of the spectra. It turns out that a decrease of the value
of α(E/p) as it is shown in Fig. 2.8 by 10% leads to a decrease of the mean value of
the spectra by 30%. Since measurements ofα(E/p) andη(E/p) at the large values of
the electric fields observed in RPCs are not available, an error of 10% or even more is
certainly imaginable.

6.2.2 Timing RPCs with 0.1 mm and 0.2 mm Gaps

We simulated Timing RPCs with 0.1 mm and 0.2 mm gaps. Since the same gas mixture
and the same materials are used, the parameters for the simulation are the same as with
the 0.3 mm gap. Only the weighting field changes according to Eq. 2.40. Due to the
thinner gaps the inefficiency is larger due to events that lead to no primary ionization
in the gas gap. The most important simulation parameters are given in table 4.1.

In Fig. 6.9 we show simulated and measured spectra of the total signal charge in a
0.1 mm single gap Timing RPC at high voltages of 1.2 kV, 1.4 kV and 1.6 kV. We added
100 fC noise to the values obtained with the simulation. The means of the simulated
spectra differ from the measurements by a factor four. But again we remind that as
compared with the huge discrepancy that we observe if a space charge is neglected
we can consider the simulation to be close to the measurements. The shape of the
simulated spectra is again very similar to the measured data from [96].

We also show simulated spectra of the total signal charge in a 0.2 mm single gap
Timing RPC (Fig. 6.10). We used high voltages of 1.7 kV, 1.9 kV and 2.1 kV.

6.2.3 Quad Gap Timing RPCs with 0.3 mm Gaps

Now we consider a single gap RPC of any dimension. We assume a charge spectrum
that has a certain shape with the mean value〈Q〉. The efficiency of the gap isε and
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perature isT = 296.15 K and the pressurep = 970 mbar.

the time resolution isσt. If we introducen gaps of the same type (gap width and
gas mixture) the efficiency increases accordingly. It is important to remember that the
weighting field generally changes in multi gap configurations. The weighting fields of
an RPC like in Fig. 1.14 withn gas gaps of sizeg separated byn − 1 glass plates of
thicknessq and relative permittivityεr is given by [1]

Ew =
εr

ngεr + (n− 1)q
, n > 1 , (6.4)

The efficiency ofn gaps increases like1 − (1 − ε)n [1], as one would expect.
For the time resolution one would expect that it improves as1/

√
n with the number

of gaps. However, this is not the case. If we consider as an example four gaps and
assume that there is one electron avalanche in each of the gaps, then the avalanche
with the fastest growth will dominate the time resolution, even though the signal is
generated as a superposition of all the induced currents. The largest signal gives the
earliest threshold crossing time, So the timing of the multi gap RPC is approximately
given by the ’earliest gap’.

Now we investigate the charge spectrum of the multi gap RPC. While for the same
weighting field the average charge in then gaps would ben〈Q〉, it stays approximately
constant due to the decrease of the weighting field as given by Eq. 6.4. However a peak
is forming near the mean value and is becoming more pronounced at larger numbers
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of gaps. It is a consequence of the central limit theorem [104] that the sum of many
independent identically distributed random variables gives a distribution that tends to
be close to the normal distribution. As an example we show in Fig. 6.11 a simulated
induced charge spectrum of a quad gap Timing RPC as in Fig. 4.1c. The spectra are
equal to the four times self convoluted charge spectra of the single gap RPC from Fig.
6.7. The spectra of the quad gap chamber resemble quite well the ones presented in
[97].

6.2.4 Trigger RPCs with 2 mm Gaps

A typical simulated avalanche in a 2 mm single gap Trigger RPC as in Fig. 1.11 at
10 kV high voltage is shown in Fig. 6.12.

(a) At t = 0 ns the passage of a 120 GeV muon generates 20 primary clusters with
between one and three electron-ion pairs each. The electrons are then drifting
towards the anode atz = 2 mm.

(b) Some of the primary electrons get attached or enter the anode resistive layer so
that att = 1.42 ns there are only 13 clusters left.

(c) The space charge begins to influence the electric field att = 5.6 ns.

(d) At t = 7.34 ns the space charge effect is already quite strong. The space charge
field reaches up to around 10% of the applied electric field strength.

(d) At t = 9.09 ns the space charge field reaches up to around 40% of the applied
electric field strength.

(e) At t = 10.48 ns the field drops dramatically in a large fraction of the gas gap due
to the large amount of negative charge that has entered the anode. From now
on the field is very low everywhere where there are electrons; we find mainly
attachment and the electron drift velocity is very slow.

(f) At t = 15.48 ns all electrons have either left the gap or got attached. The field in
front of the anode is lowered to only 40% of the applied electric field.

(h) In the last image we show the induced current signal.

We accumulated spectra of the induced and signal charge for single gap Trigger
RPCs at different high voltages (9.5 kV, 9.75 kV and 10 kV). We chose 500 steps for
the 1.5-D simulation procedure. In Fig. 6.13 we show the spectra of the induced charge
and in Fig. 6.13 the spectra of the total signal charge At 10 kV and even higher volt-
ages, the simulation tends to be unstable and some events show an exploding electric
field. If this behaviour is detected the simulation of the current event is stopped and
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Figure 6.12: A simulated avalanche in a Trigger RPC. We show snapshots of the charge
configuration in a 2 mm gas gap (500 steps). The distributions of electrons, positive
and negative ions are shown and correspond to the axes on the left. Thez-components
of the electric field across the gap is also plotted and correspond to the axes on the
right. The last image is the induced current signal.
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evidencing the sub-exponential character of the data at higher fields (gain saturation).

skipped. The charges of these events are missing in the spectra and thus in the calcu-
lation of the average charges. Since the skipped events are generally events that would
have given rather large charges, the average charges at 10 kV, that are calculated as
〈Qind〉 = 2.25 pC and〈Qtot〉 = 33.6 pC, might be somewhat too small. Nevertheless,
we find numbers for the average charges that are very similar to measurements. Also
the shapes of the spectra are very similar to measured data (For example, see [39]).

6.3 Operational Mode of RPCs

From wire chambers filled with a quench gas with good UV absorption it is known that
for certain high voltages one observes a region where the charge is proportional to the
primary charge (proportional mode). Here the charge increases exponentially with the
high voltage. After this one encounters the very narrowspace charge modeof usually
less than one hundred Volts where the charge growth deviates from the exponential.
When further increasing the high voltage, the average charge suddenly increases by a
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Figure 6.16: a) The induced charge of simulated avalanches in Timing RPCs with
0.1 mm to 0.3 mm gap widths versus the applied electric field. Again we show eye
guides indicating the approximately exponential increase of the charges at low fields.

factor 10 to 100 (limited streamer mode). At even higher voltages, the charge continues
to rise more slowly up to the generalbreakdownof the chamber or theGeiger-M̈uller
mode[105, 106].

For parallel plate geometries like RPCs and neglecting space charge effects we ex-
pect an exponential dependence of the charge on the effective Townsend coefficient
αeff = α − η. Since at high fields the dependence ofαeff on the fieldE is approxi-
mately linear, the relation between the charge andE will be approximately exponen-
tial, as in the wire chamber. As can be seen in Figs. 6.15 and 6.16, the Timing RPC
shows this exponential behaviour at low fields, which is however giving charges that
are too small for efficient operation. We also observe that in the broad operational
region (in the case of the 0.3 mm gap Timing RPC from around 9 to 11 kV/mm) the
detector is operated in space charge mode.

The value of the charge depends first exponentially on the applied high voltage
but then the dependence becomes approximately linear, which is also an observed
experimental fact (For example, see Fig. 3 in [107] and Fig. 5 in [96]). Only at very
high fields the occurrence of streamers is experimentally observed, which limits the
space charge region towards higher voltages.
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Figure 6.17: Intrinsic correlation of the charge threshold crossing time to the induced
fast charge for simulated avalanches in a 0.3 mm single gap Timing RPC at 2.8 kV. The
threshold applied to the induced charge was 10 fC. The temperature isT = 296.15 K
and the pressurep = 970 mbar.

6.4 Charge-to-Time Correlation

In section 5.2 we investigated the charge-to-time correlation of signals in Timing RPCs
including read out electronics. Since, as mentioned there, a part of the correlation is
introduced by the read out electronics, we also investigate charge-to-time correlations
without electronics to show the intrinsic detector effects. In Fig. 6.17 we plot the time
at which the threshold of 10 fC is crossed by the signals versus the induced charge. We
observe a triangular distribution that we will explain in the following. We will use the
expressionleading cluster, which refers to the cluster that is deposited at the position
closest to the cathode. In general, the total signal charge is determined by the leading
cluster because it has the longest drift distance and can thus reach the largest number
of charge carriers. In Fig. 6.18 we show how the total signal charge is correlated to the
position of the formation of the leading cluster. Obviously the signal charge is largest
for avalanches with a leading cluster closer to the cathode. But let’s come back to the
charge-time correlation in Fig. 6.17. In the plot we have marked three zones that form
the limits of the distribution:

Zone 1: The value of the threshold defines this limit. Avalanches that do not cross the
threshold do not appear in the distribution.



116 CHAPTER 6. RESULTS OBTAINED WITH THE 1.5-D MODEL

to
ta

l s
ig

na
l c

ha
rg

e 
[p

C
]

0 20 40 60 80 100

0

2

4

6

8

10

12

position [step]

Figure 6.18: The correlation of the total signal charge to the position of the formation
of the first cluster that reached the anode. We simulated avalanches in a 0.3 mm single
gap Timing RPC at 2.8 kV.

Zone 2: Here we find the events with a very fast signal rise time. The fastest possible
signal rise defines this limit. The signal rise time is determined by the avalanche
statistics. From Fig. 3.1 we know that the very beginning of each avalanche
determines its final size. Thus also the threshold crossing time is determined
by the early stage of growth. In zone 2 we find no correlation of the threshold
crossing time to the charge. To understand this we assume that the leading clus-
ter determines the timing and that it is crossing the threshold very early. The
leading cluster can be deposited at any position in the gas gap. According to
Fig. 6.18, the avalanche charge will be very high if it is deposited close to the
cathode. Correspondingly the charge will be very low if the leading cluster is
deposited closer to the anode. It may just be large enough to cross the threshold.

Zone 3: Here we find the events with a slow signal rise time. We observe a clear
correlation of the threshold crossing time to the charge. Towards higher values of
the total signal charge the signal rise is becoming slower. Again we assume that
the leading cluster determines the timing. The signals with the highest charges
have a leading cluster that was deposited close to the cathode but also a fast
signal rise time, meaning that the corresponding avalanches underwent a fast
early growth. The maximum signal charge is limited by the space charge effect.
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On the other hand the events with the slowest signal rise time are connected to
avalanches with lower values of the total signal charge. This can be understood
if one imagines that an avalanche with the leading cluster close to the cathode
has to undergo a very slow growth process in order to arrive at a final charge that
is small.

To further illustrate the charge-to-time correlation we simulated avalanches that
were started by one electron either at randomz-position in the gas gap or right at the
cathode atz = 0. Fig. 6.19 shows that the largest values of the total signal charge
are reached by avalanches that are started at the cathode and that undergo a fast initial
growth process and therefore cross the threshold early.

6.5 Avalanches in Pure Isobutane

We also simulated timing RPCs with a 0.3 mm gap filled with pure isobutane. Since
the attachment coefficient in pure isobutane is negligible, and since so far we observed
a strong effect of attachment on the avalanche propagation in RPCs, we expect a very
different behaviour. If we assume that the electric field strength sensed by some of
the electrons in an avalanche in pure isobutane approaches zero, then the Townsend
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Figure 6.20: A simulated avalanche in a Timing RPC filled with pure isobutane. We
show snapshots of the charge configuration in a 0.3 mm gas gap (500 steps).

coefficient1 will also approach zero. Thus the avalanche size will not increase any
more. On the other hand the number of electrons can only decrease if some electrons
leave the gas gap.

In the case of a resistive anode the electrons that enter the anode can decrease the
field in front of the anode such that the remaining electrons are drifting extremely
slowly and are not multiplying. But on the other hand they also do not get attached.
This creates the curious situation that some electrons stay in the gas gap ’forever’;
they are trapped in the region of decreased electric field strength. This situation is
shown in Fig. 6.20, where we plot the electric field and the charge distributions in an
example simulated avalanche in a 0.3 mm gap Timing RPC filled with pure isobutane.

1The effective Townsend coefficientαeff is in this case equal to the Townsend coefficientα.
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Figure 6.21: a) Simulated signal charge spectra for 0.3 mm single gap Timing RPCs
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to events which were unstable. The mean values take into account all data including
the inefficient events but excluding the unstable events. 100 fC noise is added. b)
Measured spectra from [96].

We voltage is set to 2.6 kV and the avalanche is started by one electron at the cathode
at z = 0 and att = 0.

(a) At t = 2.13 ns the first electrons reach the anode. The electric field is almost
doubled at the tip of the electron cloud.

(b) At t = 2.25 ns the field in front of the anode drops dramatically due to the
amount of negative charge that ’sticks’ to the anode resistive surface. Many
electrons are still situated in regions where the drift velocity and the Townsend
coefficient are larger than zero.

(c) At t = 2.62 ns all electrons are in the region where the field is approximately
zero.

(d) At t = 5.06 ns about the same amount of electrons is still ’trapped’ in the region
of decreased electric field strength.

The reason for this effect is that the used model is a one dimensional one. The
electrons can propagate only longitudinally along thez-axis. In a real avalanche also
radial ’escape’ possibilities are given. However, also in ’real’ avalanches this effect
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will be present to some extend, because the fundamental physical processes that un-
derly this curious behaviour are the same. To avoid the difficulties in our simulations,
we assume a conducting anode, where no charges stick to its surface. Electrons en-
tering the anode are draining off instantly. Only in some events at higher voltages the
’electron trap effect’ does appear in that case. Since the number of trapped electrons
in general is small compared with the peak value of electrons in the avalanche, we can
assume that in those cases the total signal charge, which is the number of ions in the
gas gap at the end of the signal, is not much affected.

Simulated charge spectra or Timing RPCs filled with pure isobutane and with a
conducting anode at high voltages of 2.4 kV, 2.6 kV and 2.8 kV are shown in Fig.
6.21a. We added 100 fC noise. As was the case in the simulation of avalanches in
Trigger RPCs, some events are unstable. The percentage is below 0.1%̇ here. The
simulated spectra are compared to measured spectra from [96]. The mean values of
the simulated spectra differ from the measurements by a factor of around three. Still
we can consider the simulation results to be quite close to the measured values. The
shapes of the spectra are very similar to the measurements.

6.6 Streamers

The phenomenon of streamers in RPCs was discussed in section 2.5. Anode streamers
form at the tip of a moving cluster of electrons in an avalanche while cathode streamers
form at its tail [93]. The presence of a big space charge is a necessary requirement for
the development of a streamer. This space charge can be either ions from previous
avalanches, that have not yet left the gas gap or the charge carriers of the avalanche
itself. The second phenomenon leads to the avalanche itself being the cause of its
instability. The field of its space charge at some point exceeds some critical value so
that the more or less well regulated avalanche propagation transforms into a streamer.
When streamers reach both electrodes a channel of high conductivity can be formed
between the electrodes, leading to a discharge (spark) in the RPC that is however
localized due to the resistivity of the electrodes [40].

Fig. 6.22a shows the number of electrons in avalanches started by one electron
at the cathode in a Timing RPC gas gap at different high voltages. Fig. 6.22b shows
the evolution of the peak value of thez-component of the electric field in the same
avalanches. The maximum is reached just before the electron cloud reaches the anode.
From that point on the highest field is present at the tail of the electron cloud. After
the electrons have left the gas gap, their presence in the resistive anode layer and the
ions in the gap still alter the electric field in the gap. The electric field can easily reach
double or three times the value of the applied electric field E0. At very high fields,
where measurements show a significant streamer probability, the simulations still show
a saturated avalanche. Measurements show that at applied field strengths of around
10 kV/mm in four gap Timing RPCs, streamers occur with a probability of around
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1%, typically releasing a pulse of 20 pC [69, 97]. At higher voltages the streamer
probability is growing up to 25% at around 11 kV/mm. Therefore, the quantitative
description of the avalanche-to-streamer transition is not reproduced by our model.
Note that no photonic effects have been included.

6.7 Summary

We presented results on the simulation of avalanches in Resistive Plate Chambers using
the 1.5-D model. We summarize:

• Neglecting space charge effects the expected average charges are several orders
of magnitude larger than the measured values. Simulated charge spectra show a
monotonically decreasing shape, as expected from the statistics of the primary
ionization and the avalanche multiplication, while measured spectra show a very
different shape.

• Including the space charge effect in the simulation we obtain charge spectra that
have a shape very similar to measured spectra. The mean values only differ by
a factor of two to four. The space charge effect reduces the induced charges in
Timing RPCs (Trigger RPCs) by a factor of 107 (103) and the total signal charges
by a factor of 109 (105).

• At the threshold level, the space charge effect already influences strongly the
signal rise. The time resolution is not affected by this process.

• Contrary to wire chambers, RPCs operate in a space charge mode that is very
broad. The experimental result of a first exponential and then linear dependence
of the average charges on the high voltage is reproduced by the simulations.

• The charge-to-time correlation is partly influenced by the read out electronics
and by intrinsic detector effects. Intrinsically the signals with a slow rise show a
correlation to the avalanche charge.

• Attachment plays a very important role in the development of avalanches in
RPCs filled with an electronegative gas.

• As expected, the simulations do not reproduce quantitatively the avalanche-to-
streamer transition, because no photonic effects are included.



Chapter 7

Results Obtained with the 2-D Model

In this chapter we present results on the detailed simulation of single avalanches in
0.3 mm gap Timing RPCs using more dimensional models. We start with a comparison
of the different simulation models that implement the dynamic calculation of the space
charge field (section 7.1). Then we show results of detailed simulations with the 2D
model that was described in section 3.3, since in section 3.4 it turned out that with the
3-D model one has to use a very small binning which leads to the program to be too
time consuming for the simulation of whole avalanches. We will focus on single gap
Timing RPC with 0.3 mm gaps. As we saw in chapter 5, the space charge effect is
much more prominent in this type of RPC. For our studies we use the device that is
shown in Fig. 4.1a as an example, where one electrode is made of resistive glass and
the other of aluminum. The avalanches are always started by a single electron at the
cathode. In section 7.2 we focus on avalanches in a gap filled with the standard gas
mixture C2F4H2/ i-C4H10/ SF6 (85%, 5%, 10%). In section 7.3 we study avalanches in
a detector with the same geometry but filled with pure isobutane (i-C4H10).

7.1 Comparison of the Different Models

In this section we compare the results of the three different simulation models that
implement the calculation of the space charge field. They were described in sections
3.2, 3.3 and 3.4. Fig. 7.1a shows the development of the total number of electrons
in random avalanches started by one electron at the cathode for the three different
models. We simulated a 0.3 mm single gap Timing RPC at 2.8 kV. The gas gap is filled
with the standard Timing RPC gas mixture. In all models thez-axis is divided in 300
steps. In the 2D model ther-coordinate is divided in 150 steps and in the 3-D model
thex- andy-axes are divided in 100 steps each. The avalanche simulated with the 3-D
model was simulated as far as a reasonable time allowed (around2 × 106 electrons).
The timescales for the simulation of single avalanches is around a minute for the 1.5-D
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Figure 7.1: Comparison of three random avalanches that were simulated with the dif-
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at a high voltage of 2.8 kV filled with the standard gas mixture C2F4H2/ i-C4H10/ SF6

(85%, 5%, 10%) atT = 296.15 K andp = 1013 mbar. The avalanches were started
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steps. In the 2D model ther-coordinate is divided in 150 steps and in the 3-D model
thex- andy-axes are divided in 100 steps each. a) The total number of electrons versus
time. b) The same plot on a linear scale. c) The induced current versus time. d) The
induced charge versus time.
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model, around a day for the 2-D model and several days for the 3-D model up to the
mentioned number of electrons.

In Figs. 7.1a and b we observe that the initial growth is very similar for the three
different models. The avalanches simulated with the 1.5-D and the 2-D models reach
their maxima at the same time step. At the stage where the number of electrons is
large, the growth rate is suppressed to a larger extend in the avalanche that is simulated
with the 1.5D model. Even though the initial growth of this avalanche was stronger,
the maximum number of electrons is only around a third of the number that is obtained
with the 2-D model. The saturation effect is stronger in the 1.5-D case. Two reasons
can be given:

• In the 1.5-D model we calculate thez-component of the electric field of radial
Gaussian charge distributions. As was mentioned in section 3.2, it is always
calculated atr = 0 mm, in the center of the avalanche. However, here the field
has the largest value. In a real avalanche electrons are also situated at other
positions withr 6= 0, where the field is less strong. This means that in the
simulation we calculate a space charge field that is somewhat too strong.

• As we shall see in sections 7.2.1 and 7.2.8, the electron clouds are distorted
transversely by the attractive and/or repulsive space charge fields. In the 1.5-D
model, on the other hand, the standard deviationsσ of the radial Gaussian charge
distributions depend only on the transverse diffusion. If we accept that the radial
repulsion of the electrons in the center and at the tip of the electron clouds leads
to an increase of the radial spread of the avalanche, thenσ is chosen too small.
Thus we will overestimate the radial charge density in the 1.5-D model. As
we showed in Fig. 3.6, thez-component of the electric field of radial Gaussian
charge distributions with differentσ can differ considerably. As as a result, the
space charge effect is overestimated in the 1.5-D model.

After the maximum is reached, the electron number decreases due to attachment
and the fact that electrons enter the anode and leave the gas gap (compare to Fig. 6.6).
The decline of the electron number is faster in the case of the 1.5-D model. Here
propagation is only allowed longitudinally along thez-axis. Since the calculated space
charge fields are stronger in the 1.5-D model than in the 2-D model, we will find a
larger region with strong attachment here.

The induced current signal and the development of the induced charge are shown
in Figs. 7.1c and 7.1d. The charge that is induced by the avalanches are 0.27 pC for
the 1.5-D model and 0.52 pC for the 2-D model. The difference is about a factor of
two. The charge of the ions in the gas gap at the time when the electrons have all either
entered the anode or got attached1 is 1.79 pC for the 1.5-D model and 4.05 pC for the
2-D model.

1This is the number of positive ions minus the number of negative ions. It is not to be confused with
the total signal chargeQtot that is given by the number of positive ions.



126 CHAPTER 7. RESULTS OBTAINED WITH THE 2-D MODEL

7.2 Avalanches in C2F4H2/ i-C4H10/ SF6

In this section we present results of the detailed simulation of single avalanches in
0.3 mm single gap Timing RPCs. We use the geometry shown in Fig. 4.1a. We assume
that the anode is made of aluminum and use the 2-D model that is described in section
3.3. As was mentioned there, the dependency of the values of the gas parameters
(Townsend and attachment coefficients, diffusion coefficients and drift velocity) are
taken from Figs. 2.8, 2.5, 2.4. The gas mixture is C2F4H2/ i-C4H10/ SF6 (85%, 5%,
10%) and the applied high voltage of 2.8 kV leads to an electric field of 93.3 kV/cm in
the gas gap. The pressure is 1013 mbar and the temperature 296.15 K. Each avalanche
is started by one electron at the cathode (r = 0, z = 0).

7.2.1 Electron Density

Fig. 7.2 shows the electron distribution in an avalanche that was started by a single
electron at the positionr = 0, z = 0 and att = 0 ns. From the cathode the electron
crosses the whole gap and reaches a maximum size of almost4× 107 electrons.

(a) On the first image att = 1.0 ns we observe that the shape of the distribution
differs from a strictly Gaussian shape. It is very similar as the shapes that were
obtained with the 1-D model (for example, see Fig. 3.8). At the tip of the
distribution the multiplication is stronger and the electron density is increased.
At the tail the electron density is decreased.

(b) At t = 1.05 ns the peak of the electron distribution reaches the anode. The actual
drift velocity in the gas and at the applied field strength would lead to a drift
time of tD = 0.3 mm/(0.2 mm/ns) = 1.5 ns. Nevertheless, diffusion combined
with the repulsive space charge field that acts on the electrons at the tip of the
distribution lead to an acceleration of the electrons there.

(c) At 1.19 ns many electrons have already entered the conductive anode. The shape
of the distribution changes dramatically from now on.

(d) At 1.29 ns the electrons close to the anode disappear rapidly. As we already saw
in section 6.2 they are attached to the electronegative gas components due to the
lowered field in this region.

(e,f) The electrons leave the gas gap or get attached. The electron density in the center
of the avalanche at small values ofr decreases faster than further ’outside’.

Fig. 7.3 shows a contour plot of the electron density in the cluster of electrons that
moves towards the anode atz = 0.03. While in the first image att = 0.5 ns, where the
avalanche is still relatively small (≈ 8 × 105 electrons), the shape of the distribution
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Figure 7.2: Electron density in an avalanche in a 0.3 mm gap Timing RPC filled with
the standard gas mixture and with an operating voltage of 2.8 kV. The avalanche was
started by one electron at (r = 0 mm,z = 0 mm).
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Figure 7.3: Electron density in an avalanche in a 0.3 mm gap Timing RPC filled with
the standard gas mixture and with an operating voltage of 2.8 kV.

is roughly symmetric, it is different in the second image att = 0.65 ns. Here the
avalanche has reached a size of about1.3 × 107 electrons and the electrons at the tip
of the electron cloud are repelled from the center atr = 0 by repulsive space charge
fields, while at the tail of the distribution they are attracted by a field of opposite sign.
We shall investigate the radial space charge fields in more detail in section 7.2.8.

7.2.2 Total Ion Density

We now focus on the ion distribution. Fig. 7.4 shows the total ion density in an
avalanche that was started by a single electron at the positionr = 0, z = 0 and at
t = 0 ns. We show the number of positive ions minus number of negative ions at each
grid point.

(a) The shape of the distribution of ions att = 0.71 ns represents an approximate
exponential avalanche growth combined with diffusion. The avalanche consists
of about1× 106 electrons.

(b) At t = 0.81 ns the shape is different. As the electron cloud propagates, the
multiplication and thus the increase of the number of ions is smaller than before.
The same effect was found in the 1-D simulations (for example, see Fig. 3.8).

(c) At 1.05 ns the avalanche has reached the anode. The shape of the ion distribution
is very similar to the shape of the electron distribution as shown in image 7.2b.
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Figure 7.4: Ion density (number of positive ions minus number of negative ions) in an
avalanche started by one electron at (r = 0, z = 0)in a Timing RPC at an operating
voltage of 2.8 kV.
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(d) At 1.14 ns the number of positive ions close to the anode decreases rapidly,
which is due to the attachment of electrons in that region (compare with Fig.
7.2).

(e) At 1.24 ns the number of negative ions grows further, leading to a reduction of
the density of positive ions.

(f) At 1.95 ns most electrons either entered the anode or got attached. The density
of positive and negative ions close to the anode is similar so that the overall ion
density approaches zero here. The same was shown in Fig. 6.6 that was created
using the 1.5-D model.

7.2.3 Total Charge Density

The combination of the distributions of electrons, positive ions and negative ions leads
to a total charge density in the gas gap that is the source of the space charge fields that
will be discussed in the following sections. Fig. 7.5 shows the total charge density in
an avalanche. Again we simulated an avalanche that was started by a single electron at
the positionr = 0, z = 0 and att = 0 ns. Letnel(r, z, t), nIpos(r, z, t) andnIneg(r, z, t)
be the densities of electrons, positive ions and negative ions, respectively, at the grid
point (r, z) and at timet, thennq(r, z, t) = nel(r, z, t) + nIneg(r, z, t) − nIpos(r, z, t)
is the total charge density at that grid point and time. In that sensenq(r, z, t) is the
density of negative charge.

(a) At t = 0.76 ns the avalanche consists of around2× 106 electrons. The negative
charge of the electrons leads to a negative total charge distribution at the tip of the
avalanche. The ions that stay behind lead to a positive total charge distribution
at the tail of the avalanche.

(b) At t = 0.86 ns the avalanche consists of around7× 106 electrons.

(c) Just before the first electrons reach the anode (att = 1.0 ns) the avalanche con-
sists of around2.6 × 107 electrons. While at the tip (tail) of the distribution the
density of negative (positive) charge is very high, in the center a region is formed
where the total charge density is approximately zero. Here contributions by the
positive ions and the negative ions/electrons are balanced.

(d) The first electrons in the center of the avalanche aroundr = 0 have entered the
anode at aroundt = 1.05 ns. Here the density of negative charge drops while
’outside’ at larger values ofr the density of negative charge remains high.

(e) As more electrons enter the anode, the peaks of negative charge density close to
the anode decrease.
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Figure 7.5: Negative charge density (number of electrons plus number of negative
ions minus number of positive ions) in an avalanche in a Timing RPC filled with the
standard gas mixture at an operating voltage of 2.8 kV. The avalanche was started by
one electron at (r = 0, z = 0).
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(f) At t = 1.86 ns almost all electrons have left the gas gap or got attached. The
image now shows the density of negative ions. It is therefore similar to an inverse
plot of the one that is shown on Fig. 7.4. Aroundr = 0 andz = 0.03 there is a
small peak which is due to the large number of negative ions that is formed in the
center of the avalanche. Comparison with Figs. 7.2 and 7.4 shows that here the
electrons get attached strongly while at larger values ofr more electrons reach
the anode.

We have seen that the shapes of the distributions are changing dramatically as the
avalanches propagate. The distributions adopt a shape that is very different from one
that is only influenced by diffusion. The reason lies in the repulsive and attractive
forces between the avalanche charges (the space charge field).

7.2.4 Electric Field

The value of the electric fieldE(r, z, t) = | ~E(r, z, t)| sensed by the electrons in the
gas gap determines the values of the gas parameters (Townsend and attachment coef-
ficients, diffusion coefficients and drift velocity). Fig. 7.6 shows the absolute value
of E(r, z, t) at different times and at the different grid points given by ther- andz-
coordinate. Again we simulated an avalanche that was started by a single electron at
the positionr = 0, z = 0 and att = 0 ns. We show the value of the the electric field
contributed by the avalanche charges (the space charge field). The total field can be
calculated by adding the applied external electric fieldE0 = 93.3 kV/cm.

(a) At t = 0.48 ns the avalanche consists of around 6500 electrons. The field defor-
mations are small. Similar to the previously presented results obtained with the
1-D model (see chapter 5 and Fig. 6.6), the applied electric field is increased at
the tip and tail of the electron cloud and decreased in the center. We find exactly
the field configuration that was shown schematically in Fig. 1.1.

(b) At t = 0.76 ns the avalanche consists of around1.3 × 106 electrons. The max-
imum field is about 5% higher than the applied electric field and the minimum
field about 15% lower.

(c) At t = 0.95 ns the avalanche is ten times as large (around1.3 × 107 electrons).
At the maximum (minimum) the field is increased (decreased) by about 30% as
compared to the applied electric field.

(d) As the first electrons reach the anode (att = 1.05 ns) the avalanche consists of
about3.3 × 107 electrons and the maximum space charge field is of the same
order of magnitude as the applied electric field. At the minimum it is about 40%
lower.
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Figure 7.6: Absolute value of the electric fieldE(r, z, t) that is contributed by the space
charge in an avalanche started by one electron at (r = 0, z = 0)in a 0.3 mm gap Timing
RPC at an operating voltage of 2.8 kV. The applied electric fieldE0 = 93.3 kV/cm is
not included.
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Figure 7.7: Absolute value of the space charge field. Contrary to Fig. 7.6 the field is
set zero everywhere where no electrons are situated.

(e) At t = 1.1 ns the electric field drops dramatically in front of the anode. A large
number of electrons have already left the gas gap. Still the multiplication in
other regions is large: The avalanche has around5.3 × 107 electrons. At the
maximum the field is almost 60% higher than the applied field.

(f) At t = 1.86 ns almost all electrons have left the gas gap or got attached. We find
that in a large region in front of the anode the field is lowered by up to 60%. The
field deformations are due to the ions that remain in the gas gap.

From this data we learn that there are regions of drastically decreased electric field
strength in an avalanche that are the cause of the saturated growth and the low observed
final avalanche charges. We also observe regions where the electric field is increased
dramatically, which raises the question if the increased multiplication in those regions
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do compensate the decreased multiplication in the center. An answer can be given if
the value of the field that is sensed by the electrons in the gas gap is investigated. In
Fig. 7.7 we show the value of the electric field only at the positions in the gas gap,
where we find electrons.

(a,b) In the initial phase of the avalanche, where the electron cloud has not yet reached
the anode (att = 0.81 ns and att = 1.0 ns), the electrons are distributed both in
regions with increased and lowered electric field strength. While at the tip, where
the field can be increased dramatically, the electron density is large (compare to
Fig. 7.2a), at the tail where the field is also increased there are only a few
electrons.

(c) At a later stage (att = 1.14 ns), where the avalanche has reached the anode and
consists of about5.1 × 107 electrons, the field is lowered almost everywhere,
where we find electrons. But still we find a region at the tail of the electron
cloud, where electrons sense an electric field strength that is increased by up to
40%.

(d) The electrons then all enter the region of decreased electric field strength in front
of the anode. Att = 1.48 ns, where the avalanche has5.1 × 105 electrons, and
at all later stages, the electrons will sense an accordingly lowered drift velocity
and effective Townsend coefficient.

We summarize that there only a minority of electrons is situated in the regions
where the field is increased by the space charge effect. The increased multiplication
at the regions of higher field strength is more than compensated by the dramatically
decreased multiplication in the center of the electron cloud, where most of the electrons
are situated.

7.2.5 Drift Velocity

The value of the electric fieldE(r, z, t) sensed by the electrons in the gas gap deter-
mines the value of the drift velocityvD(r, z, t) of the electrons. Fig. 7.8 shows the
value ofvD(r, z, t) at different times and at the different grid points given by ther-
andz-coordinate. Again we simulated an avalanche that was started by a single elec-
tron at the positionr = 0, z = 0 and att = 0 ns. In Fig. 7.8vD(r, z, t) is set zero at all
positions where no electrons are situated.

(a) At t = 0.76 ns the avalanche consists of around2.3× 106 electrons. The defor-
mations in the distribution of the drift velocity in the gas gap are up to 10%.

(b) At t = 0.95 ns the drift velocity is about 25% larger at the tip of the electron
distribution, around 10% higher at the tail and around 25% lower in the center
where the largest part of the electrons is situated.
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Figure 7.8: Drift velocity sensed by the electrons in the gas gap. The drift velocity is
set zero everywhere where no electrons are situated.
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(c) At t = 1.0 ns the first electrons reach the anode surface at the tip of the avalan-
che, where the drift velocity is now increased by 50%. The avalanche consists
of 2.3× 107 electrons.

(d) As the total electric field drops, also the drift velocity decreases in the region in
front of the anode.

(e) At t = 1.1 ns almost all electrons are in a region with decreased drift velocity.
Only at the tail the drift velocity is around 25% increased.

(f) At t = 1.48 ns there are around1.0× 105 electrons left in the gas gap. The drift
velocity is lowered for all those electrons. At the minimum it is only half the
value of the drift velocity at the applied electric field strength.

7.2.6 Effective Townsend Coefficient

In this section we investigate the value of the parameter that determins the avalanche
multiplication during the evolution of an avalanche in the gas gap of a Timing RPC:
the effective Townsend coefficientαeff (r, z, t) = α(E(r, z, t)) − η(E(r, z, t)). Fig.
7.9 shows the value ofαeff (r, z, t) at different times and at the different grid points
given by ther- andz-coordinate. Again we simulated an avalanche that was started
by a single electron at the positionr = 0, z = 0 and att = 0 ns. A positive effective
Townsend coefficient means that on average the number of electrons in the correspond-
ing grid point will increase. A negative effective Townsend coefficient means that on
average the number of electrons will decrease. The value ofαeff (r, z, t) at the applied
electric field strengthE0 we callα0.

(a) At t = 0.95 ns the avalanche has almost reached the anode and consists of around
1.9× 107 electrons. The deformations in the distribution of the effective Town-
send coefficient in the gas gap are very large. At the tip (tail) of the electron
cloud the increase is more than 100% (50%) as compared toα0, in the center the
effective Townsend coefficient is below zero.

(b) At t = 1.0 ns the first electrons have reached the anode. We find that now the
effective Townsend coefficient reaches a value of three timesα0. In the center
of the electron distribution, where most of the3.0 × 107 electrons are situated,
the value ofαeff (r, z, t) is below zero.

(c) At t = 1.1 ns the avalanche has grown to about6.1×107 electrons. Up to now at
most positions the value ofαeff (r, z, t) was still positive. Now we find a region
in front of the anode whereαeff (r = 0, z → g, t) < −1000 /cm.

(d) At t = 1.24 ns most electrons are situated in the region of very low effective
Townsend coefficient in front of the anode. In the largest fraction of this region
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Figure 7.9: Effective Townsend coefficient at the positions where electrons are situated
in the gas gap.
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the value ofαeff (r, z, t) is negative. The minimum value is around -1500 /cm.
Accordingly, the number of electrons has dropped to2.3× 107. However, in the
region further away from the anode, we still find a region of strong multiplication
with an effective Townsend coefficient up to 2.5 times as large asα0. As was
mentioned earlier, in this region the electron density is small so that the effect
on the avalanche growth at this stage is small.

(e) At t = 1.31 ns the number of electrons has dropped to1.9 × 106 electrons.
Almost everywhere the effective Townsend coefficient is much lower thanα0.
The minimum value reaches -6000 /cm!

(f) At t = 1.62 ns the few electrons left in the gas gap undergo strong attachment.
The minimum value ofαeff (r, z, t) is around -2000 /cm.

7.2.7 Longitudinal Electric Field

The value of thez-component of the electric fieldEz(r, z, t) that is sensed by the elec-
trons in the gas gap is the parameter that determines the velocity with that the electrons
in the avalanches reach the anode. Also this value can directly be compared to the val-
ues that were obtained using the 1.5-D model. Fig. 7.10 shows the value ofEz(r, z, t)
at different times at the different grid points given by ther- andz-coordinates. Again
we simulated an avalanche that was started by a single electron at the positionr = 0,
z = 0 and att = 0 ns. We show the value of the space charge field. The total lon-
gitudinal field can be calculated from that by adding the applied external electric field
E0 = 93.3 kV/cm.

(a) At t = 0.57 ns the avalanche consists of around1.7 × 105 electrons. The field
deformations are small. The field is increased at the tip and tail of the electron
cloud and decreased at its tail.

(b) At t = 0.95 ns the avalanche consists of around2.7 × 107 electrons. At the
maximum the longitudinal field is almost 50% higher than the applied electric
field and at the minimum it is about 40% lower.

(c) At t = 1.0 ns the avalanche has grown to around4.1 × 107 electrons and the
first electrons reach the anode. The maximum longitudinal space charge field is
about the same order of magnitude as the applied electric field. At the minimum
it is about 40% lower.

(d) At t = 1.05 ns the longitudinal electric field drops dramatically in front of the
anode. At the minimum it is almost 60% lower than the applied electric field.
The avalanche has6.7× 107 electrons.
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Figure 7.10:z-component of the space charge fieldEz(r, z, t) in an avalanche in a
0.3 mm gap Timing RPC filled with the standard gas mixture and with an operating
voltage of 2.8 kV. The avalanche was started by one electron at (r = 0, z = 0).
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(e,f) At t > 1.1 ns the region of decreased longitudinal field in front of the anode
grows. At the minimum the field is about 60% lower. At the final stage all free
electrons have either left the gas gap or got attached; the field deformations are
now only due to the ions.

The longitudinal field behaves similarly to the total electric field. Again we also
investigate this parameter at the positions where electrons are actually situated. In Fig.
7.11 the longitudinal electric field is set zero at all other positions in the gas gap.

(a) In the initial phase of the avalanche (att = 0.81 ns), where the electron cloud
has not yet reached the anode, the electrons are distributed both in regions with
increased and lowered longitudinal electric field. If compared to Fig. 7.2a we
see that at the tip, where the field is increased dramatically, the electron density
is large while at the tail, where the field is also increased, there are only a few
electrons. Accordingly, thez-component of the electron drift velocity will be
increased at the tip and the tail of the electron cloud while it is decreased in the
large region at the center.

(b) At t = 1.0 ns, where the avalanche has3.9 × 107 electrons, the first electrons
reach the anode. The maximum longitudinal field is increased dramatically at the
tip of the electron distribution. At the tail, where there are not a lot of electrons,
it is also increased. At the center of the electron cloud the longitudinal field is
decreased in a large region.

(c,d) At later stages the longitudinal field is lowered almost everywhere, where we
find electrons. At the tail of the electron cloud there is a region where the longi-
tudinal electric field sensed by the electrons is increased by around 10%.

(e) The electrons then all enter the region of decreased longitudinal electric field in
front of the anode.

(f) As was observed in Fig. 7.2f the electrons disappear fastest in the center of the
avalanche aroundr = 0. At t = 1.67 ns we find electrons only at the regions
further ’outside’ at larger values ofr. Here the field is lowered by up to 60%.

The development of the longitudinal electric field is very similar to what we ob-
tained with the 1.5-D model (for example, see Fig. 6.6).

7.2.8 Radial Electric Field

The value of ther-component of the electric fieldEr(r, z, t) that is sensed by the elec-
trons in the gas gap is the parameter that determines the radial spread of the electron
cloud on top of the transverse diffusion. Fig. 7.12 shows the value ofEr(r, z, t) at
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Figure 7.11:z-component of the space charge field. The field is calculated only at the
points where electrons are situated.
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different time steps and at the different grid points given by ther- andz-coordinates.
Again we simulated an avalanche that was started by a single electron at the position
r = 0, z = 0 and att = 0 ns.

(a) At t = 0.81 ns the avalanche consists of around4.4 × 106 electrons. The radial
component of the electric field has values of up to 10% of the applied longitu-
dinal electric field. A positive value means that electrons that sense this field
will be accelerated towards larger values ofr. As expected from the total charge
distribution encountered in the avalanches (see Fig. 7.5), the radial field repels
electrons from the center of the avalanche atr = 0 at the tip of the avalanche,
while it attracts electrons towards the center at the tail. Since at the tip of the
avalanche the electron density is largest, the radial space charge effect is a very
important effect.

(b) At t = 0.95 ns the maximum radial field reaches about 40% of the applied elec-
tric field.

(c) At t = 1.0 ns the avalanche has grown to around3.4 × 107 electrons. The first
electrons reach the anode. The maximum radial space charge field is about 50%
of the applied electric field.

(d) At t = 1.05 ns the distribution of the radial electric field strength starts to change
in the region in front of the anode (z → 0.03 cm). Here the maximum radial
space charge field reaches values of about 20% of the applied electric field, while
in the center of the gas gap it it is about 60% of the applied electric field.

(e) At t = 1.14 ns value of the radial field in front of the anode has decreased. The
radial field now attracts electrons to the center everywhere.

(f) At t = 1.52 ns there are only1.8 × 105 free electrons left in the gas gap. The
value of the radial space charge field is around zero atz → 0.03 cm. Elsewhere
the maximum can exceed the applied longitudinal electric field.

Again we show a plot, where the radial electric field is calculated only at positions
where we find electrons (Fig. 7.13) in order to view more clearly the radial field that
is sensed by the electrons.

(a) t = 0.81 ns: At the early stages of the avalanches, where no electrons have yet
reached the anode, the electrons are attracted (repelled) to (from) the center of
the avalanche atr = 0 at the tip (tail) of the avalanche, as we stated previously.

(b) t = 1.0 ns: The first electrons reach the anode.

(c) t = 1.1 ns: As many free electrons have left the gas gap, the density of positive
ions now is larger than the density of electrons. As mentioned previously, the
field now attracts electrons to the center everywhere.
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Figure 7.12:r-component of the space charge fieldEr(r, z, t) in an avalanche started
by one electron at (r = 0, z = 0) in a Timing RPC filled with the standard gas mixture
and with an operating voltage of 2.8 kV.
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Figure 7.13:r-component of the space charge field. The field is set zero at the points
where no electrons are situated.

(d) t = 1.57 ns: The value of the radial field component is decreasing.

Generally we observe that the radial space charge field reaches values that are
comparable to the longitudinal space charge field. The electron cloud is blown up
transversely due to the repulsive radial space charge fields at the tip where the electron
density is largest. At a later stage, when most electrons have left the gas gap or got
attached, the radial space charge field has the opposite sign.

7.2.9 Radial Drift Velocity

The value of ther-component of the electric fieldEr(r, z, t) determines the radial
spread of the electron cloud in an avalanche on top of the transverse diffusion. Fig.
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Figure 7.14:r-component of the radial component of the drift velocity(vD)r(r, z, t)
in an avalanche started by one electron at (r = 0, z = 0) in a Timing RPC filled with
the standard gas mixture and with an operating voltage of 2.8 kV.

7.14 shows the value of the radial component of the drift velocity(vD)r(r, z, t) at
different time steps and at the different grid points given by ther- andz-coordinates.
We simulated an avalanche that was started by a single electron at the positionr = 0,
z = 0 and att = 0 ns. We will frequently compare(vD)r(r, z, t) to the driftvelocity of
an electron at the applied electric field strengthv0 = vD(E0/p).

(a) At t = 0.76 ns the avalanche consists of around1.9 × 106 electrons. The radial
component of the drift velocity has values of up to 10% of the value ofv0. A
positive value leads to the electrons being repelled towards larger values ofr.
As expected from the radial field distribution (see Fig. 7.12), the electrons drift
away from the center of the avalanche atr = 0 at the tip of the avalanche, while
the electrons drift towards the center at the tail.
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(b) At t = 1.0 ns the maximum radial drift velocity reaches about 50% of the value
of v0.

(c) At t = 1.18 ns the avalanche has grown to around4.6 × 107 electrons. Many
electrons have already left the gas gap. The maximum radial drift velocity is
about 75% of the value ofv0. The electrons drift towards the center of the
avalanche atr = 0 almost everywhere.

(d) At t = 1.43 ns the maximum radial drift velocity is still around 75% of the value
of v0. The remaining electrons in the regions with larger values ofr are drifting
towards the center of the avalanche atr = 0.

Since at the tip of the avalanche the electron density can be very large, the radial
spread of the avalanche due to the space charge fields on top of the diffusion can
become very large here.

7.3 Avalanches in Pure Isobutane

In this section we present results on the detailed simulation of avalanches in pure isobu-
tane. Since isobutane is not electronegative, the attachment coefficient is zero for all
values of the electric field strength and the effective Townsend coefficient equals the
Townsend coefficient. Assuming a large gas gain, we expect that the Townsend coeffi-
cient is approximately zero at all positions in the gas gap where the space charge field
decreases the total electric field strength such that it approaches zero. Since in Timing
RPCs filled with the standard gas mixture C2F4H2/ i-C4H10/ SF6 (85%, 5%, 10%) we
have seen that a large fraction of the electrons in the final stage of the avalanches get
attached forming a negative ion, we expect a very different behaviour of the avalanches
in pure isobutane.

We investigate the same detector geometry as in section 7.2, the only difference
being the gas mixture. The applied voltage is 2.6 kV, leading to an electric field of
aroundE0 = 8.67 kV/mm in the gas gap. The pressure is 1013 mbar and the tem-
perature 296.15 K. We simulate an avalanche that is started by a single electron at the
positionr = 0, z = 0 and att = 0 ns. We will show plots of the different parameters at
different time steps and at the different grid points given by ther- andz-coordinates.
The charge induced by this avalanche is 40 fC and the total signal charge is around
1 pC.

7.3.1 Early Stage of the Avalanches

Fig. 7.15 shows the values of different parameters at timet = 1.94 ns and at the
different grid points given by ther- and z-coordinates. The avalanche consists of
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Figure 7.15: Several parameters in an avalanche in pure isobutane.t = 1.94 ns,5.2×
105 electrons.
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around5.2×105 electrons and the first electrons just reach the anode. The drift velocity
is aroundv0 = vD(E0, p) = 0.12 mm/ns, which is only 60% of the drift velocity of the
avalanches in section 7.2.

(a) The electron distribution is roughly Gaussian.

(b) The ion distribution represents an approximate exponential avalanche growth
combined with Gaussian diffusion.

(c) The plot shows the density of negative charge: At the tip of the avalanche it is
positive due to the majority of electrons here. At the tail it is negative due to the
amount of positively charged ions that stay behind .

(d) At this stage the Townsend coefficient is altered by up to 10% at some positions
in the gas gap.

(e) The total electric field strength sensed by the electrons and contributed by the
avalanche space charge is about 3% of the applied electric field strengthE0.

(f) The same is true for the radial electric field strength sensed by the electrons. As
before, the radial electric field repels electrons from the center of the avalanche
at the tip of the charge distribution, while it attracts electrons towards the center
at the tail.

The space charge effect is not very strong at this stage of the avalanche.

7.3.2 Later Stages of the Avalanches

Fig. 7.16 shows the values of the parameters at timet = 2.37 ns. The avalanche
consists of around3.1× 106 electrons at that stage.

(a) Many electrons have already entered the anode. The anode is conductive and the
electrons disappear instantly as soon as they leave the gas gap.

(b) The ion density is largest in the center of the avalanche in front of the anode.

(c) The density of the negative charge: Since many electrons have already left the
gas gap, this value is negative at most positions.

(d) The Townsend coefficient is increased by around 50% at the maximum and de-
creased to around a third of the value atE0. The maximum is at the tail of the
avalanche.
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Figure 7.16: Several parameters in an avalanche in pure isobutane.t = 2.37 ns,3.1×
106 electrons.
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(e) The total electric field sensed by the electrons is increased by around 15% as
compared toE0 at the maximum. At its minimum it is decreased by around
25%.

(f) The radial electric field strength sensed by the electrons reaches values up to
25% ofE0. At this stage of the avalanche it attracts electrons towards the center
of the avalanche at most positions in the gas gap.

Fig. 7.17 shows the values of the parameters at timet = 3.13 ns. The avalanche
size has decreased to around4.4× 105 electrons.

(a) We observe that at the ’outer’ positions at larger values ofr the electrons have
disappeared already while in the center of the avalanche atr ≈ 0 the electron
density is still almost as large as in Fig. 7.16.

(b) The shape of the ion distribution is altered somewhat, because at some positions
the amount of ions increases due to a Townsend coefficient that can still have
non-zero values at some positions. This happens mainly in the regions a little
further from the cathode.

(c) The density of negative charges in the gas gap has negative values everywhere
in the gas gap, since the positive ions outnumber the electrons everywhere.

(d) The Townsend coefficient has a value of approximately zero almost everywhere,
where we find electrons.

(e) At the minimum the value of the total electric field contributed by the avalanche
space charge has the same value asE0. These are the positions where the Town-
send coefficient approaches zero. The same is true for the drift velocity which is
not plotted.

(f) The radial electric field strength sensed by the electrons reaches values up to
35% ofE0 and attracts the electrons towards the center of the avalanche atr = 0.

7.4 Summary

We carried out detailed simulations of avalanches started by a single electron in Tim-
ing RPCs with 0.3 mm gas gaps. We find that the radial electric field contributed by
the avalanche charges reaches the same order of magnitude as the longitudinal space
charge field and as the applied electric field. As a consequence, the radial spread of
the avalanche due to the repulsion and attraction of the charges is very large. As the
electron clusters drift through the gap, they are blowed up transversely at their tip and
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Figure 7.17: Several parameters in an avalanche in pure isobutane.t = 3.13 ns,4.4×
105 electrons.
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contracted at their tail by this effect. At a later stage, where the cluster has reached
the anode, the contraction preponderates. In the standard gas the largest part of the
electrons get attached at the final stage in the central region. In isobutane regions are
formed at that stage, where the propagation and multiplication of the electron clouds
is coming to a halt. The electrons can then only be removed if the electric field slowly
changes due to the ions drifting away.
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Chapter 8

Conclusions and Outlook

Comprehensive summaries of the introduction, the description of the detector physics
of RPCs, of the Monte-Carlo avalanche simulation programs and of the results that
were obtained with the simulations are given at the end of the corresponding chapters,
in sections 1.6, 2.6, 3.5, 5.3, 6.7 and 7.4.

We have applied standard detector physics simulations to RPCs and find good
agreement with measurements. While from the simple electric field configuration
found in the gas gap of an RPC one might expect a just as simple description of the
avalanche propagation, it turns out that the physical processes are very complex. The
detailed simulation of the signal development demands for the dynamic calculation of
the electric field that is sensed by the electrons in the avalanche and that is contributed
by the positive and negative avalanche charges. Especially at the final stages of the
avalanche development this space charge field can easily reach the same strength as
the applied electric field. We can roughly divide this field into three zones: At the
two zones at the tip and at the tail of the electron distribution the total electric field
is increased by the space charge field. At the center of the avalanche, where most of
the electrons are situated, the total electric field is strongly decreased. Assuming an
avalanche in an electronegative gas, we find negative values for the effective Townsend
coefficient and thus strong attachment here. At a later stage, when the electron cloud
has reached the anode, almost all electrons are situated in that zone of extremely low-
ered field strength and attachment effects dominate. Moreover, we find that the radial
electric field contributions of the space charge are within the same order of magnitude
as the applied electric field. Thus the influence of this effect on the radial spread of the
avalanches at large gas gain is large.

The main result is that the experimentally observed efficiencies, time resolution
and the average avalanche charges can be explained with standard detector physics and
the values of the gas parameters as predicted by HEED, MAGBOLTZ and IMONTE.
The detector behaviour is well understood. We find that the efficiencies of single gap
Timing RPCs with 0.3 mm gas gap (around 75%) are explained by a large primary
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ionization density (about 9.5 cluster/cm) together with a very large effective Town-
send coefficient of about 113 /mm. Secondary particles produced in the detector frame
should not play an important role in the RPC behaviour. The space charge effect indeed
suppresses the large avalanche charges predicted by the avalanche statistics, which in
the simulations also leads to shapes of the charge spectra very similar to measure-
ments. Contrary to wire chambers, RPCs operate in a strong space charge mode. The
experimental result of a first exponential and then linear dependence of the average
charges on the high voltage is reproduced by the simulations.

Since the rate capability of RPCs is closely connected to the resistivity of the elec-
trode material, as a next step a careful study of the influence of the charges inside the
resistive electrodes on the electric field inside the gas gap could lead to a better un-
derstanding of these limitations and might open ways to optimize the detector for high
rate applications. The electrostatic potential solutions that would be needed for these
investigations are available.



Appendix A

Differential Collision Cross Sections

In this appendix we list theoretical expressions for the differential collision cross sec-
tions for charged particles with free electrons, which give the probability that the
particle with energyE lose an energy betweenE ′ andE ′ + dE ′ in the collision.
Magnetic moment and spin interactions are included. The constantC is given by
C = 2π Z z reme c

2, whereZ is the atomic number of the material,z is the charge
of the incident particle in unit charges,me is the electron mass,c is the speed of light,
re = e2/4πε0mec

2 is the classical electron radius andε0 the dielectric constant of vac-
uum.

A.1 Electron-Electron Scattering

The collision cross section of electrons with electrons

e− + e−→ (e−)′ + (e−)′

has been calculated by M̈oller [108] on the basis of the Dirac Theory. When the
energyE of the primary particle is large compared withme c

2 (thereforeβ ≈ 1), the
collision cross section is

dσ

dE ′


col

=
C E2

(E − E ′)2(E ′)2

[
1− E ′

E
+

(
E ′

E

)2
]2

. (A.1)

Since one can not distinguish between primary and secondary particle after the
collision, Eq. A.1 is interpreted as giving the probability of a collision that leaves one
electron in the energy stateE ′ and the other inE − E ′. All possible cases are taken
into account by letting the energyE ′ vary from0 toE/2 [15].
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A.2 Positron-Electron Scattering

Bhabha [109] has calculated the collision cross section of positrons with electrons

e+ + e−→ (e+)′ + (e−)′ .

ForE � mec
2 the probability of a collision after which the electron has an energy

in E ′ andE ′ + dE ′ is

dσ

dE ′


col

=
C

(E ′)2

[
1− E ′

E
+

(
E ′

E

)2
]2

. (A.2)

Accordingly the cross section of a collision after which the positron has an energy
in E ′ andE ′ + dE ′ is

dσ

dE ′


col

=
C

(E − E ′)2

[
1− E ′

E
+

(
E ′

E

)2
]2

. (A.3)

The total cross section for a positron-electron collision after whicheitherthe positron
or the electron has an energy inE ′ andE ′ + dE ′ can be calculated by multiplying Eq.
A.2 with

E2

(E − E ′)2

[
1− 2

E ′

E
+ 2

(
E ′

E

)2
]
. (A.4)

Again one takes into account all possible cases by letting the energyE ′ vary from
0 toE/2 [15].

A.3 Scattering of Massive Spin 0 Particles off Electrons

Bhabha [110] has calculated the collision cross section for particles with massm and
spin 0, e.g.

K− + e−→ (K−)′ + (e−)′

as

dσ

dE ′


col

=
C

β2(E ′)2

[
1− β2 E ′

Emax

]
, (A.5)

whereE ′max is the maximum transferable energy from Eq. 1.6.
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A.4 Scattering of Massive Spin1
2 Particles off Electrons

Bhabha [110] and Massey and Corben [111] have calculated the collision cross section
for particles with massm and spin1

2
, e.g.

µ+ + e−→ (µ+)′ + (e−)′

as
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
col
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[
1− β2 E ′
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1

2
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E +mc2
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]
. (A.6)

A.5 Scattering of Massive Spin 1 Particles off Electrons

The collision cross section for particles with mass m and spin 1 was calculated by
Massey and Corben [111] and by Oppenheimer et al. [112]. It can be obtained by
replacing the square brackets in Eq. A.6 with

[(
1− β2 E ′

Emax
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1

3

E ′
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1

3
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E +mc2

)2(
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2
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Ec

)]
, (A.7)

where

Ec =
m2c2

me

. (A.8)

A.6 Collision Cross Section Dependence on the Spin

For a distant collision, whenE ′ � Emax, E ′ � E andE ′ � Ec , the collision cross
sections given by Eqs. A.1, A.4, A.5, A.6 and A.7 all reduce to

dσ

dE ′


col

=
C

β2

1

(E ′)2
. (A.9)

Thus, at the limit of small values of the transfered energyE ′, the collision probabil-
ities of different kinds of particles become identical and depend only on the energyE ′
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of the secondary electron and on the velocityβ of the incident particle. Eq. A.9 can be
derived based on relativistic mechanics [15] and represents the Coulomb interaction.

The influence of the spin manifests itself only for very close collisions, whenE ′

is comparable toE andEc. At high values ofE ′ the collision cross section is an
increasing function of the spin. This can be seen if we consider, in particular, the case
E ′ � Emax, E ′ � E. Then the collision cross section for spin 0 and spin1

2
particles

is given by Eq. A.9. IfE ′ is comparable toEc, the collision cross section for spin 1
particles becomes

dσ

dE ′


col

=
C

β2

1

(E ′)2

(
1 +

1

3

E ′

Ec

)
. (A.10)

The expression contains an additional term so that it decreases with increasing
energy as1/E ′, whereas Eq. A.9 decreases as1/(E ′)2. ForE ′ > 3Ec the interaction
due to the spin exceeds the Coulomb interaction.



Appendix B

Überblick

Widerstandsplattenkammern (im englischenResistive Plate Chambersoder abgek̈urzt
RPCs) sind Teilchendetektoren, die in heutigen und zukünftigen Hochenergiephysik-
experimenten auf großen Flächen eingesetzt werden. Sie bestehen aus zwei parallelen
Elektrodenplatten, die einen gasgefüllten Spalt von wenigen hundert Micrometern bis
einigen Millimetern umschließen. Wenigstens eine der beiden Elektroden besteht aus
einem Material mit hohem Volumenwiderstand von 107 bis 1012 Ωcm. RPCs erreichen
eine gute Zeitaufl̈osung (bis zu 50 ps) und eine hohe Nachweiseffizienz (≈ 99% für
mehrere kombinierte Z̈ahler). Außerdem sind sie technisch sehr einfach aufgebaut.

RPCs wurden zu Beginn der achtziger Jahre von R. Santonico und R. Cardarelli
entwickelt [36, 37]. Ihre Funktionsweise beruht auf dem Energieverlust des primären
geladenen Teilchens durch Kollisionen mit Gasatomen im Gasspalt des Detektors,
wodurch einige der Atome ionisiert werden. Durch eine an die Elektroden angelegte
Hochspannung entsteht ein starkes homogenes elektrisches Feld im Gasspalt, in wel-
chem die freien Elektronen zur Anode hin beschleunigt werden. Durch Kollisionen
mit weiteren Atomen vermehren sich die Elektronen, und die Bewegung dieser Elek-
tronenlawinen induziert einen Strom auf einer externen Ausleseelektrode. Bei hoher
Gasversẗarkung von etwa 108 ändert sich die Dynamik der Lawinenpropagation. Dann
tragen versẗarkt Photonen zur Ausbreitung der Lawinen bei: Es entstehenStreamer.
Wenn diese Streamer die beiden Elektroden erreichen, kann es passieren, dass ein
leitender Kanal entsteht, durch den sich die Elektroden entladen können (Kanalauf-
bau [38]). An dieser Stelle erklärt sich der Sinn der Resistivität des Elektrodenmate-
rials: Die Entladung beschränkt sich auf eine kleine Fläche rund um die ursprüngliche
Ladungslawine, und ihre Energie bleibt begrenzt; der Streamerlöscht sich selbst. Auf
dieser Fl̈ache ist der Detektor nicht ansprechbereit, bis die Elektroden lokal wieder
aufgeladen sind. Die Zeitkonstante für diesen Prozess kann je nach dem Wert des
Volumenwiderstands bis zu eine Sekunde betragen. Durch die Resistivität der Elek-
troden wird zum einen verhindert, dass ein energiereicher Funken die lokale Elek-
trodenoberfl̈ache in Mitleidenschaft zieht. Zum anderen bleibt der Detektor auf der
restlichen Fl̈ache ansprechbereit. Allerdings führt sie auch zu einer eingeschränkten

161



162 APPENDIX B. ÜBERBLICK

Ratentauglichkeit.

RPCs wurden ursprünglich im Streamermodus betrieben, was zu großen Signal-
höhen f̈uhrt, und die Anforderungen an die Ausleseelektronik und die Genauigkeit
des Elektrodenabstandes vereinfacht. Um verbesserte Hochratenfestigkeit und vermin-
derte Alterung der RPCs zu erlangen, wurde der Betrieb im Lawinenmodus populär.
Diese Entwicklung wurde m̈oglich durch die Einf̈uhrung neuer Gasmischungen auf der
Basis von C2F4H2 mit geringen SF6-Beimischungen [39]. Ẅahrend Streamer schwer
zu studieren sind, eröffnete der Lawinenmodus die M̈oglichkeit detaillierter Simula-
tionen der physikalischen Prozesse in RPCs. Als Beispiele für die Verwendung vom
Lawinenmodus-RPCs können die beiden am Beschleuniger LHC1 am Europ̈aischen
Kernforschungszentrum CERN in Genf sich im Aufbau befindenden Experimente AT-
LAS2 [61] und ALICE3 [63] genannt werden.

Im Muonensystem von ATLAS werden RPCs mit 2 mm Plattenabstand betrieben
im Lawinenmodus auf einer Fläche von 3650 m2 und mit 355.000 unabhängigen Ausle-
sekan̈alen verwendet [54]. Muonen mit großen Transversalimpulsen sind unter den
vielversprechendsten Signaturen für die Physik der Proton-Proton Kollisionen am LHC.
So k̈onnten vier simultan auftretende Muonen auf den Zerfall eines der gesuchten
Higgs-TeilchenH hindeuten:H → Z+Z → µ+ +µ−+µ+ +µ−. Anforderungen an
den verwendeten Detektor sind unter anderem eine Zeitauflösung von etwa 1 ns, was
von RPCs leicht erreicht wird. Die verwendete Geometrie wirdTrigger RPCgenannt.
Betrieben im Lawinenmodus erreichen diese Detektoren eine Nachweiseffizienz von
98.5% f̈ur einen Spalt bis zu einer Teilchenrate von einigen kHz/cm2.

In ALICE werden RPCs mit 0.25 mm Plattenabstand in Mehrfach-Spalt Konfigu-
rationen [56] auf einer Fläche von 176 m2 mit 160.000 individuellen Auslesezellen
zur Flugzeitmessung implementiert [33]. Bei den extremen Teilchenmultiplizitäten,
die für zentrale Blei-Blei Sẗoße am LHC vorhergesagt werden, ist die Teilchenidenti-
fizierung eine wichtige Aufgabe. Um eine Separation von Kaonen und Pionen mit drei
Standardabweichungen Genauigkeit zu erreichen, sollte die Zeitauflösung des Detek-
tors 90 ps erreichen, was von den genannten RPCs erreicht wird. Die Leistungsmerk-
male dieserTiming RPCsgenannten Detektoren sind vergleichbar mit herkömmlichen
Detektoren auf der Basis von Szintillatoren, sie bieten jedoch einen Preis pro Kanal,
der bis zu einer Gr̈oßenordnung niedriger ist.

1LargeHadronCollider
2A ToroidalLHC ApparatuS
3A L argeIonCollider Experiment
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B.1 Motivation f ür die Arbeit

Trotz des umfangreichen Einsatzes dieser Detektortechnologie sind einige experimen-
telle Ergebnisse noch nicht genau verstanden worden. Insbesondere hinsichtlich der
Erklärung der guten Nachweiseffizienz von Timing RPCs kamen vielerlei Fragen auf.
Unter anderem wurde vorgeschlagen, die hohe Effizienz anhand von Begleitelektro-
nen zu erkl̈aren, die vom Prim̈arteilchen aus dem Detektorrahmen gelöst werden.
Verneint man dies, so muss man von einer hohen Dichte von primären Ionisations-
zentren, aber auch von einer sehr großen Gasvertärkung ausgehen. Die hohe Ioni-
sationsdichte f̈uhrt dazu, dass sich Prim̈arelektronen mit einer hohen Warscheinlich-
keit nahe an der Kathode befinden. Von hier durchqueren die Ladungslawinen den
gesamten Spalt und aufgrund des exponentiellen Wachstums erreichen sie eine aus-
reichende Gr̈oße, um nachgewiesen zu werden. Auch im Falle der hohen Ionisations-
dichte muss die Gasverstärkung sehr groß sein, damit möglichst viele Lawinen den ge-
setzten Schwellwert erreichen. In diesem Falle ist aber ein sehr starkerRaumladungs-
effektnötig, um die gemessenen kleinen Ladungen um 1 pC und den dazu nötigen
Unterdr̈uckungsfaktor teilweise von bis zu 107 zu erkl̈aren. Der Begriff Raumla-
dungseffekt beschreibt den Prozess der dynamischen Verzerrung des angelegten elek-
trischen Feldes durch die Ladungsträger in der Lawine. Dieses zusätzliche Feld hat
einen starken Einfluss auf die Driftgeschwindigkeit und Multiplikation der Elektro-
nen. Um die großen Werte für die Lawinenladungen wirkungsvoll zu unterdrücken,
muss der Raumladungseffekt eine gewisse Stärke haben und das elektrische Feld an
den Positionen, an denen sich der Großteil der Elektronen in der Lawine befindet, stark
erniedrigen. Dann muss aber das Feld an anderen Positionen durch den gleichen Ef-
fekt stark erḧoht sein. Viele Autoren lehnen die M̈oglichkeit ab, dass sich eine Lawine
unter diesen extremen Umständen ausbreiten kann, ohne sich an den Stellen erhöhter
Feldsẗarke in einen Streamer umzuwandeln.

Weitere Fragen betreffen die Form der experimentell gemessenen Ladungsspek-
tren. Man beobachtet einen Scheitelpunkt in den Spektren von Trigger RPCs, der zu
höheren Spannungen hin ausgeprägter wird. Die Statistik der Prim̈arionisation und der
Ladungsmultiplikation sollte jedoch zu einer Form der Spektren führen die monoton
zu ḧoheren Ladungen hin abfällt.

B.2 Detektorphysik von RPCs

Die zur kompletten Beschreibung der Erzeugung und Evolution von Ladungslawinen
und Signalen in RPCs benötigten Parameter sind

• die mittlere freie Wegl̈ange zwischen zwei ionisierenden Kollisionenλ,

• die Zufallsverteilung f̈ur die Anzahl der Elektronen pro Cluster,
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• der Townsend-Koeffizientα(E/p),

• der Elektronenanlagerungskoeffizientη(E/p),

• die Elektron-DriftgeschwindigkeitvD(E/p),

• der transversale and der longitudinale DiffusionskoeffizientenDT (E/p) und
DL(E/p),

• das Potenzial einer Punktladung im Gasspalt einer RPC und

• der Wert derz-Komponente4 des Wichtungsfeldes~EW (~r) in der zentralen Schi-
cht der genannten Geometrie.

Die Werte vonλ und die Clustergr̈oßenverteilung k̈onnen mit dem Simulationspro-
gramm HEED [25] f̈ur ionisierende Teilchen verschiedener Art und Energie berechnet
werden. Die Werte vonα(E/p), η(E/p), vD(E/p), DT (E/p) undDL(E/p) sind
Funktionen des elektrischen FeldesE und des Gasdruckesp und k̈onnen mit den Pro-
grammen MAGBOLTZ [76] und IMONTE [77] berechnet werden.

Die Distanz zwischen zwei ionisierenden Kollisionen des Primärteilchens mit den
Gasatomen ist exponentialverteilt umλ. Dann ist die Anzahl der ionisierenden Ereig-
nisse in einem Spalt der Dickeg Poissonverteilt umn = g/λ. Die maximale Effizienz
einer RPC ist durchεmax = 1 − exp(−n) gegeben. Hier istexp(−n) die Warschein-
lichkeit daf̈ur , kein Cluster im Gasspalt zu finden.εmax hängt stark vom verwendeten
Gas und vong ab. Die Clustergr̈oßenverteilung hat einen Mittelwert von einigen Elek-
tronen, jedoch ergibt sich auch eine gewisse Warscheinlichkeit, bis zu einige hundert
Elektronen in einem Cluster zu finden.

In einem homogenen elektrischen Feld kann die Propagation einer Elektronen-
wolke durch die Diffusionsbewegung und eineüberlagerte konstante Driftbewegung
beschrieben werden. Für die Fluktuationen in der Ladungsmultiplikation wird ein
Modell von W. Legler [85] verwendet, welches die Statistik der Elektronenlawinen
in elektronegativen Gasen bei hohen Feldstärken und bei hoher Gasverstärkung be-
schreibt. Die Verteilung ḧangt explizit von den Werten vonα(E/p) und η(E/p) ab.
Weiterhin wird f̈ur die Berechnung des Raumladungsfeldes eine analytische Lösung
für das Potenzial einer Punktladung in einem unendlich ausgedehnten Plattenkonden-
sator mit drei homogenen dielektrischen Schichten verwendet [3, 4]. Dieses Potenzial
kann gut durch die Potenziale einer freien Punktladung sowie einer Spiegelladung,
welche sich in der n̈aheren Elektrode befindet, approximiert werden. Schließlich wird
der induzierte Stromi(t) vonN(t) Einheitsladungene0, die sich mit der Geschwin-
digkeit~vD(t) zur Zeitt bewegen, mit Hilfe des Wichtungsfeld-Formalismus berechnet:

4Die z-Achse liegt senkrecht zu dem Detektorplatten. Die Elektronenlawinen breiten sich also par-
allel zurz-Achse in Richtung der Anode aus.
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i(t) = ~Ew · ~vD(t) e0 N(t). Eine Ausleseelektronik kann simuliert werden, indem das
Stromsignal mit der Impulsantwort des Systems gefaltet wird.

Basierend auf diesen physikalischen Prozessen werden vier Monte-Carlo Simula-
tionsroutinen vorgestellt, wobei das1-D-Modell in [1] diskutiert wird und die1.5-D-,
2-D- und3-D-ModelleGegenstand dieser Doktorarbeit sind.

Das1-D-Modellsimuliert die longitudinale Ausbreitung der Lawinen entlang der
z-Achse, welche in etliche Intervalle unterteilt wird. Die Primärcluster werden auf
diese Intervalle verteilt und die Elektronen sodann in Richtung der Anode propagiert
und anhand der beschriebenen Verteilung multipliziert, wobei die Werte vonα(E/p)
und η(E/p) konstant angenommen werden. Eine Saturation aufgrund eines Raum-
ladungseffektes kann simuliert werden, indem das Wachstum der Lawinen gestoppt
wird, sobald diese eine bestimmten Größe erreichen. Dieses Modell wird zur detail-
lierten Untersuchung von Zeitauflösungen und Effizienzen von RPCs verwendet.

Im 1.5-D-Modellwird der Raumladungseffekt mit eingebunden, indem angenom-
men wird, dass die Lawinenladungen in transversaler Richtung in Scheiben unterge-
bracht sind, die eine Ladungsverteilung tragen, welche Gaußförmig ist. Die Standard-
abweichung dieser Verteilungen hängt dabei fest vom transversalen Diffusionskoef-
fizienten und von der Distanz ab, die die Elektronen gedriftet sind. Wir verwenden die
erwähnte analytische L̈osung f̈ur das Potenzial einer Punktladung in der RPC. Das In-
tegralüber diese L̈osung und die radiale Ladungsverteilung ergibt das elektrische Feld
einer Scheibe mit dieser Ladungsverteilung. Die Summeüber alle Scheiben ergibt das
elektrische Feld der gesamten Raumladung der Lawine. Die Diffusionskoeffizienten
DT undDL werden als konstant angenommen. Der Name “1.5-D-Modell” rührt daher,
dass die Lawinenpropagation zwar ebenso wie beim1-D-Modellnur in einer Dimen-
sion, n̈ahmlich longitudinal, simuliert wird, die transversale Diffusion jedochüber die
Berechnung des Raumladungsfeldes auch mit berücksichtigt wird. Das beschriebene
Modell erlaubt die Berechnung von Ladungsspektren sowie des Einlusses des Raum-
ladungseffektes auf die Signalform.

Das2-D-Modell erlaubt auch die Simulation des radialen Raumladungseffektes.
Unter der Annahme, dass die Lawinen einer Zylindersymmetrie unterliegen, wird der
Gasspalt in ein Netz der longitudinalen und radialen Koordinatenz undr geteilt. Die
Raumladung ist dann in Ringen der Größeδr undδz zentriert um diez-Achse unterge-
bracht. Das Modell erlaubt die sehr detaillierte Simulation einzelner Lawinen.

Auch ein dreidimensionales Modell (3-D-Modell) wird vorgestellt. Es zeigt sich
jedoch, dass die Intervalle sehr klein gewählt werden m̈ussen, und damit die Rechen-
dauer in nicht realisierbare Größen steigt, so dass dieses Modell nicht praktikabel ist.
Allerdings besẗatigen die Untersuchungen die Annahme einer Zylindersymmetrie, so
dass die Verwendung des2-D-Modellsdurchaus gerechtfertigt ist.
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B.3 Ergebnisse

Die Monte-Carlo Simulationen der Effizienzen und Zeitauflösungen von Trigger und
Timing RPCs f̈uhren zu Resultaten, die sehr Nahe an gemessenen Werten liegen.
Tats̈achlich wird die gute Effizienz der Timing RPC durch eine hohe Dichte von Pri-
märionisationszentren (etwa 9.5 /cm) und durch einen hohen effektive Townsend-Ko-
effizienten (etwa 113 /mm) erklärt. Werden Raumladungseffekte nicht berücksichtigt,
so erḧalt man wie eingangs besprochen Mittelwerte für die Ladungen, die teilweise
sieben Gr̈oßenordnungen̈uber den experimentell beobachteten liegen. Mit dem 1.5-
D-Modell unter Ber̈ucksichtigung des Raumladungseffektes berechnete Ladungsspek-
tren haben Mittelwerte, die im Vergleich dazu nahe an den Messungen liegen. Die
Form der Spektren entspricht sehr genau den Messungen. Die RPC wird im Gegen-
satz zu Drahtkammern in einem Raumladungsmodus betrieben, welcher sichüber
einen großen Bereich der angelegten Spannung erstreckt, und die großen Werte der
Ladungen wirkungsvoll unterdrückt. Das Wachstum der Lawinen ist nur zu Beginn
exponentiell. Zu einem späteren Zeitpunkt weicht der Signalanstieg aufgrund des
Raumladungseffektes von einem exponentiellen ab. Dies wirkt sich schon auf dem
Schwellwert-Niveau aus. Die Zeitauflösung wird jedoch nicht vom Raumladungs-
effekt beeintr̈achtigt.

Die Korrelation der Lawinenladungen zur Zeit der Schwellwertüberschreitung (La-
dung-Zeit-Korrelation) wird in Experimenten verwendet um die Zeitauflösung von
Timing RPCs zu verbessern. Sie wird beeinflusst von der Verstärkerelektronik und
von intrinsischen Detektoreffekten. Betrachtet man die intrinsische Korrelation, so
findet man, dass besonders die Signale mit langsamer Anstiegszeit eine Korrelation
zur Ladung zeigen.

Das longitudinale Raumladungsfeld erreicht die gleiche Größenordnung wie das
extern angelegte Feld. Elektronenanlagerung spielt eine sehr große Rolle, besonders
im Endstadium der Lawinen. Da keine photonischen Effekte in der Simulation ent-
halten sind, wird erwartungsgemäß das Auftreten von Streamern nicht reproduziert.
Ein Teil der Ergebnisse, die mit dem 1.5-D-Modell erhalten wurden, wurde bereits
publiziert [5, 6].

Berechnungen mit dem 2-D-Modell ergeben, dass auch das radiale Raumladungs-
feld in der Gr̈oßenordnung des angelegten Feldes liegen kann. Zunächst werden die
Elektronenwolken radial an ihrem vorderen Ende (in Richtung der Anode) durch dieses
Feld aufgebl̈aht und an ihrem hinteren Ende zusammengezogen. Zu einem späteren
Zeitpunkt, wenn die Elektronenwolke die Anode erreicht hat, zieht das radiale Raum-
ladungsfeld die Elektronenwolkëuberall zum Zentrum hin zusammen.



B.4. SCHLUSSFOLGERUNG UND AUSBLICK 167

B.4 Schlussfolgerung und Ausblick

Die Anwendung von Standard Detektorphysik Prozessen auf die Simulation von La-
dungslawinen in RPCs führt zu Ergebnissen, die gut mit experimentellen Resultaten
übereinstimmen. Obwohl die RPC technisch sehr einfach aufgebaut ist, und obwohl
die Feldgeometrie sehr einfach ist, zeigt sich, dass die Prozesse, die während der
Ladungslawine ablaufen (Raumladungseffekte), sehr komplex sind.

Eine n̈ahere Untersuchung des Einflusses der abfließenden Ladungen in den resis-
tiven Elektroden auf das elektrische Feld im Gasspalt wäre ein n̈achster Schritt, um
die Ratenf̈ahigkeit des Detektors besser zu verstehen und zu optimieren. Die dazu
ben̈otigten elektrostatischen Lösungen sind vorhanden [3].
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auch allen Mitarbeitern der CERN-Gruppe der LHCb-Kollaboration, in die ich integri-
ert war, insbesondere Dr. Burkhard Schmidt und Thomas Schneider. Und schließlich
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1997 Vordiplom, Note: ”Sehr Gut”

1999-2000 Diplomarbeit an der Gesellschaft für Schwerionen-

forschung mbH (GSI) in Darmstadt

Titel: ”Aufbau und Inbetriebnahme eines Gasquali-

tätsmonitors f̈ur die HADES-Driftkammern”

Betreuer: Prof. Dr. Herbert Ströbele, Dr. Joachim

Stroth

2000 Diplom im Fach Physik, Note: ”Sehr Gut”

2001 Beginn der Promotion als “doctoral student” am

Europ̈aischen Kernforschungszentrum (CERN) in

Genf. Betreuer: Prof. Dr. Reinhard Stock und

Dr. Werner Riegler am CERN

Sonstiges 1995-1996 Einj̈ahrige Weltreise

179


	Introduction
	Particle Physics and Experiments
	Interactions of Particles with Matter
	Energy Loss due to Ionization and Excitation
	Other Interaction Mechanisms of Radiation with Matter
	Energy Loss and Particle Detection with RPCs

	Large Area Particle Detectors
	Time Resolution
	Spark Counter
	Parallel Plate Avalanche Chambers
	Resistive Plate Chambers

	Trigger RPCs and their Applications
	Timing RPCs and their Applications
	Summary

	Detector Physics of RPCs
	Gas Ionization by Fast Charged Particles
	Distance between Primary Clusters
	Maximum Detection Efficiency
	Cluster Size Distribution

	Electron Drift and Multiplication
	Thermal Motion and Diffusion
	Electron Motion due to an Electric Field
	Electron Multiplication
	Avalanche Statistics

	Electrostatics of Three Layer Geometries
	Potential of a Point Charge for the Three Layer Problem
	Electric Field of a Point Charge for the Three Layer Problem

	Signal Induction Process
	Weighting Field in the Gas Gap of an RPC
	Induced Charge

	Streamers
	Summary

	Monte Carlo Avalanche Simulation
	The 1-D Model
	The 1.5-D Model
	Longitudinal Diffusion
	Transverse Diffusion
	Space Charge Effect
	Electrons in the Anode Resistive Layer
	Field Dependence of the Electron Multiplication
	Field Dependence of the Drift Velocity
	Induced Current Signal and Induced Charge

	The 2-D Model
	Calculation of the Electric Field Vector
	Propagation of the Charges

	The 3-D Model
	Convergence of the 3-D Model
	Drawbacks of the 3-D Model

	Summary

	Geometries and Typical Operating Parameters
	Results Obtained with the 1-D Model
	Efficiency and Time Resolution
	Charge-to-Time Correlation
	Summary

	Results Obtained with the 1.5-D Model
	Signal Rise Time
	Charge Spectra
	Timing RPCs with 0.3mm Gaps
	Timing RPCs with 0.1mm and 0.2mm Gaps
	Quad Gap Timing RPCs with 0.3mm Gaps
	Trigger RPCs with 2mm Gaps

	Operational Mode of RPCs
	Charge-to-Time Correlation
	Avalanches in Pure Isobutane
	Streamers
	Summary

	Results Obtained with the 2-D Model
	Comparison of the Different Models
	Avalanches in C2F4H2/ i-C4H10/ SF6
	Electron Density
	Total Ion Density
	Total Charge Density
	Electric Field
	Drift Velocity
	Effective Townsend Coefficient
	Longitudinal Electric Field
	Radial Electric Field
	Radial Drift Velocity

	Avalanches in Pure Isobutane
	Early Stage of the Avalanches
	Later Stages of the Avalanches

	Summary

	Conclusions and Outlook
	Differential Collision Cross Sections
	Electron-Electron Scattering
	Positron-Electron Scattering
	Scattering of Massive Spin 0 Particles off Electrons
	Scattering of Massive Spin 12 Particles off Electrons
	Scattering of Massive Spin 1 Particles off Electrons
	Collision Cross Section Dependence on the Spin

	Überblick
	Motivation für die Arbeit
	Detektorphysik von RPCs
	Ergebnisse
	Schlussfolgerung und Ausblick


